Alwahsh SM, Gebhardt R, et al. Arch Toxicol. 2017;91:1545–63 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27995280.
Article
CAS
Google Scholar
Kanwal F, Tapper EB, Ho C, Asrani SK, Ovchinsky N, Poterucha J, et al. Development of quality measures in cirrhosis by the practice metrics Committee of the American Association for the study of liver diseases. Hepatology. 2019;69:1787–97.
Article
Google Scholar
Fan JG, Kim SU, Wong VWS. New trends on obesity and NAFLD in Asia. J Hepatol. 2017. https://doi.org/10.1016/j.jhep.2017.06.003 European Association for the Study of the liver.
Sutti S, Albano E. Adaptive immunity: an emerging player in the progression of NAFLD. Nat Rev Gastroenterol Hepatol. 2020;17:81–92. https://doi.org/10.1038/s41575-019-0210-2 Springer US.
Article
CAS
PubMed
Google Scholar
Turchinovich A, Baranova A, Drapkina O, Tonevitsky A. Cell-free circulating nucleic acids as early biomarkers for NAFLD and NAFLD-associated disorders. Front Physiol. 2018;9:1–13.
Article
Google Scholar
Zhou Y, Jiang Y, Zheng P. 1. Research Progress in traditional Chinese medicine of nonalcoholic fatty liver. J Liaoning Univ Tradit Chin Med. 2019;46:1327–30.
Google Scholar
Shi T, Wu L, Ma W, Ju L, Bai M, Chen X, et al. Nonalcoholic fatty liver disease: pathogenesis and treatment in traditional Chinese medicine and Western medicine. Evid Based Complement Alternat Med. 2020;2020:8749564.
PubMed
PubMed Central
Google Scholar
Ruoxuan Z, Wenliang L. Research Progress in treatment of nonalcoholic fatty liver disease by Chinese medicine. J Hubei Univ Chinese Med. 2019;21:122–5.
Google Scholar
Qiu G, Ye F, Liu Y, Cai Y, Wang R, Sun Y, He Q. The experimental study on the effects of Xiaochaihu Soup on nonalcoholic rat fatty liver. J Xi’an Jiaotong Univ Medical Sci. 2013;34:400–2.
Google Scholar
Liu JF, Hu AN, Zan JF, Wang P, You QY, Tan AH, et al. Network pharmacology deciphering mechanisms of volatiles of Wendan granule for the treatment of Alzheimer’s disease. Evid Based Complement Alternat Med. 2019;2019:7826769.
PubMed
PubMed Central
Google Scholar
Niu B, Zhang H, Li C, Yan F, Song Y, Hai G, et al. Network pharmacology study on the active components of pterocypsela elata and the mechanism of their effect against cerebral ischemia. Drug Des Devel Ther. 2019;13:3009–19.
Article
CAS
Google Scholar
Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Aust J Chem. 2014;6:1–6.
Google Scholar
Ahmed SSSJ, Ramakrishnan V. Systems biological approach of molecular descriptors connectivity: optimal descriptors for oral bioavailability prediction. PLoS One. 2012;7:11–7.
Google Scholar
Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2020;48:D1031–41 Oxford University Press.
CAS
PubMed
Google Scholar
Bateman A. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–15 Oxford University Press.
Article
Google Scholar
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8.
Article
CAS
Google Scholar
Sherman BT, Huang DW, Tan Q, Guo Y, Bour S, Liu D, et al. DAVID knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinformatics. 2007;8:1–11.
Article
Google Scholar
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.
Article
Google Scholar
Nascimbeni F, Pais R, Bellentani S, Day CP, Ratziu V, Loria P, et al. From NAFLD in clinical practice to answers from guidelines. J Hepatol. 2013;59:859–71. https://doi.org/10.1016/j.jhep.2013.05.044 European Association for the Study of the Liver.
Article
PubMed
Google Scholar
Ballestri S, Capitelli M, Fontana MC, Arioli D, Romagnoli E, Graziosi C, et al. Direct Oral Anticoagulants in Patients with Liver Disease in the Era of Non-Alcoholic Fatty Liver Disease Global Epidemic: A Narrative Review. Adv Ther; 2020: 1910-1932: https://doi.org/https://doi.org/10.1007/s12325-020-01307-z. Springer Healthcare.
Xu Y, Yang C, Zhang S, Li J, Xiao Q, Huang W. Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and Inflammasome activation. Biol Pharm Bull. 2018;41:1638–44.
Article
CAS
Google Scholar
Zhang J, Zhang H, Deng X, Zhang N, Liu B, Xin S, et al. Baicalin attenuates non-alcoholic steatohepatitis by suppressing key regulators of lipid metabolism, inflammation and fibrosis in mice. Life Sci. 2018;192:46–54. https://doi.org/10.1016/j.lfs.2017.11.027 Elsevier.
Article
CAS
PubMed
Google Scholar
Ma X, Zhang W, Jiang Y, Wen J, Wei S, Zhao Y. Paeoniflorin, a natural product with multiple targets in liver diseases—a mini review. Front Pharmacol. 2020;11:1–7.
Article
Google Scholar
Zhu X, Xiong T, Liu P, Guo X, Xiao L, Zhou F, et al. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem Toxicol. 2018;114:52–60. https://doi.org/10.1016/j.fct.2018.02.019 Elsevier.
Article
CAS
PubMed
Google Scholar
Pasdar Y, Oubari F, Zarif MN, Abbasi M, Pourmahmoudi A, Hosseinikia M. Effects of Quercetin supplementation on hematological parameters in non-alcoholic fatty liver disease: a randomized, double-blind, Placebo-Controlled Pilot Study. Clin Nutr Res. 2020;9:11.
Article
Google Scholar
Xu T, Huang S, Huang Q, Ming Z, Wang M, Li R, et al. Kaempferol attenuates liver fibrosis by inhibiting activin receptor–like kinase 5. J Cell Mol Med. 2019;23:6403–10.
Article
CAS
Google Scholar
Chen J, Xuan YH, Luo MX, Ni XG, Ling LQ, Hu SJ, et al. Kaempferol alleviates acute alcoholic liver injury in mice by regulating intestinal tight junction proteins and butyrate receptors and transporters. Toxicology. 2020;429:152338. https://doi.org/10.1016/j.tox.2019.152338 Elsevier Ireland Ltd.
Article
CAS
PubMed
Google Scholar
Feng S, Dai Z, Liu AB, Huang J, Narsipur N, Guo G, et al. Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(10):1274–84. https://doi.org/10.1016/j.bbalip.2018.08.004 Elsevier B.V.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Y, Liu C, He C, Zhao J, Sun Y, Xu H, et al. Protective effect of Fuzheng Yanggan mixture on drug-induced liver injury. China J Chinese Mater Medica. 2018;43:4685–91.
Google Scholar
Yang Z, Wen J, Li Q, Tao X, Ye Z, He M, et al. PPARG gene Pro12Ala variant contributes to the development of non-alcoholic fatty liver in middle-aged and older Chinese population. Mol Cell Endocrinol. 2012;348:255–9.
Article
Google Scholar
Xie X, Yan D, Li H, Zhu Q, Li J, Fang YP, et al. Enhancement of Adiponectin ameliorates nonalcoholic fatty liver disease via inhibition of FoxO1 in type 1 diabetic rats. J Diabetes Res. 2018;2018:6254340.
PubMed
PubMed Central
Google Scholar
Wu H, Chen G, Wang J, Deng M, Yuan F, Gong J. TIM-4 interference in Kupffer cells against CCL4-induced liver fibrosis by mediating Akt1/Mitophagy signalling pathway. Cell Prolif. 2020;53:1–15.
Google Scholar
Hendy OM, Elsabaawy MM, Aref MM, Khalaf FM, Oda AMA, El Shazly HM. Evaluation of circulating zonulin as a potential marker in the pathogenesis of nonalcoholic fatty liver disease. Apmis. 2017;125:607–13.
Article
CAS
Google Scholar
Yan FJ, Wang X, Wang SE, Hong HT, Lu J, Ye Q, et al. C-Jun/C7ORF41/NF-κB axis mediates hepatic inflammation and lipid accumulation in NAFLD. Biochem J. 2020;477:691–708.
Article
CAS
Google Scholar
Langiewicz M, Graf R, Humar B, Clavien PA. JNK1 induces hedgehog signaling from stellate cells to accelerate liver regeneration in mice. J Hepatol. 2018;69:666–75. https://doi.org/10.1016/j.jhep.2018.04.017 European Association for the Study of the Liver.
Article
CAS
PubMed
Google Scholar
Heo YJ, Choi SE, Jeon JY, Han SJ, Kim DJ, Kang Y, et al. Visfatin induces inflammation and insulin resistance via the NF-κB and STAT3 signaling pathways in hepatocytes. J Diabetes Res. 2019;2019:4021623.
Article
Google Scholar
Tian F, Zheng Z, Zhang D, He S, Shen J. Efficacy of liraglutide in treating type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease. Biosci Rep. 2018;38(6):BSR20181304.
Article
Google Scholar
Asadipooya K, Lankarani KB, Raj R, Kalantarhormozi M. RAGE is a potential cause of onset and progression of nonalcoholic fatty liver disease. Int J Endocrinol. 2019;2019:2151302.
Article
Google Scholar
Stols-Gonçalves D, Hovingh GK, Nieuwdorp M, Holleboom AG. NAFLD and atherosclerosis: two sides of the same Dysmetabolic coin? Trends Endocrinol Metab. 2019;30:891–902.
Article
Google Scholar
Wang R, Li D, Qi W, Sun J, et al. 1. Expression and clinical significance of HIF-1α and Th17 / Treg in peripheral blood of patients with non-alcoholic fatty liver disease. Clin J Med Off. 2019;47:64–5.
Google Scholar
Su S-B, Chen W, Huang F-F, Zhang J-F. Elevated Th22 cells correlated with Th17 cells in patients with high liver stiffness in nonalcoholic fatty liver disease. Eur J Inflamm. 2018;16:205873921880267.
Article
Google Scholar
Ma X, Jiang Y, Zhang W, Wang J, Wang R, Wang L, et al. Natural products for the prevention and treatment of cholestasis: a review. Phyther Res. 2020;34:1291–309.
Article
Google Scholar