Pellegrini Matteo, Haynor David, Johnson JM: Protein interaction networks. Expert Rev Proteomics. 2004, 1 (2):
Vikis HG, Guan KL: Glutathione-S-transferase-fusion based assays for studying protein-protein interactions. Methods Mol Biol. 2004, 261: 175-186.
CAS
PubMed
Google Scholar
Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B: The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods. 2001, 24 (3): 218-229.
CAS
PubMed
Google Scholar
Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA. 2001, 98 (8): 4569-4574.
CAS
PubMed
PubMed Central
Google Scholar
Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002, 415 (6868): 141-147.
CAS
PubMed
Google Scholar
Stoll D, Templin MF, Bachmann J, Joos TO: Protein microarrays: applications and future challenges. Curr Opin Drug Discov Devel. 2005, 8 (2): 239-252.
CAS
PubMed
Google Scholar
Willats WG: Phage display: practicalities and prospects. Plant Mol Biol. 2002, 50 (6): 837-854.
CAS
PubMed
Google Scholar
Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M: Global mapping of the yeast genetic interaction network. Science. 2004, 303 (5659): 808-813.
CAS
PubMed
Google Scholar
Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 2006, 440 (7084): 637-643.
CAS
PubMed
Google Scholar
Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, Eisenberg D: DIP: the database of interacting proteins. Nucleic Acids Res. 2000, 28 (1): 289-291.
CAS
PubMed
PubMed Central
Google Scholar
Mewes HW, Frishman D, Mayer KF, Munsterkotter M, Noubibou O, Pagel P, Rattei T, Oesterheld M, Ruepp A, Stumpflen V: MIPS: analysis and annotation of proteins from whole genomes in 2005. Nucleic Acids Res. 2006, D169-172. 34 Database
Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B: Proteome survey reveals modularity of the yeast cell machinery. Nature. 2006, 440 (7084): 631-636.
CAS
PubMed
Google Scholar
Hodges PE, McKee AH, Davis BP, Payne WE, Garrels JI: The Yeast Proteome Database (YPD): a model for the organization and presentation of genome-wide functional data. Nucleic Acids Res. 1999, 27 (1): 69-73.
CAS
PubMed
PubMed Central
Google Scholar
Mewes HW, Amid C, Arnold R, Frishman D, Guldener U, Mannhaupt G, Munsterkotter M, Pagel P, Strack N, Stumpflen V: MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res. 2004, D41-44. 32 Database
Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M, Cesareni G: MINT: a Molecular INTeraction database. FEBS Lett. 2002, 513 (1): 135-140.
CAS
PubMed
Google Scholar
Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R: IntAct--open source resource for molecular interaction data. Nucleic Acids Res. 2007, D561-565. 35 Database
Bader GD, Donaldson I, Wolting C, Ouellette BF, Pawson T, Hogue CW: BIND--The Biomolecular Interaction Network Database. Nucleic Acids Res. 2001, 29 (1): 242-245.
CAS
PubMed
PubMed Central
Google Scholar
Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006, D535-539. 34 Database
Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A: Human Protein Reference Database--2009 update. Nucleic Acids Res. 2009, D767-772. 37 Database
Han K, Park B, Kim H, Hong J, Park J: HPID: the Human Protein Interaction Database. Bioinformatics. 2004, 20 (15): 2466-2470.
CAS
PubMed
Google Scholar
Yu J, Pacifico S, Liu G, Finley RL: DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions. BMC Genomics. 2008, 9: 461.
PubMed
PubMed Central
Google Scholar
Kuhn Michael, Szklarczyk Damian, Franceschini Andrea, Campillos Monica, von Mering Christian, Lars Juhl Jensen AB, Bork P: STITCH 2: an interaction network database for small molecules and proteins. Nucleic Acids Res. 2010, D552-D556. 38
Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M: STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009, D412-416. 37 Database
Pea Carninci: The transcriptional landscape of the mammalian genome. Science. 2005, 309: 1559-1563.
Google Scholar
Rea Linding: NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleid Acids Res. 2008, 36: D695-D699.
Google Scholar
Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 2002, 298 (5594): 799-804.
CAS
PubMed
Google Scholar
Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B: JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 2004, 32: D91-94.
CAS
PubMed
PubMed Central
Google Scholar
Wingender E, Dietze P, Karas H, Knuppel R: TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 1996, 24 (1): 238-241.
CAS
PubMed
PubMed Central
Google Scholar
Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV: TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003, 31 (1): 374-378.
CAS
PubMed
PubMed Central
Google Scholar
Lefebvre C, Lim WK, Basso K, Dalla Favera R, Califano A: A context-specific network of protein-DNA and protein-protein interactions reveals new regulatory motifs in human B cells. Lecture Notes in Bioinformatics (LNCS). 2007, 4532: 42-56.
Google Scholar
Diella FCS, Gemünd C, Linding R, Via A, Kuster B, Sicheritz-Pontén T, Blom N, Gibson TJ: Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinformatics. 2004, 5:
Google Scholar
Miller ML: Linear motif atlas for phosphorylation-dependent signaling. Sci Signal. 2008, 1 (35):
Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M, Mann M: PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol. 2007, 8 (11):
Kholodenko BN, Hancock JF, Koch W: Signalling ballet in space and time. Nature Rev Molecular Cell Biology. 2010, 11: 414-426.
CAS
Google Scholar
Ulrich LE, Z IB: MiST: a microbial signal transduction database. Nucleic Acids Res. 2007, 35: D386-390.
CAS
PubMed
Google Scholar
Krull M, Voss N, Choi C, Pistor S, Potapov A, Wingender E: TRANSPATH: an integrated database on signal transduction and a tool for array analysis. Nucleic Acids Res. 2003, 31 (1): 97-100.
CAS
PubMed
PubMed Central
Google Scholar
Jeong H, Tombor B, Albert R, Oltvai ZN, AL: The large-scale organization of metabolic networks. Nature. 2000, 407: 651-654.
CAS
PubMed
Google Scholar
Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson B: Reconstruction of biochemical networks in microorganisms. Nature Rev Microbiology. 2009, 7: 129-143.
CAS
Google Scholar
Ma H, Mazein A, Selkov A, Selkov E, Demin O, Goryanin I: The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol. 2007, 3 (135):
Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. D355-360. 38 Database
Keseler IM, Bonavides-Martinez C, Collado-Vides J, Gama-Castro S, Gunsalus RP, Johnson DA, Krummenacker M, Nolan LM, Paley S, Paulsen IT: EcoCyc: a comprehensive view of Escherichia coli biology. Nucleic Acids Res. 2009, D464-470. 37 Database
Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahren D, Tsoka S, Darzentas N, Kunin V, Lopez-Bigas N: Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res. 2005, 33 (19): 6083-6089.
CAS
PubMed
PubMed Central
Google Scholar
Whitaker JW, Letunic I, McConkey GA, Westhead DR: metaTIGER: a metabolic evolution resource. Nucleic Acids Res. 2009, D531-538. 37 Database
Schilling CH, Letscher D, Palsson BO: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol. 2000, 203 (3): 229-248.
CAS
PubMed
Google Scholar
Schilling CH, Palsson BO: Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J Theor Biol. 2000, 203 (3): 249-283.
CAS
PubMed
Google Scholar
Schilling CH, Schuster S, Palsson BO, Heinrich R: Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol Prog. 1999, 15 (3): 296-303.
CAS
PubMed
Google Scholar
Schuster S, Fell DA, Dandekar T: A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol. 2000, 18 (3): 326-332.
CAS
PubMed
Google Scholar
Schuster S, Dandekar T, Fell DA: Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 1999, 17 (2): 53-60.
CAS
PubMed
Google Scholar
Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics. 2003, 19 (4): 524-531.
CAS
PubMed
Google Scholar
Finney A, Hucka M: Systems biology markup language: Level 2 and beyond. Biochemical Society transactions. 2003, 31 (Pt 6): 1472-1473.
CAS
PubMed
Google Scholar
Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, Moore S, Orchard S, Sarkans U, von Mering C: The HUPO PSI's molecular interaction format - a community standard for the representation of protein interaction data. Nat Biotechnol. 2004, 22 (2): 177-183.
CAS
PubMed
Google Scholar
Murray RP, S RH: Chemical Markup, XML, and the Worldwide Web. 1. Basic Principles. Chem Inf Comput Sci. 1999, 39: 928-942.
Google Scholar
Murray-Rust P, Rzepa HS, Wright M: Development of Chemical Markup Language (CML) as a System for Handling Complex Chemical Content. New J Chem. 2001, 618-634.
Google Scholar
BioPAX Working group: BioPAX-biological pathways exchange language. Version 10 Documentation. 2004
Google Scholar
Lloyd CM, Halstead MD, Nielsen PF: CellML: its future, present and past. Progress in biophysics and molecular biology. 2004, 85 (2-3): 433-450.
CAS
PubMed
Google Scholar
Lassila O, Swick R: Resource Description Framework (RDF) Model and Syntax Specification. The World Wide Web Consortium (W3C) MIT, INRIA. 1999
Google Scholar
RDF vocabulary description language 1.0: RDF Schema. [http://www.w3.org/tr/2002/wd-rdf-schema-20020430/]
Cormen TH, Leiserson CE, Rivest Ronald L, Stein C: Introduction to algorithms. 2002, Cambridge, Massachusetts 02142: The MIT Press
Google Scholar
Huber W, Carey VJ, Long L, Falcon S, Gentleman R: Graphs in molecular biology. BMC Bioinformatics. 2007, 8 (Suppl 6): S8.
PubMed
PubMed Central
Google Scholar
Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P: Coexpression analysis of human genes across many microarray data sets. Genome Res. 2004, 14 (6): 1085-1094.
CAS
PubMed
PubMed Central
Google Scholar
Schulz H-J, John M, Unger A, Schumann H: Visual analysis of bipartite biological networks. Eurographics Workshop on Visual Computing for Biomedicine. 2008
Google Scholar
Burgos E, Ceva H, Hernández L, Perazzo RPJ, Devoto M, Medan D: Two classes of bipartite networks: nested biological and social systems. Phys Rev. 2008, 78:
Google Scholar
Picard F, Miele V, Daudin J-J, Cottret L, Robin S: Deciphering the connectivity structure of biological networks using MixNet. BMC Bioinformatics. 2009, 10:
Google Scholar
Leclerc RD: Survival of the sparsest: robust gene networks are parsimonious. Mol Syst Biol. 2008, 4: 213.
PubMed
PubMed Central
Google Scholar
Dijkstra EW: A note on two problems in connexion with graphs. Numerische Mathematik. 1959, 1: 269-271.
Google Scholar
Floyd RW: Algorithm 97. Comm ACM. 1962, 5-6: 345.
Google Scholar
Bron C, Kerbosch J: Algorithm 457: finding all cliques of an undirected graph. Commun ACM (ACM). 1973, 16 (9): 575-577.
Google Scholar
Zhang H, Song X, Wang H, Zhang X: MIClique: An Algorithm to Identify Differentially Coexpressed Disease Gene Subset from Microarray Data. Journal of Biomedicine and Biotechnology. 2009
Google Scholar
Voy BH, Scharff JA, Perkins AD, Saxton AM, Borate B, Chesler EJ, Branstetter LK, Langston MA: Extracting Gene Networks for Low-Dose Radiation Using Graph Theoretical Algorithms. PLoS Comput Biol. 2006, 2 (7):
Manfield IW, Jen CH, Pinney JW, Michalopoulos I, Bradford JR, Gilmartin PM, Westhead DR: Arabidopsis Co-expression Tool (ACT): web server tools for microarray-based gene expression analysis. Nucleic Acids Res. 2006, W504-509. 34 Web Server
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J: Bioconductor: open software development for computational biology and bioinformatics. Genome biology. 2004, 5 (10): R80.
PubMed
PubMed Central
Google Scholar
Ravasz E, Somera A, Mongru D, Oltvai Z, Barabási A-L: Hierarchical organization of modularity in metabolic networks. Science. 2002, 297: 1551-1555.
CAS
PubMed
Google Scholar
Barabási A-L, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nature Reviews Genetics. 2011, 12: 56-68.
PubMed
PubMed Central
Google Scholar
Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U: Network motifs: simple building blocks of complex networks. Science. 2002, 298 (5594): 824-827.
CAS
PubMed
Google Scholar
Shen-Orr S, Milo R, Mangan S, Alon U: Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet. 2002, 31: 64-68.
CAS
PubMed
Google Scholar
Ingram PJ, Stumpf MP, Stark J: Network motifs: structure does not determine function. BMC Genomics. 2006, 7: 108.
PubMed
PubMed Central
Google Scholar
Zotenko E, Mestre J, O'Leary DP, Przytycka TM: Why do hubs in the yeast protein interaction network tend to be essential: re-examining the connection between the network topology and essentiality. PLoS Comput Biol. 2008, 4: 1-16.
Google Scholar
Levy SF, S ML: Network hubs buffer environmental variation in Saccharomyces cerevisiae. PLoS Biol. 2008, 6 (11):
Ma H-W, Z A-P: The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics. 2003, 19 (11):
Mazurie A, Bonchev D, Schwikowski B, Buck GA: Evolution of metabolic network organization. BMC Syst Bio. 2010, 4:
Google Scholar
da Silva MR, Ma H, Zeng A-P: Centrality, Network Capacity, and Modularity as Parameters to Analyze the Core-Periphery Structure in Metabolic Networks. Proceedings of the IEEE. 2008, 96 (8): 1411-1420.
CAS
Google Scholar
Rong ZHL, X Lu, W L: Pinning a complex network through the betweenness centrality strategy. Circuits and Systems IEEE International Symposium. 2009, 1689-1692.
Google Scholar
Kitsak M, Havlin S, Paul G, Riccaboni M, Pammolli F, Stanley HE: Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks. Phys Rev E. 2007, 75:
Google Scholar
Joy MP, Brock A, Ingber DE, Huang S: High-Betweenness Proteins in the Yeast Protein Interaction Network. J Biomed Biotechnol. 2005, 2: 96-103.
Google Scholar
Paladugu SR, Zhao S, Ray A, Raval A: Mining protein networks for synthetic genetic interactions. BMC Bioinformatics. 2008, 9:
Google Scholar
Özgür A, Vu T, Erkan G, Radev DR: Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics. 2008, 24 (13): i277-i285.
PubMed
PubMed Central
Google Scholar
Chavali S, Barrenas F, Kanduri K, Benson M: Network properties of human disease genes with pleiotropic effects. BMC Syst Bio. 2010, 4:
Google Scholar
Estrada E: Characterization of the folding degree of proteins. Bioinformatics. 2002, 18: 697-704.
CAS
PubMed
Google Scholar
Estrada E, Uriarte E: Recent advances on the role of topological indices in drug discovery research. Curr Med Chem. 2001, 8: 1699-1714.
Google Scholar
Estrada E: Generalized walks-based centrality measures for complex biological networks. J Theor Biol. 2010, 263 (4): 556-565.
PubMed
Google Scholar
Nisbach F, K M: Developmental time windows for spatial growth generate multiple-cluster small-world networks. Eur Phys J B. 2007, 58: 185-191.
CAS
Google Scholar
Costa LdF, Kaiser M, Hilgetag CC: Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Syst Bio. 2007, 1:
Google Scholar
Jeong H, Mason SP, Barabasi A-L, Oltvai ZN: Lethality and centrality in protein networks. Nature. 2001, 411 (6833): 41-42.
CAS
PubMed
Google Scholar
Hahn M, K A: Comparative genomics of centrality and essentiality in three eukaryotic protein-protein interaction networks. Mol Biol Evol. 2005, 22: 803-806.
CAS
PubMed
Google Scholar
Koschützki D, S F: Comparison of Centralities for Biological Networks. Proc German Conf Bioinformatics (GCB'04). 2004, P-53 of LNI:
Google Scholar
Junker BH, Koschützki D, Schreiber F: Exploration of biological network centralities with CentiBiN. BMC Bioinformatics. 2006, 7:
Google Scholar
Baur M, Benkert M, Brandes U, Cornelsen S, Gaertler M, Köpf B, Lerner J, Wagner D: visone - Software for Visual Social Network Analysis. Proc 9th Intl Symp Graph Drawing (GD '01), LNCS. 2002, 2265: 463-464.
Google Scholar
Batagelj V, Mrvar A: Pajek - Program for Large Network Analysis. Connections. 1998, 21: 47-57.
Google Scholar
Hu Z, Mellor J, Wu J, Yamada T, Holloway D, DeLisi C: VisANT: data-integrating visual framework for biological networks and modules. Nucleic Acids Res. 2005, 33: W352-W357.
CAS
PubMed
PubMed Central
Google Scholar
Albert R: Scale-free networks in cell biology. Journal of Cell Science. 2005, 118:
Google Scholar
Lima-Mendez G, van Helden J: The powerful law of the power law and other myths in network biology. Mol Biosyst. 2009, 5 (12): 1482-1493.
CAS
PubMed
Google Scholar
Newman MEJ: Assortative Mixing in Networks. Phys Rev Lett. 2002, 89 (208701):
Newman MEJ: Mixing patterns in networks. Phys Rev. 2003, 67:
Google Scholar
Redner S: Networks: teasing out the missing links. Nature. 2008, 453: 47-48.
CAS
PubMed
Google Scholar
Erdös P, R A: On the strength of connectedness of a random graph. Acta Math Acad Sci Hungar. 1961, 12: 261-267.
Google Scholar
Watts DJ, S SH: Collective dynamics of 'small-world' networks. Nature. 1998, 393: 440-442.
CAS
PubMed
Google Scholar
Barabási A-L, A R: Emergence of scaling in random networks. Science. 1999, 286: 509-512.
PubMed
Google Scholar
Berg J, Lassig M, Wagner A: Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evol Biol. 2004, 4 (1): 51.
PubMed
PubMed Central
Google Scholar
Yamada T, B P: Evolution of biomolecular networks - lessons from metabolic and protein interactions. Nature Rev Molecular Cell Biology. 2009, 10: 791-803.
CAS
Google Scholar
Jain AK, Murty MN, Flynn PJ: Data Clustering: A Review. ACM Computing Surveys (CSUR). 1999, 31 (3): 264-323.
Google Scholar
Duda RO, Hart PE, Stork DG: Pattern Classification, ch.10: Unsupervised learning and clustering. Wiley, New York. 2001, 571.
Google Scholar
Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4 (4): 406-425.
CAS
PubMed
Google Scholar
Borate BR, Chesler EJ, Langston MA, Saxton AM, Voy BH: Comparison of threshold selection methods for microarray gene co-expression matrices. BMC Res Notes. 2009, 2 (240):
Perkins AD, L MA: Threshold selection in gene co-expression networks using spectral graph theory techniques. BMC Bioinformatics. 2009, 10:
Google Scholar
Quackenbush J: Computational genetics: Computational analysis of microarray data. Nat Rev Genetics. 2001, 2: 418-427.
CAS
PubMed
Google Scholar
Milligan Glenn, Cooper MC: Methodology Review: Clustering Methods. Applied Psychological Measurement. 1987, 11 (4): 329-354.
Google Scholar
Sneath PHA, Sokal RR: Unweighted Pair Group Method with Arithmetic Mean. Numerical Taxonomy. 1973, San Francisco: Freeman, 230-234.
Google Scholar
Michener CD, Sokal RR: A Quantitative Approach to a Problem in Classification. Evolution. 1957, 11 (2): 130-162.
Google Scholar
Gascuel O, Steel M: Neighbor-joining revealed. Mol Biol Evol. 2006, 23 (11): 1997-2000.
CAS
PubMed
Google Scholar
D'andrade R: U-Statistic Hierarchical Clustering. Psychometrika. 1978, 4: 58-67.
Google Scholar
Johnson SC: Hierarchical Clustering Schemes. Psychometrika. 1967, 2: 241-254.
Google Scholar
Seo J, Shneiderman B: Interactively Exploring Hierarchical Clustering Results. Computer. 2002, 35 (7): 80-86.
Google Scholar
Seo J, Gordish-Dressman H, Hoffman EP: An interactive power analysis tool for microarray hypothesis testing and generation. Bioinformatics. 2006, 22 (7): 808-814.
CAS
PubMed
Google Scholar
Kumar S, Tamura K, Nei M: MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 2004, 5 (2): 150-163.
CAS
PubMed
Google Scholar
Tamura K, J D, Nei M, S K: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution. 2007, 24: 1596-1599.
CAS
PubMed
Google Scholar
Kumar S, Tamura K, Jakobsen I, Nei M: MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 2001, 17 (12): 1244-1245.
CAS
PubMed
Google Scholar
Kumar S, Tamura K, Nei M: MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. Comput Appl Biosci. 1994, 10 (2): 189-191.
CAS
PubMed
Google Scholar
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M: TM4: a free, open-source system for microarray data management and analysis. BioTechniques. 2003, 34 (2): 374-378.
CAS
PubMed
Google Scholar
Pavlopoulos GA, Soldatos TG, Barbosa-Silva A, Schneider R: A reference guide for tree analysis and visualization. BioData Min. 2010, 3 (1): 1.
PubMed
PubMed Central
Google Scholar
Enright AJ, Van Dongen S, Ouzounis CA: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002, 30 (7): 1575-1584.
CAS
PubMed
PubMed Central
Google Scholar
Moschopoulos CN, Pavlopoulos GA, Schneider R, Likothanassis SD, Kossida S: GIBA: a clustering tool for detecting protein complexes. BMC Bioinformatics. 2009, 10 (Suppl 6): S11.
PubMed
PubMed Central
Google Scholar
Gao L, Sun PG, Song J: Clustering algorithms for detecting functional modules in protein interaction networks. J Bioinform Comput Biol. 2009, 7 (1): 217-242.
CAS
PubMed
Google Scholar
Zhong W, Altun G, Harrison R, Tai PC, Pan Y: Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property. IEEE Trans Nanobioscience. 2005, 4 (3): 255-265.
PubMed
Google Scholar
van Dogen S: Graph Clustering by Flow Simulation. PhD thesis. 2000, University of Utrecht
Google Scholar
Vlasblom J, Wodak SJ: Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinformatics. 2009, 10: 99.
PubMed
PubMed Central
Google Scholar
Enright AJ, Van Dongen S, Ouzounis CA: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002, 30 (7): 1575-1584.
CAS
PubMed
PubMed Central
Google Scholar
MacQueen B: Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability. 1967, Berkeley, University of California Press, 1: 281-297.
Google Scholar
Lu Y, Lu S, Fotouhi F, Deng Y, Brown SJ: Incremental genetic K-means algorithm and its application in gene expression data analysis. BMC Bioinformatics. 2004, 5: 172.
PubMed
PubMed Central
Google Scholar
Frey BJ, Dueck D: Clustering by passing messages between data points. Science. 2007, 315 (5814): 972-976.
CAS
PubMed
Google Scholar
King AD, Przulj N, Jurisica I: Protein complex prediction via cost-based clustering. Bioinformatics. 2004, 20 (17): 3013-3020.
CAS
PubMed
Google Scholar
Paccanaro A, Casbon JA, Saqi MA: Spectral clustering of protein sequences. Nucleic Acids Res. 2006, 34 (5): 1571-1580.
CAS
PubMed
PubMed Central
Google Scholar
Li X, Wu M, Kwoh CK, Ng SK: Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC Genomics. 2010, 11 (Suppl 1): S3.
PubMed
PubMed Central
Google Scholar
Brohee S, van Helden J: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics. 2006, 7: 488.
PubMed
PubMed Central
Google Scholar
Pavlopoulos GA, Wegener AL, Schneider R: A survey of visualization tools for biological network analysis. BioData Min. 2008, 1: 12.
PubMed
PubMed Central
Google Scholar
Brohee S, Faust K, Lima-Mendez G, Sand O, Janky R, Vanderstocken G, Deville Y, van Helden J: NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways. Nucleic Acids Res. 2008, W444-451. 36 Web Server
Pavlopoulos GA, Moschopoulos CN, Hooper SD, Schneider R, Kossida S: jClust: a clustering and visualization toolbox. Bioinformatics. 2009, 25 (15): 1994-1996.
CAS
PubMed
PubMed Central
Google Scholar
Yoshida R, Higuchi T, Imoto S, Miyano S: ArrayCluster: an analytic tool for clustering, data visualization and module finder on gene expression profiles. Bioinformatics. 2006, 22: 1538-1539.
CAS
PubMed
Google Scholar
Hooper SD, Bork P: Medusa: a simple tool for interaction graph analysis. Bioinformatics. 2005, 21 (24): 4432-4433.
CAS
PubMed
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13 (11): 2498-2504.
CAS
PubMed
PubMed Central
Google Scholar
Pavlopoulos GA, O'Donoghue SI, Satagopam VP, Soldatos TG, Pafilis E, Schneider R: Arena3D: visualization of biological networks in 3D. BMC systems biology. 2008, 2: 104.
PubMed
PubMed Central
Google Scholar
Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000, 403 (6770): 623-627.
CAS
PubMed
Google Scholar
Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S, Lenzen G, Petel F, Wojcik J, Schachter V: The protein-protein interaction map of Helicobacter pylori. Nature. 2001, 409 (6817): 211-215.
CAS
PubMed
Google Scholar
Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E: A protein interaction map of Drosophila melanogaster. Science. 2003, 302 (5651): 1727-1736.
CAS
PubMed
Google Scholar
Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T: A map of the interactome network of the metazoan C. elegans. Science. 2004, 303 (5657): 540-543.
CAS
PubMed
PubMed Central
Google Scholar
von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P: Comparative assessment of large-scale data sets of protein-protein interactions. Nature. 2002, 417 (6887): 399-403.
CAS
PubMed
Google Scholar
Raman K: Construction and analysis of protein-protein interaction networks. Autom Exp. 2010, 2 (1): 2.
PubMed
PubMed Central
Google Scholar
Salgado H, Santos-Zavaleta A, Gama-Castro S, Peralta-Gil M, Penaloza-Spinola MI, Martinez-Antonio A, Karp PD, Collado-Vides J: The comprehensive updated regulatory network of Escherichia coli K-12. BMC Bioinformatics. 2006, 7: 5.
PubMed
PubMed Central
Google Scholar
Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Peredo E, Sanchez-Solano F, Santos-Zavaleta A, Martinez-Flores I, Jimenez-Jacinto V, Bonavides-Martinez C, Segura-Salazar J: RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res. 2006, D394-397. 34 Database
Lozada-Chavez I, Janga SC, Collado-Vides J: Bacterial regulatory networks are extremely flexible in evolution. Nucleic Acids Res. 2006, 34 (12): 3434-3445.
CAS
PubMed
PubMed Central
Google Scholar
Madan Babu M, Teichmann SA, Aravind L: Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J Mol Biol. 2006, 358 (2): 614-633.
CAS
PubMed
Google Scholar
Sneppen Kim, Zocchi G: Physics in Molecular Biology. 2005, Giovanni Zocchi
Google Scholar
van Nimwegen E: Scaling laws in the functional content of genomes. Trends Genet. 2003, 19 (9): 479-484.
CAS
PubMed
Google Scholar
Bhalla US, Iyengar R: Emergent properties of networks of biological signaling pathways. Science. 1999, 283 (5400): 381-387.
CAS
PubMed
Google Scholar
Junker Björn, Schreiber F: Analysis of Biological Networks. 2008
Google Scholar
Guelzim N, Bottani S, Bourgine P, Kepes F: Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet. 2002, 31 (1): 60-63.
CAS
PubMed
Google Scholar
Ma H, Zeng AP: Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics. 2003, 19 (2): 270-277.
CAS
PubMed
Google Scholar
Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L: The large-scale organization of metabolic networks. Nature. 2000, 407 (6804): 651-654.
CAS
PubMed
Google Scholar
Gagneur J, Jackson DB, Casari G: Hierarchical analysis of dependency in metabolic networks. Bioinformatics. 2003, 19 (8): 1027-1034.
CAS
PubMed
Google Scholar
Holme P, Huss M, Jeong H: Subnetwork hierarchies of biochemical pathways. Bioinformatics. 2003, 19 (4): 532-538.
CAS
PubMed
Google Scholar