Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol. 2016;6:194.

Article
PubMed
CAS
PubMed Central
Google Scholar

Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect. 2015;6:22–9.

Article
CAS
PubMed
PubMed Central
Google Scholar

Nellums LB, Thompson H, Holmes A, Castro-Sánchez E, Otter JA, Norredam M, et al. Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis. Lancet Infect Dis. 2018;18:796–811.

Article
PubMed
PubMed Central
Google Scholar

Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides. 2012;37:207–15.

Article
CAS
PubMed
Google Scholar

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

Article
CAS
PubMed
Google Scholar

Chen C, Seff A, Kornhauser A, Xiao J. DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving. 2015 IEEE International Conference on Computer Vision (ICCV); 2015. p. 2722–30.

Book
Google Scholar

Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, et al. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell. 2018;173:338–54 e15.

Article
CAS
PubMed
PubMed Central
Google Scholar

Wang Z. APD: the Antimicrobial Peptide Database. Nucleic Acids Res. 2004;32:590D–592.

Article
CAS
Google Scholar

Wu C, Berry M, Shivakumar S, McLarty J. Neural networks for full-scale protein sequence classification: Sequence encoding with singular value decomposition. Mach Learn. 1995;21:177–93.

Google Scholar

Cruz J, Ortiz C, Guzmán F, Fernández-Lafuente R, Torres R. Antimicrobial Peptides: Promising Compounds Against Pathogenic Microorganisms. Curr Med Chem. 2014;21:2299–321.

Article
CAS
PubMed
Google Scholar

Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong GCL. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus. 2017;7:20160153.

Article
PubMed
PubMed Central
Google Scholar

Guilhelmelli F, Vilela N, Albuquerque P. da S. Derengowski L, Silva-Pereira I, Kyaw CM. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013;4:1–12.

Article
Google Scholar

Mookherjee N, Hamill P, Gardy J, Blimkie D, Falsafi R, Chikatamarla A, et al. Systems biology evaluation of immune responses induced by human host defence peptide LL-37 in mononuclear cells. Mol Biosyst. 2009;5:483–96.

Article
CAS
PubMed
Google Scholar

Hancock REW, Haney EF, Gill EE. The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol. 2016;16:321–34.

Article
CAS
PubMed
Google Scholar

Hirst JD, Sternberg MJ. Prediction of structural and functional features of protein and nucleic acid sequences by artificial neural networks. Biochemistry. 1992;31:7211–8.

Article
CAS
PubMed
Google Scholar

Heider D, Verheyen J, Hoffmann D. Predicting Bevirimat resistance of HIV-1 from genotype. BMC Bioinformatics. 2010;11:37.

Article
PubMed
CAS
PubMed Central
Google Scholar

Dybowski JN, Riemenschneider M, Hauke S, Pyka M, Verheyen J, Hoffmann D, et al. Improved Bevirimat resistance prediction by combination of structural and sequence-based classifiers. BioData Min. 2011;4:26.

Article
CAS
PubMed
PubMed Central
Google Scholar

James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning: with Applications in R. In: Springer Science & Business Media; 2013.

Google Scholar

Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003;12:1007–17.

Article
CAS
PubMed
PubMed Central
Google Scholar

Nagpal G, Chaudhary K, Agrawal P, Raghava GPS. Computer-aided prediction of antigen presenting cell modulators for designing peptide-based vaccine adjuvants. J Transl Med. 2018;16:181.

Article
PubMed
PubMed Central
Google Scholar

Usmani SS, Bhalla S, Raghava GPS. Prediction of Antitubercular Peptides From Sequence Information Using Ensemble Classifier and Hybrid Features. Front Pharmacol. 2018;9:954.

Article
PubMed
CAS
PubMed Central
Google Scholar

Matsuda S, Vert J-P, Saigo H, Ueda N, Toh H, Akutsu T. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 2005;14:2804–13.

Article
CAS
PubMed
PubMed Central
Google Scholar

Lata S, Sharma BK, Raghava GPS. Analysis and prediction of antibacterial peptides. BMC Bioinformatics. 2007;8:1–10.

Article
CAS
Google Scholar

Chen W, Luo L. Classification of antimicrobial peptide using diversity measure with quadratic discriminant analysis. J Microbiol Methods. 2009;78:94–6.

Article
CAS
PubMed
Google Scholar

Dubchak I, Muchnik I, Holbrook SR, Kim SH. Prediction of protein folding class using global description of amino acid sequence. Proc Natl Acad Sci U S A. 1995;92:8700–4.

Article
CAS
PubMed
PubMed Central
Google Scholar

Cherkasov A, Hilpert K, Jenssen H, Fjell CD, Waldbrook M, Mullaly SC, et al. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem Biol. 2009;4:65–74.

Article
CAS
PubMed
Google Scholar

Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins. 2001;43:246–55.

Article
CAS
PubMed
Google Scholar

Xiao X, Wang P, Lin W-Z, Jia J-H, Chou K-C. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem. 2013;436:168–77.

Article
CAS
PubMed
Google Scholar

Chen W, Ding H, Feng P, Lin H, Chou K-C. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget. 2016;7:16895–909.

PubMed
PubMed Central
Google Scholar

Meher PK, Sahu TK, Saini V, Rao AR. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci Rep. 2017;7:42362.

Article
CAS
PubMed
PubMed Central
Google Scholar

Ding H, Feng P-M, Chen W, Lin H. Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis. Mol Biosyst. 2014;10:2229–35.

Article
CAS
PubMed
Google Scholar

Solis AD, Rackovsky S. Optimized representations and maximal information in proteins. Proteins. 2000;38:149–64.

Article
CAS
PubMed
Google Scholar

Das B, Turkoglu I. A novel numerical mapping method based on entropy for digitizing DNA sequences. Neural Comput Appl. 2017;29:207–15.

Article
Google Scholar

Yu C-S, Lin C-J, Hwang J-K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 2004;13:1402–6.

Article
CAS
PubMed
PubMed Central
Google Scholar

Yu L, Liu H. Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Proceedings of the Twentieth International Conference on Machine Learning; 2003.

Google Scholar

Veltri D, Kamath U, Shehu A. Improving Recognition of Antimicrobial Peptides and Target Selectivity through Machine Learning and Genetic Programming. IEEE/ACM Trans Comput Biol Bioinform. 2017;14:300–13.

Article
PubMed
Google Scholar

Tantoso E, Li K-B. AAIndexLoc: predicting subcellular localization of proteins based on a new representation of sequences using amino acid indices. Amino Acids. 2008;35:345–53.

Article
CAS
PubMed
Google Scholar

Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M. AAindex: amino acid index database, progress report 2008. Nucleic Acids Res. 2008;36:D202–5.

Article
CAS
PubMed
Google Scholar

Tanaka S, Scheraga HA. Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules. 1976;9:945–50.

Article
CAS
PubMed
Google Scholar

Deber CM, Wang C, Liu LP, Prior AS, Agrawal S, Muskat BL, et al. TM Finder: a prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales. Protein Sci. 2001;10:212–9.

Article
CAS
PubMed
PubMed Central
Google Scholar

Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105–32.

Article
CAS
PubMed
Google Scholar

Hansen M, Kilk K, Langel U. Predicting cell-penetrating peptides. Adv Drug Deliv Rev. 2008;60:572–9.

Article
CAS
PubMed
Google Scholar

Krause T, Röckendorf N, El-Sourani N, Ramaker K, Henkel M, Hauke S, et al. Breeding Cell Penetrating Peptides: Optimization of Cellular Uptake by a Function-Driven Evolutionary Process. Bioconjug Chem. 2018.

Google Scholar

Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem. 1998;41:2481–91.

Article
CAS
PubMed
Google Scholar

Heider D, Hoffmann D. Interpol: An R package for preprocessing of protein sequences. BioData Min. 2011;4:1–6.

Article
CAS
Google Scholar

Heider D, Verheyen J, Hoffmann D. Machine learning on normalized protein sequences. BMC Res Notes. 2011;4:94.

Article
CAS
PubMed
PubMed Central
Google Scholar

Torrent M, Andreu D, Nogués VM, Boix E. Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS One. 2011;6:e16968.

Article
CAS
PubMed
PubMed Central
Google Scholar

Thakur N, Qureshi A, Kumar M. AVPpred: collection and prediction of highly effective antiviral peptides. Nucleic Acids Res. 2012;40:W199–204.

Article
CAS
PubMed
PubMed Central
Google Scholar

Pirtskhalava M, Gabrielian A, Cruz P, Griggs HL, Squires RB, Hurt DE, et al. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res. 2016;44:6503.

Article
CAS
PubMed
PubMed Central
Google Scholar

Lira F, Perez PS, Baranauskas JA, Nozawa SR. Prediction of antimicrobial activity of synthetic peptides by a decision tree model. Appl Environ Microbiol. 2013;79:3156–9.

Article
CAS
PubMed
PubMed Central
Google Scholar

Pane K, Durante L, Crescenzi O, Cafaro V, Pizzo E, Varcamonti M, et al. Antimicrobial potency of cationic antimicrobial peptides can be predicted from their amino acid composition: Application to the detection of “cryptic” antimicrobial peptides. J Theor Biol. 2017;419:254–65.

Article
CAS
PubMed
Google Scholar

Veltri D, Shehu A. Physicochemical Determinants of Antimicrobial Activity. In: Intl Conf on Bioinf and Comp Biol(BICoB); 2013.

Google Scholar

Bhadra P, Yan J, Li J, Fong S, Siu SWI. AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci Rep. 2018;8:1697.

Article
PubMed
CAS
PubMed Central
Google Scholar

Juretić D, Vukicević D, Ilić N, Antcheva N, Tossi A. Computational design of highly selective antimicrobial peptides. J Chem Inf Model. 2009;49:2873–82.

Article
PubMed
CAS
Google Scholar

Atchley WR, Zhao J, Fernandes AD, Drüke T. Solving the protein sequence metric problem. Proc Natl Acad Sci U S A. 2005;102:6395–400.

Article
CAS
PubMed
PubMed Central
Google Scholar

Boone K, Camarda K, Spencer P, Tamerler C. Antimicrobial peptide similarity and classification through rough set theory using physicochemical boundaries. BMC Bioinformatics. 2018;19:1–10.

Article
Google Scholar

Horne DS. Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. Biopolymers. 1988;27:451–77.

Article
CAS
PubMed
Google Scholar

Xia J-F, Han K, Huang D-S. Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor. Protein Pept Lett. 2010;17:137–45.

Article
CAS
PubMed
Google Scholar

Kleandrova VV, Ruso JM. Speck-Planche A, Dias Soeiro Cordeiro MN. Enabling the Discovery and Virtual Screening of Potent and Safe Antimicrobial Peptides. Simultaneous Prediction of Antibacterial Activity and Cytotoxicity. ACS Comb Sci. 2016;18:490–8.

Article
CAS
PubMed
Google Scholar

Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol. 1968;21:170–201.

Article
CAS
PubMed
Google Scholar

Fernández L, Caballero J, Abreu JI, Fernández M. Amino acid sequence autocorrelation vectors and Bayesian-regularized genetic neural networks for modeling protein conformational stability: gene V protein mutants. Proteins. 2007;67:834–52.

Article
PubMed
CAS
Google Scholar

Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992;89:10915–9.

Article
CAS
PubMed
PubMed Central
Google Scholar

Altschul SF, Koonin EV. Iterated profile searches with PSI-BLAST--a tool for discovery in protein databases. Trends Biochem Sci. 1998;23:444–7.

Article
CAS
PubMed
Google Scholar

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.

Article
CAS
PubMed
PubMed Central
Google Scholar

Maetschke S, Towsey M, Bodén M. Blomap: an encoding of amino acids which improves signal peptide cleavage site prediction. In: Proceedings of the 3rd Asia-Pacific Bioinformatics Conference; 2005. p. 141–50.

Chapter
Google Scholar

Huang L, Dai Y. A support vector machine approach for prediction of t cell epitopes. In: Proceedings of the 3rd Asia-Pacific Bioinformatics Conference; 2005. p. 319–28.

Chapter
Google Scholar

Karypis G. YASSPP: better kernels and coding schemes lead to improvements in protein secondary structure prediction. Proteins. 2006;64:575–86.

Article
CAS
PubMed
Google Scholar

Kumar M, Michael Gromiha M, Raghava GPS. Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins: Struct Funct Bioinf. 2008;71:189–94.

Article
CAS
Google Scholar

Verma R, Varshney GC, Raghava GPS. Prediction of mitochondrial proteins of malaria parasite using split amino acid composition and PSSM profile. Amino Acids. 2009;39:101–10.

Article
PubMed
CAS
Google Scholar

Nanni L, Lumini A, Gupta D, Garg A. Identifying Bacterial Virulent Proteins by Fusing a Set of Classifiers Based on Variants of Chou’s Pseudo Amino Acid Composition and on Evolutionary Information. IEEE/ACM Trans Comput Biol Bioinform. 2012;9:467–75.

Article
PubMed
Google Scholar

Xu R, Zhou J, Wang H, He Y, Wang X, Liu B. Identifying DNA-binding proteins by combining support vector machine and PSSM distance transformation. BMC Syst Biol. 2015;9(Suppl 1):S10.

Article
PubMed
CAS
PubMed Central
Google Scholar

Strodthoff N, Strodthoff C. Detecting and interpreting myocardial infarctions using fully convolutional neural networks. arXiv.org; 2018.

Google Scholar

Nagarajan V, Kaushik N, Murali B, Zhang C, Lakhera S, Elasri MO, et al. A Fourier transformation based method to mine peptide space for antimicrobial activity. BMC Bioinformatics. 2006;7(Suppl 2):S2.

Article
PubMed
CAS
PubMed Central
Google Scholar

Yin C, Yau SS-T. A coevolution analysis for identifying protein-protein interactions by Fourier transform. PLoS One. 2017;12:e0174862.

Article
PubMed
CAS
PubMed Central
Google Scholar

Baker D. Protein Structure Prediction and Structural Genomics. Science. 2001;294:93–6.

Article
CAS
PubMed
Google Scholar

Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–95.

Article
CAS
PubMed
Google Scholar

Löchel HF, Riemenschneider M, Frishman D, Heider D. SCOTCH: subtype A coreceptor tropism classification in HIV-1. Bioinformatics. 2018;34:2575–80.

Article
PubMed
Google Scholar

Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2014;57:4977–5010.

Article
CAS
PubMed
PubMed Central
Google Scholar

Lo Y-C, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23:1538–46.

Article
CAS
PubMed
PubMed Central
Google Scholar

Taboureau O, Olsen OH, Nielsen JD, Raventos D, Mygind PH, Kristensen H-H. Design of novispirin antimicrobial peptides by quantitative structure-activity relationship. Chem Biol Drug Des. 2006;68:48–57.

Article
CAS
PubMed
Google Scholar

Bhonsle JB, Venugopal D, Huddler DP, Magill AJ, Hicks RP. Application of 3D-QSAR for Identification of Descriptors Defining Bioactivity of Antimicrobial Peptides. J Med Chem. 2007;50:6545–53.

Article
CAS
PubMed
Google Scholar

Jenssen H, Lejon T, Hilpert K, Fjell CD, Cherkasov A, Hancock REW. Evaluating different descriptors for model design of antimicrobial peptides with enhanced activity toward *P. aeruginosa*. Chem Biol Drug Des. 2007;70:134–42.

Article
CAS
PubMed
Google Scholar

Jenssen H, Fjell CD, Cherkasov A, Hancock REW. QSAR modeling and computer-aided design of antimicrobial peptides. J Pept Sci. 2008;14:110–4.

Article
CAS
PubMed
Google Scholar

Shu M, Yu R, Zhang Y, Wang J, Yang L, Wang L, et al. Predicting the activity of antimicrobial peptides with amino acid topological information. Med Chem. 2013;9:32–44.

Article
CAS
PubMed
Google Scholar

Schneider P, Müller AT, Gabernet G, Button AL, Posselt G, Wessler S, et al. Hybrid Network Model for “Deep Learning” of Chemical Data: Application to Antimicrobial Peptides. Mol Inform. 2017;36:1–7.

Google Scholar

Cui J, Liu Q, Puett D, Xu Y. Computational prediction of human proteins that can be secreted into the bloodstream. Bioinformatics. 2008;24:2370–5.

Article
CAS
PubMed
PubMed Central
Google Scholar

Chang KY, Lin T-P, Shih L-Y, Wang C-K. Analysis and prediction of the critical regions of antimicrobial peptides based on conditional random fields. PLoS One. 2015;10:e0119490.

Article
PubMed
CAS
PubMed Central
Google Scholar

Torrent M, Di Tommaso P, Pulido D, Nogués MV, Notredame C, Boix E, et al. AMPA: an automated web server for prediction of protein antimicrobial regions. Bioinformatics. 2012;28:130–1.

Article
CAS
PubMed
Google Scholar

Dybowski JN, Heider D, Hoffmann D. Prediction of co-receptor usage of HIV-1 from genotype. PLoS Comput Biol. 2010;6:e1000743.

Article
PubMed
CAS
PubMed Central
Google Scholar

Heider D, Dybowski JN, Wilms C, Hoffmann D. A simple structure-based model for the prediction of HIV-1 co-receptor tropism. BioData Min. 2014;7:14.

Article
PubMed
CAS
PubMed Central
Google Scholar

Bozek K, Lengauer T, Sierra S, Kaiser R, Domingues FS. Analysis of physicochemical and structural properties determining HIV-1 coreceptor usage. PLoS Comput Biol. 2013;9:e1002977.

Article
CAS
PubMed
PubMed Central
Google Scholar

Sander O, Sing T, Sommer I, Low AJ, Cheung PK, Harrigan PR, et al. Structural descriptors of gp120 V3 loop for the prediction of HIV-1 coreceptor usage. PLoS Comput Biol. 2007;3:e58.

Article
PubMed
CAS
PubMed Central
Google Scholar

Yu X, Weber I, Harrison R. Sparse Representation for HIV-1 Protease Drug Resistance Prediction. In: Proceedings of the 2013 SIAM International Conference on Data Mining; 2013. p. 342–9.

Chapter
Google Scholar

Bose P, Yu X, Harrison RW. Encoding protein structure with functions on graphs. In: 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW); 2011. p. 338–44.

Chapter
Google Scholar

Weber IT, Harrison RW. Decoding HIV resistance: from genotype to therapy. Future Med Chem. 2017;9:1529–38.

Article
CAS
PubMed
PubMed Central
Google Scholar

Cardoso MH, Oshiro KGN, Rezende SB, Cândido ES, Franco OL. The Structure/Function Relationship in Antimicrobial Peptides: What Can we Obtain From Structural Data? Adv Protein Chem Struct Biol. 2018;112:359–84.

Article
PubMed
Google Scholar

Song J, Li F, Takemoto K, Haffari G, Akutsu T, Chou K-C, et al. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. J Theor Biol. 2018;443:125–37.

Article
CAS
PubMed
Google Scholar

Jeffrey HJ. Chaos game representation of gene structure. Nucleic Acids Res. 1990;18:2163–70.

Article
CAS
PubMed
PubMed Central
Google Scholar

Basu S, Pan A, Dutta C, Das J. Chaos game representation of proteins. J Mol Graph Model. 1997;15:279–89.

Article
CAS
PubMed
Google Scholar

He P-A, Xu S, Dai Q, Yao Y. A generalization of CGR representation for analyzing and comparing protein sequences. Int J Quantum Chem. 2016;116:476–82.

Article
CAS
Google Scholar

Ge L, Liu J, Zhang Y, Dehmer M. Identifying anticancer peptides by using a generalized chaos game representation. J Math Biol. 2018:1–23.

Jia J, Li X, Qiu W, Xiao X, Chou K-C. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC. J Theor Biol. 2019;460:195–203.

Article
CAS
PubMed
Google Scholar

Loose C, Jensen K, Rigoutsos I, Stephanopoulos G. A linguistic model for the rational design of antimicrobial peptides. Nature. 2006;443:867–9.

Article
CAS
PubMed
Google Scholar

Maccari G, Di Luca M, Nifosí R, Cardarelli F, Signore G, Boccardi C, et al. Antimicrobial peptides design by evolutionary multiobjective optimization. PLoS Comput Biol. 2013;9:e1003212.

Article
CAS
PubMed
PubMed Central
Google Scholar

Joseph S, Karnik S, Nilawe P, Jayaraman VK, Idicula-Thomas S. ClassAMP: a prediction tool for classification of antimicrobial peptides. IEEE/ACM Trans Comput Biol Bioinform. 2012;9:1535–8.

Article
PubMed
Google Scholar

Mooney C, Haslam NJ, Pollastri G, Shields DC. Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLoS One. 2012;7:e45012.

Article
CAS
PubMed
PubMed Central
Google Scholar

Mei H, Liao ZH, Zhou Y, Li SZ. A new set of amino acid descriptors and its application in peptide QSARs. Biopolymers. 2005;80:775–86.

Article
CAS
PubMed
Google Scholar

Polanco C, Samaniego JL. Detection of selective cationic amphipatic antibacterial peptides by Hidden Markov models. Acta Biochim Pol. 2009;56:167–76.

Article
CAS
PubMed
Google Scholar

Randou EG, Veltri D, Shehu A. Binary Response Models for Recognition of Antimicrobial Peptides. In: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics - BCB’13; 2007. p. 76–85.

Chapter
Google Scholar

Barrett R, Jiang S, White AD. Classifying antimicrobial and multifunctional peptides with Bayesian network models. Pept Sci. 2018;110:e24079.

Article
CAS
Google Scholar

Kernytsky A, Rost B. Using genetic algorithms to select most predictive protein features. Proteins. 2009;75:75–88.

Article
CAS
PubMed
Google Scholar

Leslie C, Eskin E, Noble WS. The spectrum kernel: a string kernel for svm protein classification. Biocomputing. 2002;2001:564–75.

Google Scholar

Fjell CD, Hiss JA, Hancock REW, Schneider G. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov. 2011;11:37–51.

Article
PubMed
CAS
Google Scholar

Leslie CS, Eskin E, Cohen A, Weston J, Noble WS. Mismatch string kernels for discriminative protein classification. Bioinformatics. 2004;20:467–76.

Article
CAS
PubMed
Google Scholar

Swamidass SJ, Chen J, Bruand J, Phung P, Ralaivola L, Baldi P. Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity. Bioinformatics. 2005;21(Suppl 1):i359–68.

Article
CAS
PubMed
Google Scholar

Lewis DP, Jebara T, Noble WS. Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure. Bioinformatics. 2006;22:2753–60.

Article
CAS
PubMed
Google Scholar

Ortiz AR, Strauss CEM, Olmea O. MAMMOTH (matching molecular models obtained from theory): an automated method for model comparison. Protein Sci. 2002;11:2606–21.

Article
CAS
PubMed
PubMed Central
Google Scholar

Boisvert S, Marchand M, Laviolette F, Corbeil J. HIV-1 coreceptor usage prediction without multiple alignments: an application of string kernels. Retrovirology. 2008;5:110.

Article
PubMed
CAS
PubMed Central
Google Scholar

El-Manzalawy Y, Dobbs D, Honavar V. Predicting linear B-cell epitopes using string kernels. J Mol Recognit. 2008;21:243–55.

Article
CAS
PubMed
PubMed Central
Google Scholar

Toussaint NC, Widmer C, Kohlbacher O, Rätsch G. Exploiting physico-chemical properties in string kernels. BMC Bioinformatics. 2010;11(Suppl 8):S7.

Article
PubMed
PubMed Central
Google Scholar

Giguère S, Marchand M, Laviolette F, Drouin A, Corbeil J. Learning a peptide-protein binding affinity predictor with kernel ridge regression. BMC Bioinformatics. 2013;14:82.

Article
PubMed
CAS
PubMed Central
Google Scholar

Giguère S, Laviolette F, Marchand M, Tremblay D, Moineau S, Liang X, et al. Machine learning assisted design of highly active peptides for drug discovery. PLoS Comput Biol. 2015;11:e1004074.

Article
PubMed
CAS
PubMed Central
Google Scholar

Telenti A, Lippert C, Chang P-C, DePristo M. Deep learning of genomic variation and regulatory network data. Hum Mol Genet. 2018;27:R63–71.

Article
CAS
PubMed
PubMed Central
Google Scholar

Asgari E, Mofrad MRK. Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics. PLoS One. 2015;10:e0141287.

Article
PubMed
CAS
PubMed Central
Google Scholar

Jiménez J, Doerr S, Martínez-Rosell G, Rose AS, De Fabritiis G. DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics. 2017;33:3036–42.

Article
PubMed
CAS
Google Scholar

Amidi A, Amidi S, Vlachakis D, Megalooikonomou V, Paragios N, Zacharaki EI. EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation. PeerJ. 2018;6:e4750.

Article
PubMed
PubMed Central
Google Scholar

Taju SW, Nguyen T-T-D, Le N-Q-K, Kusuma RMI, Ou Y-Y. DeepEfflux: a 2D convolutional neural network model for identifying families of efflux proteins in transporters. Bioinformatics. 2018;34:3111–7.

Article
PubMed
Google Scholar

Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun. 2014;453:254–67.

Article
CAS
PubMed
Google Scholar

Seo S, Oh M, Park Y, Kim S. DeepFam: deep learning based alignment-free method for protein family modeling and prediction. Bioinformatics. 2018;34:i254–62.

Article
PubMed
PubMed Central
Google Scholar

Zheng W, Yang L, Genco RJ, Wactawski-Wende J, Buck M, Sun Y. SENSE: Siamese neural network for sequence embedding and alignment-free comparison. Bioinformatics. 2018:1–9.

Wang Y-B, You Z-H, Li X, Jiang T-H, Chen X, Zhou X, et al. Predicting protein–protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Mol Biosyst. 2017;13:1336–44.

Article
CAS
PubMed
Google Scholar

Piotto SP, Sessa L, Concilio S, Iannelli P. YADAMP: yet another database of antimicrobial peptides. Int J Antimicrob Agents. 2012;39:346–51.

Article
CAS
PubMed
Google Scholar

Waghu FH, Gopi L, Barai RS, Ramteke P, Nizami B, Idicula-Thomas S. CAMP: Collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res. 2014;42:D1154–8.

Article
CAS
PubMed
Google Scholar

Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 2016;44:D1094–7.

Article
CAS
PubMed
Google Scholar

Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44:D1087–93.

Article
CAS
PubMed
Google Scholar

Fan L, Sun J, Zhou M, Zhou J, Lao X, Zheng H, et al. DRAMP: a comprehensive data repository of antimicrobial peptides. Sci Rep. 2016;6:24482.

Article
CAS
PubMed
PubMed Central
Google Scholar

Porto WF, Pires AS, Franco OL. Computational tools for exploring sequence databases as a resource for antimicrobial peptides. Biotechnol Adv. 2017;35:337–49.

Article
CAS
PubMed
Google Scholar

Gabere MN, Noble WS. Empirical comparison of web-based antimicrobial peptide prediction tools. Bioinformatics. 2017;33:1921–9.

Article
CAS
PubMed
PubMed Central
Google Scholar

Cao D-S, Xu Q-S, Liang Y-Z. propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics. 2013;29:960–2.

Article
CAS
PubMed
Google Scholar

Xiao N, Cao D-S, Zhu M-F, Xu Q-S. protr/ProtrWeb: R package and web server for generating various numerical representation schemes of protein sequences. Bioinformatics. 2015;31:1857–9.

Article
CAS
PubMed
Google Scholar

Ofer D, Linial M. ProFET: Feature engineering captures high-level protein functions. Bioinformatics. 2015;31:3429–36.

Article
CAS
PubMed
Google Scholar

Müller AT, Gabernet G, Hiss JA, Schneider G. modlAMP: Python for antimicrobial peptides. Bioinformatics. 2017;33:2753–5.

Article
PubMed
CAS
Google Scholar

Wang J, Yang B, Revote J, Leier A, Marquez-Lago TT, Webb G, et al. POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles. Bioinformatics. 2017;33:2756–8.

Article
CAS
PubMed
Google Scholar

Dong J, Yao Z-J, Zhang L, Luo F, Lin Q, Lu A-P, et al. PyBioMed: a python library for various molecular representations of chemicals, proteins and DNAs and their interactions. J Cheminform. 2018;10:16.

Article
PubMed
PubMed Central
Google Scholar

Chen Z, Zhao P, Li F, Leier A, Marquez-Lago TT, Wang Y, et al. iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics. 2018;34:2499–502.

Article
PubMed
PubMed Central
Google Scholar

Kuncheva LI. Combining Pattern Classifiers: Methods and Algorithms. Hoboken: Wiley; 2004.