Botstein D, Risch N: Discovering genotypes underlying human phenotypes: past successes of Mendelian disease, future approaches for complex disease. Nat Genet. 2003, 33: 228-237. 10.1038/ng1090.
Article
CAS
PubMed
Google Scholar
Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ: Exploiting gene-environment interaction to detect genetic associations. Hum Hered. 2007, 63: 111-119. 10.1159/000099183.
Article
CAS
PubMed
Google Scholar
Ng PC, Venter JC, Murray SS, Levy S: An agenda for personalized medicine. Nature. 2009, 461: 724-726. 10.1038/461724a.
Article
CAS
PubMed
Google Scholar
Hamburg MA, Collins FS: The path to personalized medicine. N Engl J Med. 2010, 363: 301-304. 10.1056/NEJMp1006304.
Article
CAS
PubMed
Google Scholar
Rodin AS, Boerwinkle E: Mining genetic epidemiology data with Bayesian networks I: Bayesian networks and example application (plasma apoE levels). Bioinformatics. 2005, 21: 3273-3278. 10.1093/bioinformatics/bti505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sebastiani P, Ramoni MF, Nolan V, Baldwin CT, Steinberg MH: Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat Genet. 2005, 37: 435-440. 10.1038/ng1533.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pourret O, Naim P, Marcot B: Bayesian networks: a practical guide to applications. 2008, West Sussex: John Wiley & Sons
Book
Google Scholar
Friedman N, Linial M, Nachman I, Pe’er D: Using Bayesian networks to analyze expression data. J Comp Biol. 2000, 7: 601-620. 10.1089/106652700750050961.
Article
CAS
Google Scholar
Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinfomatics. 2004, 20: 3594-3603. 10.1093/bioinformatics/bth448.
Article
CAS
Google Scholar
Friedman N: Inferring cellular networks using probabilistic graphical models. Science. 2004, 303: 799-805. 10.1126/science.1094068.
Article
CAS
PubMed
Google Scholar
Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP: Causal protein-signaling networks derived from multi-parameter single-cell data. Science. 2005, 308: 523-529. 10.1126/science.1105809.
Article
CAS
PubMed
Google Scholar
Bradford JR, Needham CJ, Bulpitt AJ, Westhead DR: Insights into protein-protein interfaces using a Bayesian network prediction method. J Mol Biol. 2006, 362: 365-386. 10.1016/j.jmb.2006.07.028.
Article
CAS
PubMed
Google Scholar
Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S, Emili A, Snyder M, Greenblatt JF, Gerstein M: A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science. 2003, 302: 449-453. 10.1126/science.1087361.
Article
CAS
PubMed
Google Scholar
Lauritzen SL, Sheehan NA: Graphical models for genetic analysis. Statist Sci. 2004, 18: 489-514.
Google Scholar
Rouprêt M, Hupertan V, Yates DR, Comperat E, Catto JW, Meuth M, Lackmichi A, Ricci S, Lacave R, Gattegno B, Richard F, Hamdy FC, Cussenot O: A comparison of the performance of microsatellite and methylation urine analysis for predicting the recurrence of urothelial cell carcinoma, and definition of a set of markers by Bayesian network analysis. BJU International. 2008, 101: 1448-1453. 10.1111/j.1464-410X.2008.07591.x.
Article
PubMed
Google Scholar
Darwiche A: Modelling and reasoning with Bayesian networks. 2009, Cambridge: Cambridge University Press
Book
Google Scholar
Neapolitan R: Learning Bayesian networks. 2003, Upper Saddle River: Pearson Prentice Hall
Google Scholar
Pearl J: Causality: models, reasoning, and inference. 2000, Cambridge: Cambridge University Press
Google Scholar
Sebastiani P, Perls TT: Complex genetic models. Bayesian networks: A practical guide to applications. Edited by: Pourret O, Naim P, Marcot B. 2008, West Sussex: Wiley and Sons, 53-72.
Chapter
Google Scholar
Thornton-Wells TA, Moore JH, Haines JL: Genetics, statistics and human disease: analytical retooling for complexity. TRENDS in Genetics. 2004, 20: 640-647. 10.1016/j.tig.2004.09.007.
Article
CAS
PubMed
Google Scholar
Ziegler A, Inke RK, Thompson JR: Biostatistical aspects of genome-wide association studies. Biometric J. 2008, 50: 1-21.
Article
Google Scholar
Moore JH, Asselbergs FW, Williams SM: Bioinformatics challenges for genome-wide association studies. Bioinformatics. 2010, 26: 445-455. 10.1093/bioinformatics/btp713.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore JH, Williams SM: New strategies for identifying gene-gene interactions in hypertension. Ann Med. 2002, 34: 88-95. 10.1080/07853890252953473.
Article
CAS
PubMed
Google Scholar
Millstein J, Conti DV, Gilliland FD, Gauderman WJ: A testing framework for identifying susceptibility genes in the presence of epistasis. Am J Hum Genet. 2006, 78: 15-27. 10.1086/498850.
Article
CAS
PubMed
Google Scholar
Marchini J, Donnelly P, Cardon LR: Genome-wide strategies for detecting multiple loci than influence complex diseases. Nat Genet. 2005, 37: 413-417. 10.1038/ng1537.
Article
CAS
PubMed
Google Scholar
Moore JH: The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered. 2003, 56: 73-82. 10.1159/000073735.
Article
PubMed
Google Scholar
Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH: Multifactor dimensionality reduction reveals high-order interactions among estrogen metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001, 69: 138-147. 10.1086/321276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hahn LW, Ritchie MD, Moore JH: Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics. 2003, 19: 376-382. 10.1093/bioinformatics/btf869.
Article
CAS
PubMed
Google Scholar
Borsuk ME: Bayesian networks. Ecological informatics, Encyclopedia of ecology. 2008, Oxford: Elsevier, 307-317.
Google Scholar
Glymour C, Scheines R, Spirtes P, Kelly K: Discovering causal structure: artificial intelligence, philosophy of science, and statistical modeling. 1987, Orlando: Academic
Google Scholar
Spirtes P, Glymour C, Scheines R: From probability to causality. Philos Stud. 1990, 64: 1-36.
Article
Google Scholar
Verma T, Pearl J: An algorithm for deciding if a set of observed independencies has a causal explanation. Proceedings of the eighth conference on uncertainty in artificial intelligence (UAI-92). Edited by: Dubois D, Wellman MP, D’Ambrosio B, Smets P. 1992, Burlington, MA: Morgan Kaufmann, 323-330.
Google Scholar
Chickering D, Geiger D, Heckerman D: Learning Bayesian networks: search methods and experimental results. Proceedings of fifth international workshop on artificial intelligence and statistics. 1995, Society for Artificial Intelligence and Statistics: Fort Lauderdale
Google Scholar
Spirtes P, Meek C: Learning Bayesian networks with discrete variables from data. Proceedings of first international conference on knowledge discovery and data mining. 1995, San Francisco: Morgan Kaufmann
Google Scholar
Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR: A primer on learning in Bayesian networks for computational biology. PLoS Computational Biology. 2007, 3: 1409-1416.
Article
CAS
Google Scholar
Cooper GF, Herskovits E: A Bayesian method for the induction of probabilistic networks from data. Mach Learn. 1992, 9: 309-347.
Google Scholar
Cheng J, Greiner R, Kelly J, Bell D, Liu W: Learning Bayesian networks from data: an information-theory based approach. 2001, Department of Computing Sciences, University of Alberta, Faculty of Informatics, University of Ulster
Google Scholar
Daly R, Shen Q, Aitken S: Learning Bayesian networks: approaches and issues. Knowl Eng Rev. 2011, 26: 99-157. 10.1017/S0269888910000251.
Article
Google Scholar
Margaritis D, Thrun S: Bayesian network induction via local neighborhoods. Proceedings of conference on neural information processing systems (NIPS-12). Edited by: Solla SA, Leen TK, Müller KR. 1999, Cambridge: MIT Press
Google Scholar
Tsamardinos I, Aliferis CF, Statnikovs A: Algorithms for large scale Markov blanket discovery. Proceedings of the sixteenth international Florida artificial intelligence research society conference. 2003, Menlo Park: AAAI Press, 376-381.
Google Scholar
Margaritis D: Learning Bayesian network model structure from data, PhD thesis. 2003, Pittsburgh: Carnegie-Mellon University, School of Computer Science
Google Scholar
Tsamardinos I, Brown LE, Aliferis CF: The Max-Min hill-climbing Bayesian network structure learning algorithm. Mach Learn. 2006, 65: 31-78. 10.1007/s10994-006-6889-7.
Article
Google Scholar
Dempster AP, Laired NM, Rubin DB: Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc B. 1977, 39: 1-39.
Google Scholar
Friedman N: Learning belief networks in the presence of missing values and hidden variables. Proceedings of the fourteenth international conference on machine learning (ICML97). 1997, San Francisco: Morgan Kaufmann
Google Scholar
Tian F, Zhang H, Lu Y, Shi C: Incremental learning of Bayesian networks with hidden variables. Proceedings of the 2001 IEEE International Conference on Data Mining (ICDM 2001). Edited by: Cercone C, Lin TY, Wu X. 2001, USA: IEEE Computer Society, 651-652.
Chapter
Google Scholar
Borchani H, Amor NB, Mellouli K: Learning Bayesian network equivalence classes from incomplete data. Proceedings of the ninth international conference on discovery science. Lecture Notes in Artificial Intelligence. 2006, Berlin: Springer, 291-295.
Google Scholar
Myers JW, Laskey KB, DeJong KA: Learning Bayesian networks from incomplete data using evolutionary algorithms. Proceedings of the Fourth Annual Conference on Genetic and Evolutionary Computation Conference. 1999, San Francisco: Morgan Kaufman, 458-465.
Google Scholar
Myers JW, Laskey KB, Levitt T: Learning Bayesian networks from incomplete data with stochastic search algorithms. Proceedings of the fifteenth conference on uncertainty in artificial intelligence. 1999, San Francisco: Morgan Kaufman, 476-485.
Google Scholar
Dash D, Druzdzel M: Robust independence testing for constraint-based learning of causal structure. Proceedings of the nineteenth annual conference on uncertainty in artificial intelligence. 2003, San Francisco: Morgan Kaufmann, 167-174.
Google Scholar
Tian F, Zhang H, Lu Y: Learning Bayesian networks from incomplete data based on EMI method. Proceedings of the third IEEE conference on data mining (ICDM 2003). Edited by: Wu X, Tuzhilin A, Shavlik J. 2003, Washington, DC: IEEE Computer Society, 323-330.
Chapter
Google Scholar
Guo YY, Wong ML, Cai ZH: A novel hybrid evolutionary algorithm for learning Bayesian networks from incomplete data. Proceedings of the IEEE congress on evolutionary computation (CEC 2006). 2006, Washington, DC: IEEE, 916-923.
Google Scholar
Chickering DM: Learning equivalence classes of Bayesian-network structures. J Mach Learn Res. 2002, 2: 445-498.
Google Scholar
Schlosberg CE, Schwantes-An TH, Duan W, Saccone N: Application of Bayesian network structure learning to identify causal variant SNPs from resequencing data. BMC Proc. 2011, 5 (Supp 9): S109-
Article
PubMed
PubMed Central
Google Scholar
Han B, Park M, Chen XW: A Markov blanket-based method for detecting causal SNPs in GWAS. BMC Bioinformatics. 2010, 11 (Suppl 3): S5-10.1186/1471-2105-11-S3-S5.
Article
PubMed
PubMed Central
Google Scholar
Ramoni RB, Saccone NL, Hatsukami DK, Bierut LJ, Ramoni MF: A testable prognostic model of nicotine dependence. J Neurogenet. 2009, 23: 283-292. 10.1080/01677060802572911.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cowell RG, Dawid AP, Lauritzen SL, Spiegelhalter DJ: Probabilistic networks and expert systems. 1999, New York: Springer
Google Scholar
Karagas MR, Tosteson TD, Blum J, Morris JS, Baron JA, Klaue B: Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a U.S. population. Environ Health Perspect. 1998, 106 (Suppl 4): 1047-1050. 10.1289/ehp.98106s41047.
Article
PubMed
PubMed Central
Google Scholar
Karagas MR, Tosteson TD, Morris JS, Demidenko E, Mott LA, Heaney J, Schned A: Incidence of transitional cell carcinoma of the bladder and arsenic exposure in New Hampshire. Cancer Causes Control. 2004, 15: 465-472.
Article
PubMed
Google Scholar
Andrew AS, Mason RA, Kelse KT, Schned AR, Marsit CJ, Nelson HH, Karagas MR: DNA repair genotype interacts with arsenic exposure to increase bladder cancer risk. Toxicol Lett. 2009, 187: 10-14. 10.1016/j.toxlet.2009.01.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scutari M: Learning Bayesian Networks with the bnlearn R package. J Stat Softw. 2010, 35: 1-22.
Article
Google Scholar
R Development Core Team: R: a language and environment for statistical computing. 2011, Vienna: R foundation for statistical computing
Google Scholar
NCI-NHGRI Working Group on Replication in Association Studies: Replicating genotype-phenotype associations. Nature. 2007, 447: 655-660. 10.1038/447655a.
Article
Google Scholar
Geiger D, Heckerman D: Learning Gaussian networks, Technical report MSR-TR-94-10. 1994, Redmond: Microsoft research
Google Scholar
Hofmann R, Tresp V: Discovering structure in continuous variables using Bayesian networks. Advances in neural information processing systems 8 (NIPS*1995). Edited by: Touretzky DS, Mozer MC, Hasselmo ME. 1996, Cambridge: MIT Press, 500-506.
Google Scholar
Friedman N: The Bayesian structural EM algorithm. Proceeding of the fourteenth conference on uncertainty in artificial intelligence (UAI-98). Edited by: Cooper GF, Moral S. 1998, San Francisco: Morgan Kaufmann, 129-138.
Google Scholar
Heckerman D, Geiger D, Chickering DM: Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn. 1995, 20: 197-243.
Google Scholar
Friedman N, Koller D: Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian network. Mach Learn. 2003, 50: 95-125. 10.1023/A:1020249912095.
Article
Google Scholar
Zhang Y: A novel Bayesian graphical model for genome-wide multi-SNP association mapping. Genetic Epidemiology. 2012, 36: 36-47. 10.1002/gepi.20661.
Article
PubMed
Google Scholar