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Abstract

Background: Rheumatoid arthritis (RA) and systemic lupus erythematous (SLE) are
autoimmune rheumatic diseases that share a complex genetic background and
common clinical features. This study’s purpose was to construct machine learning
(ML) models for the genomic prediction of RA and SLE.

Methods: A total of 2,094 patients with RA and 2,190 patients with SLE were
enrolled from the Taichung Veterans General Hospital cohort of the Taiwan Precision
Medicine Initiative. Genome-wide single nucleotide polymorphism (SNP) data were
obtained using Taiwan Biobank version 2 array. The ML methods used were logistic
regression (LR), random forest (RF), support vector machine (SVM), gradient tree
boosting (GTB), and extreme gradient boosting (XGB). SHapley Additive exPlanation
(SHAP) values were calculated to clarify the contribution of each SNPs. Human
leukocyte antigen (HLA) imputation was performed using the HLA Genotype
Imputation with Attribute Bagging package.

Results: Compared with LR (area under the curve [AUC] = 0.8247), the RF approach
(AUC = 0.9844), SVM (AUC = 0.9828), GTB (AUC = 0.9932), and XGB (AUC = 0.9919)
exhibited significantly better prediction performance. The top 20 genes by feature
importance and SHAP values included HLA class II alleles. We found that imputed
HLA-DQA1*05:01, DQB1*0201 and DRB1*0301 were associated with SLE; HLA-
DQA1*03:03, DQB1*0401, DRB1*0405 were more frequently observed in patients with
RA.

Conclusions: We established ML methods for genomic prediction of RA and SLE.
Genetic variations at HLA-DQA1, HLA-DQB1, and HLA-DRB1 were crucial for
differentiating RA from SLE. Future studies are required to verify our results and
explore their mechanistic explanation.
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Background
Rheumatoid arthritis (RA) and systemic lupus erythematous (SLE) are common auto-

immune rheumatic diseases worldwide [1]. RA is characterized by chronic synovial prolifer-

ation and cartilage erosion [2]. If left untreated, RA may lead to severe disability and

increased mortality [3]. The pathogenesis of SLE is an autoantibody overproduction and the

activation of the complement system, leading to systemic manifestations [3]. The etiologies

of RA and SLE are complex but may involve an interplay of environmental, hormonal, and

genetic factors [2, 3]. In particular, a “rhupus” syndrome has been described in patients with

overlapping clinical features of RA and SLE [4]. The SLE-related features in rhupus syn-

drome are usually mild and involve mucocutaneous, hematologic, and renal involvement;

the arthritic component of rhupus can manifest as typical erosive polyarthritis [4]. More-

over, a familial aggregation of SLE and RA in a polygenic additive model was observed, sug-

gesting a familial autoimmunity and susceptibility shared in these two diseases [5].

Despite the distinct clinical features of RA and SLE, abundant evidence suggests that

they may share a common genetic component [6]. In genome-wide association studies

(GWASs), a considerable amount of single nucleotide polymorphism (SNP) loci have

been observed in RA and SLE [7, 8]. Type I interferon (IFN) signature overexpression

is a well-established and common feature of SLE and RA [9]. However, a distinct hu-

man leukocyte antigen (HLA) inheritance pattern in SLE and RA was reported. A high

proportion of patients with RA carry the HLA-DR4 genotype in chromosome 6 [10];

HLA-DR3 determines autoantibody initiation and is involved in the pathogenesis of

SLE [11]. These results suggest that patients with SLE and RA may have diverse genetic

backgrounds. The study designs of prior GWASs have frequently involved comparisons

between patients with genetic variants of autoimmune diseases (SLE or RA) and healthy

controls. To explore the genetic differences between patients with RA and SLE, a direct

comparison of GWAS data related to RA and SLE is required.

With recent advancements in artificial intelligence (AI), machine learning (ML), a

branch of AI, has been widely used in the diagnostic classification and prognostic predic-

tion of systemic autoimmune diseases [12]. Most data types used in ML studies of RA and

SLE were electric health records, ultrasound or magnetic resonance images, or data on

SNP arrays and transcriptomes [12]. RA risk may be predicted using GWAS data with

random forest (RF) algorithms in a regression model [13]. Radiographic progression of pa-

tients with RA could also be identified using GWAS data and a support vector machine

(SVM) classifier [14]. Moreover, bootstrap aggregation of alternating decision trees has

been used to detect SNPs associated with SLE [15]. Decision tree ML models could also

identify biomarkers for erosive arthritis phenotypes in SLE [16]. However, an ML model

has never been used to classify SLE and RA by using genetic variants.

To investigate genetic variations between individuals with SLE and RA, we conducted

a comparative study using five ML models and GWAS data sets to identify the different

SNPs associated with both diseases.

Methods
Study population

Study population data were obtained from the Taiwan Precision Medicine Initiative

(TPMI), which is a collaboration between Taiwan medical centers nationwide and
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Academia Sinica. The initial goal of the TPMI was to incorporate genetic information

into clinical application. Blood samples of each participant enrolled in the TPMI were

collected, extracted for DNA, and genotyped. The genetic profiles of TPMI participants

are linked to their electronic health records for case management and implementation

of precision medicine.

Between June 2019 and December 2020, 32,728 participants were enrolled at the Tai-

chung Veterans General Hospital site of the TPMI project. In total, RA and SLE were

diagnosed in 2,094 and 2,190 patients, respectively, based on the 2010 American Col-

lege of Rheumatology and the European League Against Rheumatism criteria for the

classification of RA and the 2012 Systemic Lupus International Collaborating Clinics

classification criteria for SLE [17, 18].

Genotyping

DNA extraction was performed on automated platforms at Taichung Veterans General

Hospital. Genotyping of each participant was performed using Taiwan Biobank version

2 (TWBv2) array (Thermo Fisher Scientific, Inc., Santa Clara, CA, USA), which was de-

signed in 2017 for both known-risk-alleles GWAS and testing with a total of 714,431

SNPs, as previously described by Wei and colleagues [19]. To maximize accuracy and

prevent batch effects, Academia Sinica conducted genotype calls centrally for batches

of 3,000 samples each. In cases and controls, quality control of genotyping for each

SNP was further evaluated by determining the total call rate (successful call rate) and

minor allele frequency (MAF). Those call rates of samples greater than 95% will be

used in subsequent analyses. If only one allele appeared in cases and controls, or the

total call rate was less than 95%, or the total MAF was less than 0.01, or departing sig-

nificantly from Hardy-Weinberg equilibrium (P < 1 × 10−4), the SNPs will be excluded.

Feature selection

Because of the noisy nature of the genetic data, we first had to conduct feature filtering

using a univariate test to identify the most relevant SNP markers [20]. Dimensionality

reduction is employed in feature selection because the amount of SNP markers is larger

than the number of patients [21]. We applied the pre-filtering method of Chi-squared

test in the training set to select the SNP features which are best associated with the

outcome, where alleles were coded as numerical values between 0 (0/0) and 1 (includ-

ing 0/1 and 1/1). The SNPs whose p values were smaller than the Bonferroni-corrected,

genome-wide significance threshold (5 × 10−8) were considered to be statistically signifi-

cant features [22]. These relevant SNPs were used as inputs for the ML models.

Supervised ML approaches

In this study, we adopted ML approaches to establish classification models based solely

on genetic data. Various ML methods, including logistic regression (LR), RF, SVM, gra-

dient tree boosting (GTB), and extreme gradient boosting (XGB) were applied to clas-

sify patients into categories associated with having SLE and RA [23]. The advantages of

a supervised ML model over a traditional statistical method are that it can overcome

high dimensionality, detect interactions among SNP markers, and explore hidden fea-

ture combinations [24]. Initially, the entire data set (n = 4,284) was randomly divided
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into training (80%) and testing (20%) subsets by using stratification. Whenever SNP

data were missing, we imputed the mode of the same disease for each SNP. While tun-

ing the hyperparameters, the hyperparameters are optimized through 5-fold cross-

validation only for the training set (Supplementary Table 1) whereas the optimization

of hyperparameters was not executed in testing set [25].

The interpretation of results in the classification task in GWASs is a critical concern.

SHapley Additive exPlanation (SHAP) values were adopted to calculate the contribu-

tion of each given feature [26]. This approach could explain the importance of features

for the study outcome, providing visual results for interpreting how the feature value

would affect the outcome [27, 28]. All of the data preprocessing was performed in R

software v4.0.2 (R Foundation, Vienna, Austria), and the related ML analyses were de-

veloped in Python 3.7 language.

Performance evaluation

To robustly evaluate the performance of different ML methods, we adopted metrics of

accuracy, precision, sensitivity, specificity, F1 score, and area under curve (AUC) by

using the receiver operating characteristics (ROC) analysis for comparing each model

with 5-fold cross-validation [23]. Sensitivity and specificity are well-known for their

utility in evaluating the classified capabilities of models. Sensitivity is a measure of the

true positive rate (patients with RA), also known as recall rate. Specificity is a measure

of the true negative rate (patients with SLE). For the binary outcome classification,

AUC analysis and the precision-recall curve (PR curve) were used as the primary per-

formance metric that could provide insight into the discriminative power of various

ML models [29].

To test the robustness of the models, we utilized the statistical method of boot-

strapped resampling to re-construct the original training set into new ones. Then the

new ones will be repeatedly trained using 5 machine-learning models for 500 times,

and the average of the test result of 500-time training is defined as AUC.

HLA imputation

HLA imputation was performed using the R library HLA Genotype Imputation with

the Attribute Bagging (HIBAG) package [30] for HLA genes HLA-DQA1, HLA-DQB1,

and HLA-DRB1 by using an ethno-specific imputation model of Asian ancestry. Two-

field (4-digit) resolution with allele frequencies (AFs) of ≧5.0% were displayed.

Patient and public involvement

We did not involve patients or the public in our work.

Statistical analysis

Comparisons of imputed HLA alleles in patients with RA and SLE were performed

using Pearson’s chi-squared test. The p value and odds ratio (OR) along with 95% con-

fidence intervals (CIs) were calculated using R version 4.0.2.
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Results
Feature selection with analysis of SNP association with RA and SLE

A GWAS was to identify SNPs associated with RA and SLE. As denoted in Fig. 1, sev-

eral SNPs at chromosome 6, HLA region; chromosome 7, GTF2I region; and 12,

CDKN1B region differed considerably between patients with RA and SLE. Genetic vari-

ants with a Bonferroni-corrected, genome-wide significance threshold of 5 × 10-8 were

selected for ML models.

Fig. 1 Manhattan plot of the differences in SNPs between patients with RA and SLE. A whole genome and
(B) detailed HLA region. Blue- and red-dotted lines indicate thresholds for significance (p < 1 × 10−5 and p
< 5 × 10−8, respectively). Xaxis: chromosome number; yaxis: log10

P; SNP: single nucleotide polymorphism; RA:
rheumatoid arthritis; SLE: systemic lupus erythematosus
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ML model performance in genomic prediction of RA and SLE

Table 1 details the ROC analysis of ML model performance with 5-fold cross-

validation in the genomic prediction of RA and SLE. Compared with the LR model

(AUC = 0.8247, p < 0.001), the RF approach (AUC = 0.9844, p < 0.001), SVM

(AUC = 0.9828, p < 0.001), GTB approach (AUC = 0.9932) and XGB approach

(AUC = 0.9919, p = 0.008) all exhibited significantly more accurate predictive per-

formance on the testing set (Fig. 2 A). The PR curve of the five ML models was

also presented in Fig. 2B. The GTB model still have the highest performance in

average precision (AP = 0.9938) on the testing set. In both 5-fold cross-validation

and bootstrapping validation, we can get the similar result with 95% of confidence

interval (CI) in AUC (Supplementary Table 2).

Top 20 ranked genes and HLA alleles for predicting RA and SLE

Table 2 lists the top 20 ranked genes for the prediction of RA and SLE in terms of fea-

ture importance. We discovered that HLA DQA1 (rs6906021), DRB1 (rs9271858),

DQB1 (rs9273505), and DRB5 (Affx-28,477,341 and rs4999342) were the top five rank-

ing SNPs in the GTB model. Moreover, the top five ranking SNPs in the XGB model

were HLA DQA1 (rs34965214, rs3104376, rs1391371, and rs9273322) and DRB1

(rs9271662). To investigate the top 20 ranking HLA alleles as features for genomic pre-

diction of RA and SLE, GTB and XGB models with 5-fold cross-validation were per-

formed (Supplementary Table 3). The AUCs for GTB and XGB models were 0.6348

and 0.6382, respectively.

SHAP value–based interpretation of prediction models

To identify attributable SNPs that had the greatest effect on the prediction model, we

produced a SHAP summary graph of the top 20 SNPs in the GTB and XGB models

(Fig. 3 A, B). According to the prediction model, as the SHAP value of an SNP (shown

on x-axis) increases, the probability of a person with this SNP having RA is higher. The

lower the x-axis SHAP value of a genetic variant, the more likely SLE development be-

comes. We discovered that the top 20 genes by feature importance and SHAP values

included HLA class II alleles.

Table 1 Comparison of machine learning model performance with 5-fold cross-validation

Classifier Accuracy Precision Sensitivity Specificity F1 score AUC

Logistic Regression 0.7610 0.7385 0.7801 0.7430 0.7587 0.8451

Random Forest 0.9402 0.9376 0.9384 0.9420 0.9379 0.9871

Support Vector Machine 0.9373 0.9310 0.9398 0.9352 0.9353 0.9829

Gradient Tree Boosting 0.9635 0.9579 0.9668 0.9606 0.9623 0.9953

Extreme Gradient Boosting 0.9618 0.9544 0.9668 0.9573 0.9606 0.9948

RA: rheumatoid arthritis; SLE: systemic lupus erythematosus; AUC: area under the curve
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Comparisons of imputed HLA alleles between patients with RA and SLE

Because HLA class II alleles seem to be crucial in the prediction model of RA and SLE,

we compared the imputed HLA DQA1, DQB1, and DRB1 alleles with an AF of ≧5%

(Table 3). We ascertained that HLA-DQA1*05:01 (OR = 2.35, p = 1.48 × 10-21),

DQB1*0201 (OR = 2.35, p = 2.44 × 10-21), and DRB1*0301 (OR = 2.34, p = 2.87 × 10-21)

were associated with SLE. By contrast, HLA-DQA1*03:03 (OR = 0.44, p = 2.84 × 10-29),

DQB1*0401 (OR = 0.43, p = 5.20 × 10-29), and DRB1*0405 (OR = 0.41, p = 2.51 × 10-33)

were more frequently observed in patients with RA.

Discussion
In this study, we developed and validated an innovative genomic prediction model by

using SNP array data of 2,094 patients with RA and 2,190 patients with SLE to predict

RA and SLE. We discovered that ML models of XGB, GTB, SVM, and RF outper-

formed LR, with GTB demonstrating the highest AUC values among the models we

tested. The majority of top-ranking genes by feature importance were at the HLA

DQA1, DRB1, and DQB1 regions. We also tested the imputed HLA alleles associated

with RA and SLE. Our results elucidated the role of HLA in the pathophysiology of RA

and SLE and indicated the feasibility of using ML prediction models for the classifica-

tion of systemic autoimmune rheumatic diseases.

Previous GWASs have demonstrated that several SNPs are associated with both RA

and SLE [31]. For example, rs7574865 in STAT4 and rs2476601 in PTPN22 are well-

known genetic variants associated with both diseases [32, 33]. In patients with RA,

rs6457617 and rs9275406 in HLA-DQA1; rs9275406 and rs12525220 in HLA-DQB1;

and rs6457620, rs615672, rs7765379, rs660895, rs13192471, rs6910071, rs9268839,

rs9271348, rs3104413, rs9269234, rs9268839 and rs112112734 in HLA-DRB1 were

common genetic loci [31]. Previous studies had reported rs2647012 and rs2187668 in

Fig. 2 Data Visualization of machine learning model performance. A ROC curve and (B) PR curve.
Comparisons of genomic prediction performances of RA and SLE by machine learning models. RA:
rheumatoid arthritis; SLE: systemic lupus erythematosus; LR: logistic regression; RF: random forest; SVM:
support vector machine; GTB: gradient tree boosting; XGM: extreme gradient boosting; AUC: area under
the curve

Chung et al. BioData Mining           (2021) 14:52 Page 7 of 13



HLA-DQA1; rs3129716 and rs114092478 in HLA DQB1; and rs9271100, rs9270984,

and rs3135394 in HLA DRB1 to be associated with SLE [31]. However, such GWASs

primarily compared genetic variants in patients with RA or SLE with those in healthy

controls. Our study was the first to compare SNPs associated with RA and SLE in a

large study cohort consisting of patients with RA and SLE and without healthy controls.

We demonstrated that SNPs in HLA DRB1, DQA1, and DQB1 regions markedly influ-

enced susceptibility to RA and SLE. HLA-DR and HLA-DQ are arrayed on the surface

of antigen-presenting cells with different coding variations in the peptide-binding

groove [34]. Our results indicated that antigen-presenting cells might be involved in

disease pathogenesis, reacting differently in patients with RA and those with SLE.

ML and AI applications in the context of autoimmune diseases classification have

been widely investigated [31]. However, the most prevalent ML methods in prior RA

and SLE studies have been LR, RFs, and SVM [31]. GTB and XGB have rarely been

used in related investigations, but our results indicate the remarkable prediction per-

formance of these two models in the classification of RA and SLE. GTB is a tree-based

ensemble model that combines numerous weak classifiers to provide accurate classifi-

cation [35]. It is a marked improvement on the classification performance of RF models

and can avoid the problem of multi-collinearity [24, 25]. Furthermore, XGB is an

Table 2 Top 20 ranking genes by feature importance for predicting RA and SLE in proposed
models

Model Gradient tree boosting Extreme gradient boosting

Rank SNP Gene
Symbol

Feature
Importance

SNP Gene
Symbol

Feature
Importance

1 rs6906021 HLA-DQA1 0.1205 rs34965214 HLA-DQA1 0.0998

2 rs9271858 HLA-DRB1 0.1030 rs3104376 HLA-DQA1 0.0562

3 rs9273505 HLA-DQB1 0.0895 rs1391371 HLA-DQA1 0.0557

4 Affx-
28,477,341

HLA-DRB5 0.0848 rs9271662 HLA-DRB1 0.0494

5 rs4999342 HLA-DRB5 0.0741 rs9273322 HLA-DQA1 0.0387

6 rs41269945 HLA-DQA1 0.0452 rs1049072 HLA-DQB1 0.0380

7 rs3104376 HLA-DQA1 0.0372 rs9274605 HLA-DQB1 0.0359

8 rs9274605 HLA-DQB1 0.0348 rs9273370 HLA-DQA1 0.0345

9 rs2395533 HLA-DQA1 0.0323 rs17843604 HLA-DQA1 0.0337

10 rs9274655 HLA-DQB1 0.0317 rs9271850 HLA-DRB1 0.0269

11 rs9271662 HLA-DRB1 0.0239 rs9271588 HLA-DRB1 0.0241

12 rs3830059 HLA-DQB1 0.0224 rs9271425 HLA-DRB1 0.0220

13 rs200716952 HLA-DQB2 0.0207 rs4999342 HLA-DRB5 0.0211

14 rs1003879 C6orf10 0.0201 rs9469219 HLA-DQB1 0.0210

15 rs9271489 HLA-DRB1 0.0194 rs9271858 HLA-DRB1 0.0177

16 rs9272461 HLA-DQA1 0.0166 rs9275087 HLA-DQB1 0.0173

17 Affx-
28,498,545

HLA-DQB1 0.0137 rs17843619 HLA-DQA1 0.0165

18 rs2395111 NOTCH4 0.0135 rs17843605 HLA-DQA1 0.0162

19 rs1049072 HLA-DQB1 0.0124 rs9273505 HLA-DQB1 0.0159

20 Affx-
28,494,632

HLA-DQA1 0.0121 rs2894249 C6orf10 0.0158

SNP: single nucleotide polymorphism
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optimized type of GTB model and is more efficient than other conventional models; in

particular, it has the ability to prevent overfitting through regularization [24]. There-

fore, although all four non-LR ML models had similar AUC values, GTB and XGB rep-

resented the most suitable models in this study considering that the overfitting

problem and non-linear issues may arise in genomic data.

GWAS data can be used to predict phenotypes and risks of disease progression. Joo

et al. investigated genome-wide SNPs among 374 Korean patients with RA by using

SVM classifiers in the prediction of radiographic progression [14]. With the combin-

ation of clinical information and GWAS data, an AUC value of 0.7481 AUC was

achieved for predicting structural damage in the context of RA [14]. In addition, boot-

strap aggregation in the alternating decision tree method was used to detect genetic

variants associated with SLE by using GWAS data from 1,846 Caucasian patients with

lupus and 1,825 ethnically similar controls [15]. However, our study is the first to com-

pare SNPs from a large Taiwanese cohort of patients with RA and SLE by using ML

methods. Although our result may not be extrapolatable to non-Asian ethnicities, we

contend that our study has provided a robust model for genomic prediction of auto-

immune diseases with an optimal AUC of >0.99.

Producing an explainable AI model and correctly interpreting ML prediction models

are always challenging. We are the first to use SHAP values in ML studies using GWAS

data to provide consistent and attributable results of genetic variations associated with

RA and SLE. The advantage of using a SHAP plot is that it helps in the interpretation

of black box in ML-associated prediction models. We also observed that SNPs identi-

fied by GTB models by using a SHAP summary plot were generally also identified by

the XGB model. Future studies to are warranted to provide a mechanistic explanation

of how these HLA loci contribute to the development of RA and SLE.

Fig. 3 SHAP summary graph of top 20 SNPs of machine learning models. A) gradient tree boosting and (B)
extreme gradient boosting models. As the SHAP value of an SNP (x-axis) increased, the probability of RA
increased; the lower is the x-axis SHAP value of an SNP, the higher is the probability of SLE development.
Each dot on the SHAP plot was calculated using the prediction model for each SNP’s attribution value for a
participant. Dots are illustrated according to the feature values of each participant and accumulate vertically
to indicate density. Blue represents 0/0 and red represents 0/1 or 1/1. SNP: single nucleotide polymorphism;
SHAP: SHapley Additive exPlanation
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Our studies suggested that the genetic variants of HLA-DQA1, DQB1, and DRB1 are

associated with RA and SLE. Consistent with a prior report that DRB1*15:01 and

DQB1*06:02 were the most important haplotype in East Asian patients with SLE [36],

we confirmed that DRB1*15:01 and DQB1*06:02 were associated with SLE (OR = 1.37

and 1.44, respectively). HLA-DRB1 variants were demonstrated by Kim et al. to better

account for the link between major histocompatibility complex and susceptibility to RA

and SLE in the Korean population than other HLA DRB variants [37]. A GWAS of a

native American group revealed that HLA-DQA1*01:02, DQA1*05:01, DQB1*06:02,

DQB1*02:01, DRB1*15:01, and DRB1*03:01 were genetic variants associated with the

development of SLE [38], and this result was supported by our findings. By contrast,

HLA-DQA1*05:05 and DQB1*03:01 were protective alleles in the native American

population but not in the Taiwanese population, which might be explained by the study

design and differences in ethnicity. Nonetheless, we maintain that ML models can iden-

tify key genetic variations for classification of systemic autoimmune rheumatic diseases.

Although this was the first study to establish prediction models of RA and SLE using

GWAS data, five ML models, and SHAP values, some limitations were present. First,

our SNP data came from a single center. External validation is required to confirm our

Table 3 Associations of imputed HLA alleles with SLE compared with RA

SLE RA 95% CI

HLA alleles count % count % p value OR lower upper

DQA1*01:02 877 20.0 655 15.7 1.28E-07 1.35 1.21 1.51

DQA1*01:03 516 11.8 365 8.7 3.13E-06 1.40 1.21 1.61

DQA1*03:01 252 5.8 342 8.2 1.07E-05 0.69 0.58 0.81

DQA1*03:02 662 15.1 736 17.5 1.99E-03 0.83 0.74 0.94

DQA1*03:03 300 6.9 598 14.3 2.84E-29 0.44 0.38 0.51

DQA1*05:01 420 9.6 181 4.3 1.48E-21 2.35 1.96 2.81

DQA1*05:05 437 10.0 401 9.6 5.36E-01 1.05 0.91 1.21

DQA1*06:01 312 7.3 387 9.3 3.35E-04 0.75 0.64 0.88

DQB1*02:01 414 9.5 178 4.3 2.44E-21 2.35 1.96 2.82

DQB1*03:01 833 19.0 858 20.6 8.55E-02 0.91 0.82 1.01

DQB1*03:02 243 5.6 321 7.7 7.61E-05 0.71 0.6 0.84

DQB1*03:03 684 15.6 763 18.2 1.26E-03 0.83 0.74 0.93

DQB1*04:01 268 6.1 554 13.2 5.20E-29 0.43 0.37 0.5

DQB1*05:02 515 11.7 431 10.3 3.10E-02 1.16 1.01 1.33

DQB1*06:01 647 14.8 468 11.2 7.90E-07 1.38 1.21 1.56

DQB1*06:02 248 5.7 167 4.0 3.14E-04 1.44 1.18 1.77

DRB1*03:01 415 9.5 179 4.3 2.87E-21 2.34 1.96 2.81

DRB1*04:05 287 6.6 607 14.4 2.51E-33 0.41 0.36 0.48

DRB1*08:03 484 11.1 336 8.0 2.00E-06 1.42 1.23 1.65

DRB1*09:01 665 15.2 750 17.8 6.55E-04 0.82 0.73 0.92

DRB1*11:01 291 6.6 296 7.1 4.34E-01 0.94 0.79 1.11

DRB1*12:02 321 7.3 387 9.3 1.28E-03 0.78 0.67 0.91

DRB1*15:01 476 10.9 341 8.2 1.82E-05 1.37 1.19 1.59

DRB1*16:02 310 7.1 246 5.9 2.42E-02 1.22 1.03 1.45

By Pearson’s chi-squared test. RA as a reference group. HLA: human leukocyte antigen; SLE: systemic lupus
erythematosus; RA: rheumatoid arthritis; OR: odds ratio; CI: confidence interval
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findings and avoid overfitting. Second, only genomic data were used in this study. Mul-

tiomics data sets would theoretically provide improved predictive performance. How-

ever, the study sample size was large, and the AUC of ML algorithms was robust.

Finally, a cohort of healthy individuals was not included in the analysis. The SNPs iden-

tified in this study by ML models revealed the most significant differences between RA

and SLE, and thus, our study design is most relevant to clinical scenarios where a

symptomatic patient seeks medical attention and needs to be classified and managed

quickly and correctly.

Conclusions
We established ML methods for genomic prediction of RA and SLE using GWAS data

sets. We demonstrated that SNPs at HLA-DQA1, HLA-DQB1, and HLA-DRB1 were

crucial genetic variations that differentiate RA and SLE with robust performance. Fu-

ture research is required to confirm our results and explore the mechanistic explana-

tions for them.
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