Wang Y, Chen S, Chen J, Xie X, Gao S, Zhang C, et al. Germline genetic patterns underlying familial rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren’s syndrome highlight T cell-initiated autoimmunity. Ann Rheum Dis. 2020;79:268–75.
Article
CAS
Google Scholar
Scott D, Wolfe F, Huizinga T. Rheumatoid arthritis. Lancet [Internet]. Elsevier Ltd 2010.
Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011 Dec 1; 365:2110–21.
AntoniHGni L, Le Mauff B, Marcelli C, Aouba A, de Boysson H. Rhupus: a systematic literature review. Autoimmun Rev. 2020:102612.
Alarcón-Segovia D, Alarcón‐Riquelme ME, Cardiel MH, Caeiro F, Massardo L, Villa AR, et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum. 2005;52:1138–47.
Article
Google Scholar
Cotsapas C, Voight BF, Rossin E, Lage K, Neale BM, Wallace C, et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 2011;7:e1002254.
Article
CAS
Google Scholar
Cui Y, Sheng Y, Zhang X. Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun. 2013;41:25–33.
Article
CAS
Google Scholar
Viatte S, Plant D, Raychaudhuri S. Genetics and epigenetics of rheumatoid arthritis. Nature Reviews Rheumatology. 2013;9:141.
Article
CAS
Google Scholar
Higgs BW, Liu Z, White B, Zhu W, White WI, Morehouse C, et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann Rheum Dis. 2011;70:2029–36.
Article
CAS
Google Scholar
Stastny P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. New England journal of medicine. 1978;298:869–71.
Article
CAS
Google Scholar
Zhao Z, Ren J, Dai C, Kannapell CC, Wang H, Gaskin F, et al. Nature of T cell epitopes in lupus antigens and HLA-DR determines autoantibody initiation and diversification. Ann Rheum Dis. 2019;78:380–90.
Article
CAS
Google Scholar
Stafford I, Kellermann M, Mossotto E, Beattie R, MacArthur B, Ennis S. A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. NPJ digital medicine. 2020;3:1–11.
Article
Google Scholar
Kruppa J, Ziegler A, König IR. Risk estimation and risk prediction using machine-learning methods. Hum Genet. 2012;131:1639–54.
Article
Google Scholar
Joo YB, Kim Y, Park Y, Kim K, Ryu JA, Lee S, et al. Biological function integrated prediction of severe radiographic progression in rheumatoid arthritis: a nested case control study. Arthritis research & therapy. 2017;19:1–9.
Article
Google Scholar
Guy RT, Santago P, Langefeld CD. Bootstrap Aggregating of Alternating Decision Trees to Detect Sets of SNP s That Associate With Disease. Genet Epidemiol. 2012;36:99–106.
Article
Google Scholar
Ceccarelli F, Sciandrone M, Perricone C, Galvan G, Cipriano E, Galligari A, et al. Biomarkers of erosive arthritis in systemic lupus erythematosus: Application of machine learning models. PLoS One. 2018;13:e0207926.
Article
Google Scholar
Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham III CO, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62:2569–81.
Article
Google Scholar
Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677–86.
Article
Google Scholar
Wei C-Y, Yang J-H, Yeh E-C, Tsai M-F, Kao H-J, Lo C-Z, et al. Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. NPJ genomic medicine. 2021;6:1–10.
Article
Google Scholar
Mieth B, Kloft M, Rodríguez JA, Sonnenburg S, Vobruba R, Morcillo-Suárez C, et al. Combining multiple hypothesis testing with machine learning increases the statistical power of genome-wide association studies. Sci Rep. 2016;6:1–14.
Article
Google Scholar
Romero-Rosales B-L, Tamez-Pena J-G, Nicolini H, Moreno-Treviño M-G, Trevino V. Improving predictive models for Alzheimer’s disease using GWAS data by incorporating misclassified samples modeling. PLoS One. 2020;15:e0232103.
Article
CAS
Google Scholar
Cheng B, Ning Y, Liang C, Li P, Liu L, Cheng S, et al. Genome-Wide Association Analysis Identified ANXA1 Associated with Shoulder Impingement Syndrome in UK Biobank Samples. G3: Genes, Genomes, Genetics. 2020;10:3279-84.
Verma A, Ranga V. Machine learning based intrusion detection systems for IoT applications. Wireless Personal Communications. 2020;111:2287–310.
Article
Google Scholar
Li B, Zhang N, Wang Y-G, George AW, Reverter A, Li Y. Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods. Frontiers in genetics. 2018;9:237.
Article
Google Scholar
Ho WK, Tang B-S, Wong SW. Predicting property prices with machine learning algorithms. Journal of Property Research. 2021;38:48–70.
Article
Google Scholar
Lundberg S, Lee S-I. A unified approach to interpreting model predictions. arXiv preprint arXiv:170507874. 2017.
Kang E, Jang J, Choi CH, Kang SB, Bang KB, Kim TO, et al. Development of a Clinical and Genetic Prediction Model for Early Intestinal Resection in Patients with Crohn’s Disease: Results from the IMPACT Study. Journal of clinical medicine. 2021;10:633.
Article
CAS
Google Scholar
Behravan H, Hartikainen JM, Tengström M, Kosma VM, Mannermaa A. Predicting breast cancer risk using interacting genetic and demographic factors and machine learning. Sci Rep. 2020;10:1–16.
Article
Google Scholar
Jung LC, Wang H, Li X, Wu C. A machine learning method for selection of genetic variants to increase prediction accuracy of type 2 diabetes mellitus using sequencing data. Statistical Analysis and Data Mining: The ASA Data Science Journal. 2020;13:261–81.
Article
Google Scholar
Zheng X, Shen J, Cox C, Wakefield JC, Ehm MG, Nelson MR, et al. HIBAG—HLA genotype imputation with attribute bagging. The pharmacogenomics journal. 2014;14:192–200.
Article
CAS
Google Scholar
Lu H, Zhang J, Jiang Z, Zhang M, Wang T, Zhao H, et al. Detection of Genetic Overlap Between Rheumatoid Arthritis and Systemic Lupus Erythematosus Using GWAS Summary Statistics. Frontiers in genetics. 2021;12:389.
Google Scholar
Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. New England Journal of Medicine. 2007;357:977–86.
Article
CAS
Google Scholar
Orozco G, Sánchez E, González-Gay MA, López‐Nevot MA, Torres B, Cáliz R, et al. Association of a functional single‐nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2005;52:219–24.
Article
CAS
Google Scholar
Reche PA, Reinherz EL. Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol. 2003;331:623–41.
Article
CAS
Google Scholar
Dietterich TG. Ensemble methods in machine learning. International workshop on multiple classifier systems;2000:Springer;2000. p. 1-15.
Molineros JE, Looger LL, Kim K, Okada Y, Terao C, Sun C, et al. Amino acid signatures of HLA Class-I and II molecules are strongly associated with SLE susceptibility and autoantibody production in Eastern Asians. PLoS Genet. 2019;15:e1008092.
Article
CAS
Google Scholar
Kim K, Bang S-Y, Yoo DH, Cho S-K, Choi C-B, Sung Y-K, et al. Imputing variants in HLA-DR beta genes reveals that HLA-DRB1 is solely associated with rheumatoid arthritis and systemic lupus erythematosus. PLoS One. 2016;11:e0150283.
Article
Google Scholar
Alarcón-Riquelme ME, Ziegler JT, Molineros J, Howard TD, Moreno‐Estrada A, Sánchez‐Rodríguez E, et al. Genome‐wide association study in an Amerindian ancestry population reveals novel systemic lupus erythematosus risk loci and the role of European admixture. Arthritis & rheumatology. 2016;68:932–43.
Article
Google Scholar