Lee DD, Seung HS. Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems. Cambridge: MIT Press: 2001. p. 556–62.

Google Scholar

Devarajan K. Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput Biol. 2008; 4(7):1000029.

Article
Google Scholar

Lee CM, Mudaliar MA, Haggart D, Wolf CR, Miele G, Vass JK, Higham DJ, Crowther D. Simultaneous non-negative matrix factorization for multiple large scale gene expression datasets in toxicology. PloS ONE. 2012; 7(12):48238.

Article
Google Scholar

Wang JJ-Y, Wang X, Gao X. Non-negative matrix factorization by maximizing correntropy for cancer clustering. BMC Bioinformatics. 2013; 14(1):107.

Article
PubMed
PubMed Central
Google Scholar

Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2010; 29(11):1408–14.

Article
PubMed
PubMed Central
Google Scholar

Gönen M. Predicting drug–target interactions from chemical and genomic kernels using bayesian matrix factorization. Bioinformatics. 2012; 28(18):2304–310.

Article
PubMed
Google Scholar

Hwang T, Atluri G, Xie M, Dey S, Hong C, Kumar V, Kuang R. Co-clustering phenome–genome for phenotype classification and disease gene discovery. Nucleic Acids Res. 2012; 40(19):146–6.

Article
Google Scholar

Sajda P, Du S, Brown TR, Stoyanova R, Shungu DC, Mao X, Parra LC. Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain. IEEE Trans Med Imaging. 2004; 23(12):1453–65.

Article
PubMed
Google Scholar

Tikole S, Jaravine V, Rogov V, Dötsch V, Güntert P. Peak picking NMR spectral data using non-negative matrix factorization. BMC Bioinformatics. 2014; 15(1):46.

Article
PubMed
PubMed Central
Google Scholar

Anderson A, Douglas PK, Kerr WT, Haynes VS, Yuille AL, Xie J, Wu YN, Brown JA, Cohen MS. Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD. NeuroImage. 2014; 102:207–19.

Article
PubMed
Google Scholar

Ding C, Li T, Peng W, Park H. Orthogonal nonnegative matrix t-factorizations for clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM: 2006. p. 126–35.

Google Scholar

Benson AR, Lee JD, Rajwa B, Gleich DF. Scalable methods for nonnegative matrix factorizations of near-separable tall-and-skinny matrices. In: Advances in Neural Information Processing Systems. Red Hook: Curran Associates, Inc.: 2014. p. 945–53.

Google Scholar

Kysenko V, Rupp K, Marchenko O, Selberherr S, Anisimov A. GPU-accelerated non-negative matrix factorization for text mining. In: International Conference on Application of Natural Language to Information Systems. Berlin: Springer: 2012. p. 158–63.

Google Scholar

Platoš J, Gajdoš P, Krömer P, Snášel V. Non-negative matrix factorization on GPU. In: International Conference on Networked Digital Technologies. Berlin: Springer: 2010. p. 21–30.

Google Scholar

Mejía-Roa E, Tabas-Madrid D, Setoain J, García C, Tirado F, Pascual-Montano A. NMF-mGPU: non-negative matrix factorization on multi-GPU systems. BMC Bioinformatics. 2015; 16(1):43.

Article
PubMed
PubMed Central
Google Scholar

Sun Z, Li T, Rishe N. Large-scale matrix factorization using mapreduce. In: 2010 IEEE International Conference on Data Mining Workshops (ICDMW). Los Alamitos: IEEE Computer Society: 2010. p. 1242–8.

Google Scholar

Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun ACM. 2008; 51(1):107–13.

Article
Google Scholar

Yin J, Gao L, Zhang ZM. Scalable nonnegative matrix factorization with block-wise updates. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin: Springer: 2014. p. 337–52.

Google Scholar

Long B, Zhang ZM, Yu PS. Co-clustering by block value decomposition. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York: ACM: 2005. p. 635–40.

Google Scholar

Ma C, Kamp Y, Willems LF. A frobenius norm approach to glottal closure detection from the speech signal. IEEE Trans Speech Audio Process. 1994; 2(2):258–65.

Article
Google Scholar

Guo S, Wu X, Li Y. On the lower bound of reconstruction error for spectral filtering based privacy preserving data mining. In: European Conference on Principles of Data Mining and Knowledge Discovery. Berlin: Springer: 2006. p. 520–7.

Google Scholar

Zhang Y, Yeung DY. Overlapping community detection via bounded nonnegative matrix tri-factorization. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM: 2012. p. 606–14.

Google Scholar

Chen G, Wang F, Zhang C. Collaborative filtering using orthogonal nonnegative matrix tri-factorization. Inf Process Manag. 2009; 45(3):368–79.

Article
Google Scholar

Soni A, Jain S, Haupt J, Gonella S. Noisy matrix completion under sparse factor models. IEEE Trans Inf Theory. 2016; 62(6):3636–61.

Article
Google Scholar

Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, Staudt LM. Toward a shared vision for cancer genomic data. N Engl J Med. 2016; 375(12):1109–12.

Article
PubMed
Google Scholar

Lingle W, Erickson B, Zuley M, Jarosz R, Bonaccio E, Filippini J, Gruszauskas N. Radiology data from the cancer genome atlas breast invasive carcinoma [TCGA-BRCA] collection.The Cancer Imaging Archive. 2016. http://doi.org/10.7937/K9/TCIA.2016.AB2NAZRP. https://wiki.cancerimagingarchive.net/display/Public/TCGABRCA#a1133e32f8c541859b2e9a19ec11c3cb. Accessed 12 Oct 2016.

Lukk M, Kapushesky M, Nikkilä J, Parkinson H, Goncalves A, Huber W, Ukkonen E, Brazma A. A global map of human gene expression. Nat Biotechnol. 2010; 28(4):322–4.

Article
CAS
PubMed
PubMed Central
Google Scholar

Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, Dylag M, Kurbatova N, Brandizi M, Burdett T, et al. Arrayexpress update-simplifying data submissions. Nucleic Acids Res. 2014; 43(D1):D1113–D1116.

Article
PubMed
PubMed Central
Google Scholar

Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, Zhang R, Hartmann BM, Zaslavsky E, Sealfon SC, et al. Understanding multicellular function and disease with human tissue-specific networks. Nat Genet. 2015; 47(6):569–76.

Article
CAS
PubMed
PubMed Central
Google Scholar

Fetus-specific functional interaction network. http://giant.princeton.edu/static/networks/fetus.gz. Accessed 10 Oct 2016.

Retina-specific functional interaction network. http://giant.princeton.edu/static/networks/retina.gz. Accessed 10 Oct 2016.

Cochlea-specific functional interaction network. http://giant.princeton.edu/static/networks/cochlea.gz. Accessed 10 Oct 2016.

GDC data portal. https://portal.gdc.cancer.gov/. Accessed 25 Sept 2017.

Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A. PyCUDA and PyOpenCL: a scripting-based approach to GPU run-time code generation. Parallel Comput. 2012; 38(3):157–74.

Article
Google Scholar

Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, Sahay V, Kambadur P, Barrett B, Lumsdaine A, Castain RH, Daniel DJ, Graham RL, Woodall TS. Open MPI: Goals, concept, and design of a next generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’ Group Meeting. Berlin: Springer: 2004. p. 97–104.

Google Scholar

Dalcin LD, Paz RR, Kler PA, Cosimo A. Parallel distributed computing using python. Adv Water Resources. 2011; 34(9):1124–39.

Article
CAS
Google Scholar

Xianyi Z, Qian W, Yunquan Z. Model-driven level 3 BLAS performance optimization on loongson 3A processor. In: 18th IEEE International Conference on Parallel and Distributed Systems (ICPADS). Los Alamitos: IEEE Computer Society: 2012. p. 684–91.

Google Scholar

CUDA Basic Linear Algebra Subroutines (cuBLAS). 2014. Available: https://developer.nvidia.com/cuBLAS. Accessed 13 June 2017.

Givon LE, Unterthiner T, Erichson NB, Chiang DW, Larson E, Pfister L, Dieleman S, Lee GR, van der Walt S, Moldovan TM, Bastien F, Shi X, Schlüter J, Thomas B, Capdevila C, Rubinsteyn A, Forbes MM, Frelinger J, Klein T, Merry B, Pastewka L, Taylor S, Wang F, Zhou Y. scikit-cuda 0.5.1: a Python interface to GPU-powered libraries. 2015. doi:10.5281/zenodo.40565. Accessed 27 Sept 2017.

NVIDIA CUDA Sparse Matrix library (cuSPARSE): 2010. Available: https://developer.nvidia.com/cusparse. Accessed 13 June 2017.

Lee GR. python-cuda-cffi repository. https://github.com/grlee77/python-cuda-cffi. Accessed 27 Sept 2017.

Copar A, Zitnik M, Zupan B. CROW: Fast Non-Negative Matrix Tri-Factorization. https://github.com/acopar/crow. Accessed 27 Sept 2017.

Tan VY, Févotte C. Automatic relevance determination in nonnegative matrix factorization with the *β*-divergence. IEEE Trans Pattern Anal Mach Intell. 2013; 35(7):1592–605.

Article
PubMed
Google Scholar

Kanagal B, Sindhwani V. Rank selection in low-rank matrix approximations: A study of cross-validation for NMFs. In: Proceedings of NIPS 2010: 6-11 December. Red Hook: Curran Associates, Inc.: 2010.

Google Scholar

Kurzak J, Tomov S, Dongarra J. Autotuning GEMM kernels for the fermi GPU. IEEE Trans Parallel Distributed Syst. 2012; 23(11):2045–57.

Article
Google Scholar

Sørensen HHB. High-performance matrix-vector multiplication on the GPU. In: European Conference on Parallel Processing. Berlin: Springer: 2011. p. 377–86.

Google Scholar

Monakov A, Lokhmotov A, Avetisyan A. Automatically tuning sparse matrix-vector multiplication for GPU architectures. In: International Conference on High-Performance Embedded Architectures and Compilers. Berlin: Springer: 2010. p. 111–25.

Google Scholar

Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR. A census of human cancer genes. Nat Rev Cancer. 2004; 4(3):177.

Article
CAS
PubMed
PubMed Central
Google Scholar

Xu K, Wang J, Gao J, Di J, Jiang B, Chen L, Wang Z, Wang A, Wu F, Wu W, et al. GATA binding protein 2 overexpression is associated with poor prognosis in KRAS mutant colorectal cancer. Oncol Rep. 2016; 36(3):1672–8.

Article
CAS
PubMed
Google Scholar

Cai J, Feng D, Hu L, Chen H, Yang G, Cai Q, Gao C, Wei D. FAT4 functions as a tumour suppressor in gastric cancer by modulating wnt/ *β*-catenin signalling. Br J Cancer. 2015; 113(12):1720.

Article
CAS
PubMed
PubMed Central
Google Scholar

Luczak MW, Jagodzinski PP. The role of DNA methylation in cancer development. Folia Histochem Cytobiol. 2006; 44(3):143–54.

CAS
PubMed
Google Scholar

Jin B, Robertson KD. DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol. 2013; 754:3–29.

Article
CAS
PubMed
PubMed Central
Google Scholar

Zitnik M, Zupan B. Data fusion by matrix factorization. Pattern Anal Mach Intell IEEE Trans. 2015; 37(1):41–53.

Article
Google Scholar