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Abstract

Background: Cancer is one of the main causes of death worldwide. Combination
drug therapy has been a mainstay of cancer treatment for decades and has been
shown to reduce host toxicity and prevent the development of acquired drug
resistance. However, the immense number of possible drug combinations and large
synergistic space makes it infeasible to screen all effective drug pairs experimentally.
Therefore, it is crucial to develop computational approaches to predict drug synergy
and guide experimental design for the discovery of rational combinations for
therapy.

Results: We present a new deep learning approach to predict synergistic drug
combinations by integrating gene expression profiles from cell lines and chemical
structure data. Specifically, we use principal component analysis (PCA) to reduce the
dimensionality of the chemical descriptor data and gene expression data. We then
propagate the low-dimensional data through a neural network to predict drug
synergy values. We apply our method to O’Neil’s high-throughput drug combination
screening data as well as a dataset from the AstraZeneca-Sanger Drug Combination
Prediction DREAM Challenge. We compare the neural network approach with and
without dimension reduction. Additionally, we demonstrate the effectiveness of our
deep learning approach and compare its performance with three state-of-the-art
machine learning methods: Random Forests, XGBoost, and elastic net, with and
without PCA-based dimensionality reduction.

Conclusions: Our developed approach outperforms other machine learning
methods, and the use of dimension reduction dramatically decreases the
computation time without sacrificing accuracy.
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Background
Cancer is the second leading cause of death globally and is a critical cause of economic

burden throughout the world. According to estimates from the American Cancer Soci-

ety, there were 17.0 million new cancer cases and 9.5 million cancer deaths worldwide

in 2018 [1]. By 2040, new cancer cases and deaths are expected to grow to 27.5 million

and 16.3 million [1]. The financial costs of cancer research are also increasing, primarily

because the development of new pharmaceutical anticancer agents is labor- and cost-

intensive due to the requirements for initial in vitro and in vivo experimentation and

subsequent clinical trials to receive FDA approval [2–4]. Previous studies have sug-

gested that it costs, on average, $2.8 billion for a pharmaceutical company to bring a

newly designed drug to market, with the process taking up to 15 years [3, 4]. Therefore,

it is important to find more efficient and economically feasible strategies to discover

cancer treatments.

Compared with monotherapy treatments, combination drug therapy is more ef-

fective for treating complex diseases such as cancer, acquired immunodeficiency

syndrome (AIDS), asthma, and hypertension [5–9]. Multi-agent therapies are pref-

erable to monotherapy for many reasons. First, combination drug therapies can

reduce host toxicity and adverse side effects since doses of drugs comprising

multi-agent therapies are usually lower than doses of single drugs [10]. Addition-

ally, drug combination therapies can overcome acquired drug resistance [11, 12].

As a result, combination therapies are rapidly becoming standard practice in can-

cer treatment. While there have been clear successes in this area, major chal-

lenges exist in finding synergistic combinations of drugs.

High-throughput screening using cancer cell lines is crucial to identify effective can-

cer combination therapies [13–16]. In these screens, drug pairs at different concentra-

tions are applied to a cell line (typically a cancer line), and the combined effect of the

drug pair is measured [14–16]. While in vitro or in vivo drug screening experiments

are the standard method to discover synergistic drug combinations, the enormous

number of possible drug combinations and economic and technical burdens make this

process slow and expensive [8]. Exhaustively testing the huge number of possible com-

binations is impractical and motivates the need for computational approaches for pre-

dicting drug synergies.

Throughput experimental methods depend on computational modeling to

measure and predict synergy. A wide variety of machine learning methods are

currently emerging as powerful tools for efficiently exploring the large synergistic

space with chemical, biological, and molecular data from cancer cell lines.

Previous methods vary and include systems approaches and algorithms for the

discovery of combinatorial therapies [17], mixed-integer linear programming

[18], kinetic models [19], and machine learning approaches such as Naive Bayes-

ian methods [20], Random Forests [21], and deep learning [22]. While these

methods show promise, each has important limitations. For example, many sys-

tems biology and kinetic models are restricted to using information only from

certain pathways based on hypotheses related to the mechanism of action, which

are increasingly understood to be inaccurate [23]. Other machine learning ap-

proaches have limitations due to the exponential increase in the dimensionality

of data [24].
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Deep learning is a subfield of machine learning inspired by the neural networks that

define the structure and function of the brain [25, 26]. Deep learning benefits from and

performs well on large datasets, outperforming many traditional machine learning

methods [25]. It has revolutionized the fields of computer vision [27], speech recogni-

tion [28], and natural language processing [29] and was recently used to predict syner-

gistic drug combinations due to its ability to extract important features in large

datasets [22]. However, the large number of features included in deep learning models

significantly increases the associated computational complexity and time costs.

Additionally, optimizing the large number of parameters in such models may cause

overfitting problems although the magnitude and impact of overfitting are highly

context-specific in regard to bias and variance tradeoff [30, 31].

To address these concerns, we developed a new deep learning approach with

dimensionality reduction to predict synergistic drug combinations by integrating

gene expression profiles of cell lines and chemical structure data. Specifically, we

used principal component analysis (PCA) to reduce the dimensionality of chem-

ical descriptor data and gene expression data. PCA is one of the oldest and most

extensively used approaches to reduce the dimensionality of large data sets by

transforming a large set of variables into a smaller one that retains most of the

information in the large set [32]. PCA works by finding the orthogonal vectors in

a dataset that account for the greatest amount of variation, where each orthog-

onal vector is a linear combination of all the features in the original dataset. Sub-

sequently, we propagated the low-dimensional data through the neural network

to the linear output unit (drug synergy values). Figure 1 outlines the process of

PCA-initialized deep learning for drug synergy prediction.

While PCA relies on linear combinations for dimensionality reduction, neural

network-based reduction approaches can also be considered. We considered an al-

ternate dimensionality reduction technique through an autoencoder to impose a

bottleneck in the network, which forces a compressed knowledge representation of

the original input [33]. Autoencoders can be considered a nonlinear generalization

of PCA [34]; whereas PCA attempts to discover a lower-dimensional hyperplane

that describes the original data, autoencoders are capable of learning nonlinear

manifolds (in simple terms, a continuous, non-intersecting surface). We compared

the use of PCA with an autoencoder strategy for dimensionality reduction within

our framework.

As part of the current study, we evaluated our method on a range of simulated

datasets and directly compared it with three other machine learning models. Add-

itionally, we evaluated our method on two seminal drug-combination high-

throughput screening datasets. Recently, O’Neil et al. from Merck & Co. performed

a large-scale high-throughput drug-screening study with more than 20,000 drug

synergy measurements [15]. This dataset comprises 23,062 samples, where each

sample is one of 583 two-drug combinations tested in 39 cancer cell lines from

different tissues of origin [15]. The second dataset was provided by the

AstraZeneca-Sanger Drug Combination Prediction DREAM Challenge [14]. The

DREAM Challenge data consists of 11,576 experimentally tested drug combinations

of 118 targeted drugs on 85 cancer cell lines [14]. Molecular data for untreated cell

lines, as well as drug chemical information, are also provided [14].
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Methods
Experimental drug combination screening dataset

We used O’Neil’s high-throughput drug-combination screening data to train our

models. Each of the dataset’s 23,062 samples consists of two compounds and a cell

line [15]. We tested each of the dataset’s 583 distinct combinations against 39 hu-

man cancer cell lines derived from seven tissue types, namely lung, breast, skin,

large intestine, pleura, prostate, and ovary. Unlike other high-throughput screening

data, these data include unbiased cell lines from sites such as the breast, lung, and

colon. The choice of drugs is also unbiased; drugs can be FDA-approved, chemical

compounds used in clinical trials, chemotherapy drugs, or targeted therapy drugs.

The pairwise combinations were constructed from 38 diverse anticancer drugs, 22

of which were tested exhaustively in combination with each other only (the ‘ex-

haustive’ set) while the remaining 16 were tested only in combination with drugs

in the exhaustive set (the ‘supplemental’ set) . We assayed each sample according

to a 4 × 4 dosing regimen in quadruple replicate to measure the rate of cell growth

relative to a drug-free control after 48 h.
Additionally, we tested our model with a dataset from the AstraZeneca-Sanger Drug

Combination Prediction DREAM Challenge [14]. The approximately 11,500 synergy

scores provided by the DREAM consortium were experimentally assessed. We mea-

sured the synergistic effects through combinatorial in vitro drug screening of 85 cancer

Chemical features Genomic features

4802 Dimensions 3963 Dimensions

Principal component analysis

58 Dimensions 49 Dimensions

Chemical features Genomic features

Synergy Score

Fig. 1 Flowchart of PCA-initialized deep learning for drug synergy prediction. PCA reduced the
dimensionality of the chemical descriptor and gene expression data. The low-dimensional data were then
propagated through the neural network to determine the drug synergy values
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cell lines and 118 anonymous chemical compounds. The cancer cell lines come from

breast (n = 34), lung (n = 22), urinary tract (n = 14), gastrointestinal tract (n = 12), male

genital system (n = 2), and lymphoma (n = 1) tissue. In each drug screening experiment,

we tested five nontrivial doses of each drug. We summarized the observed drug re-

sponses in a 6 × 6 matrix. We measured the efficacy of the drugs by the percentage of

the cells remaining after drug treatment compared with the untreated cells.

Synergy score

We employed the Combenefit tool [35] to quantify the synergy level between a drug

pair and a cancer cell line using dose-response data. Combenefit enables model-based

quantification of drug combinations by comparing additive and actual effects for given

dose-response data. This tool calculates a synergy score, which is the difference be-

tween the Loewe model-based expected additive effect and the actual effect of the drug

combination. If the actual effect of a drug combination is greater than the additive ef-

fect, the synergy score is higher than zero; otherwise, it is less than zero. A higher syn-

ergy score denotes greater synergy of the corresponding drug combination [36]. We

calculated Loewe additivity values using the batch processing mode of Combenefit [37]

and subsequently averaged the replicates, which resulted in a set of 22,737 (compound,

compound, cell line, synergy value) quartets.

Chemical descriptors and genomic features

For O’Neil’s high-throughput drug-combination screening data [15], drug chemical infor-

mation and cell-line gene expression profiles were used as input features for the analysis.

Approximately 46,000 drug pairs are described by chemical “fingerprints”. Computed by

several online tools, these fingerprints describe the structure of the drug pairs, including

charge, connectivity, and local features such as Morgan fingerprints [22]. We reduced the

chemical feature space by filtering out features with zero variance. The final set of chem-

ical features consists of 1309 extended connectivity fingerprints (ECFP), 6802 physico-

chemical features, and 2276 toxicophore features. Approximately 4000 genomic features

represent the gene expression of the cell line on the drug-pair synergy scores that we ex-

perimentally measured. We measured gene expression levels on an Affymetrix Human

Genome U219 array plate using Affymetrix HG-U219 arrays accessed from ArrayExpress

(http://www.ebi.ac.uk/arrayexpress) with accession number E-MTAB-3610. The final gene

expression dataset contains 3984 genomic features. In summary, the input dataset com-

prises 22,737 samples, and each sample has 8846 chemical or genomic features. The target

is drug-pair synergy scores, so we combined these datasets to generate a set of 22,737

(compound, compound, cell line, synergy value) quartets.

For the DREAM Challenge data [14], the DREAM consortium provided drug target

information and physicochemical properties of 118 drugs as well as Genomics of Drug

Sensitivity in Cancer (GDSC) gene expression data from Affymetrix Human Genome

U219 array plates (E-MTAB-3610).

Dimensionality reduction

The high dimensionality of the feature space is the main difficulty encountered

when constructing a model to predict synergism. To address this, the number of
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genomic features such as mutations and expressions of more than 10,000 genes

need to be substantially reduced. To accomplish this, we reduced the feature di-

mensions with PCA, a technique to decrease the dimensionality of a dataset com-

prising multiple variables with light or heavy correlation while retaining the

variation present to the maximum extent. In this study, we implemented PCA in

the scikit-learn Python package [38] and reduced the dimension of the input data-

sets while retaining 99% of the variance. The features for each sample are repre-

sented as a 107-dimension vector. Additionally, we compared the performance of

PCA with autoencoder, another popular dimensionality reduction technique, also

implemented in the scikit-learn Python package [38]. While PCA is a linear reduc-

tion approach, autoencoder enforces constraints on the neural network with non-

linear activation functions. If we were to construct a linear network (i.e., without

the use of nonlinear activation functions at each layer), we would observe a similar

dimensionality reduction approach as in PCA.

Feedforward neural network

The feedforward neural network models were trained on a preprocessed dataset using

Keras, an open-source neural network library written in Python [39]. Feedforward

neural networks represent a powerful deep learning method and are gaining popularity

due to their superior accuracy when trained with large data. The difficult process of

identifying new drugs includes many challenges for which deep learning is perfectly

suited, for example, large amounts of available data and the technique’s ability to ad-

dress complex tasks [40], including non-linear interactions in the ‘omics' space [41].

The feedforward neural network maps input vectors representing samples to a single

output value—the synergy score. The samples are described by concatenated vectors

that include the features of two drugs and one cell line. The neurons in the input layer

receive the gene expression values of the cell line and chemical descriptors of both

drugs as inputs. The information is then propagated through the layers of the network

until reaching the output unit, which produces the predicted synergy score. To deter-

mine the best hyperparameters for each model, we tuned the models using grid search.

Table 1 shows the hyperparameter settings considered for the feedforward neural net-

work. For data normalization, we employed three types of input normalization: (1)

standardizing all inputs to zero mean and unit variance, (2) standardizing and applying

the hyperbolic tangent, and (3) standardizing as in (1), applying the hyperbolic tangent

as in (2), and standardizing again as in (1). The hidden layers apply rectified linear acti-

vation, and the output layer uses linear activation. The mean squared error (MSE) is

the objective function that is minimized.

Table 1 Hyperparameter settings considered for the feedforward neural network

Hyperparameter Values considered

Preprocessing norm; norm+tanh; norm+tanh+norm

Hidden units [107, 107]; [54, 54]; [27]; [107,54]; [54,27]; [54, 54, 54]; [27]; [54, 27, 13]; [107, 54, 27]

Learning rates 10−2; 10−3; 10−4; 10− 5

Dropout no dropout; input: 0.3, hidden: 0.5
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Comparison of the feedforward neural network with other machine learning methods

We compared the performance of the feedforward neural network with the elastic net

[42], Random Forests [43], and eXtreme Gradient Boosting package (XGBoost) [44]

methods used in previous studies for drug synergy prediction. These methods represent

two of the most commonly used machine learning algorithms—regularization algo-

rithms and ensemble algorithms—both of which have good performance when solving

regression problems.

Elastic net linear regression uses the penalties from the lasso and ridge techniques to

regularize regression models [42]. The elastic net technique addresses the shortcomings

of other techniques to improve on the regularization of statistical models. To eliminate

the limitations of lasso, the elastic net method includes a quadratic expression (||β||2)

in the penalty, which, when used in isolation, becomes ridge regression [42]. The quad-

ratic expression in the penalty elevates the loss function toward convexity. The elastic

net method draws on the best aspects of lasso and ridge regression and has good per-

formance for highly correlated variables.

The Random Forests method used for modeling predictions and behavior analysis is

built on decision trees [43]. Multiple decision trees represent a distinct instance of the

data input into the random forest. The technique individually considers instances,

selecting the instance with the majority of votes as the prediction [43]. The technique

is not computationally expensive, does not require a GPU to finish training, and gener-

ally produces a robust model. Compared with Random Forests, neural networks require

much more data and are computationally more expensive but usually perform better.

XGBoost is a decision-tree-based ensemble machine learning algorithm that employs

a gradient boosting framework [44]. XGBoost supports objective functions that include

regression, classification, and ranking. In prediction problems, neural networks tend to

outperform other algorithms and frameworks. However, for small to medium struc-

tured/tabular data, decision-tree-based algorithms such as XGBoost are considered the

best option [44].

In this study, we consider different numbers of estimators (trees) and tune the num-

ber of features in each split for Random Forests. We also consider different values for α

and the L1 ratio during elastic net hyperparameter selection [42] and different learning

rates for XGBoost [44]. Tables 2, 3 and 4 summarize the hyperparameters considered

for these methods.

We implemented these three machine learning methods in scikit-learn, a machine

learning library for Python [38]. We used grid search to select the best hyperpara-

meters. We compared the predictive performance of the feedforward neural network,

elastic net [42], Random Forests [43], and XGBoost [44] in terms of MSE, P-values, and

Pearson’s r. In addition to implementing the machine learning methods without dimen-

sionality reduction, we compared each method using data reduced using PCA to

Table 2 Hyperparameters considered for elastic net

Hyperparameter Values considered

Preprocessing norm; norm+tanh; norm+tanh+norm

α 0.1; 1; 10; 100

L1 ratio 0.25; 0.5; 0.75
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evaluate whether performance differences are attributable to the dimensionality reduc-

tion step or to the performance of the respective machine learning methods.

Results
Synergy score

We used O’Neil’s high-throughput drug combination screening data to train our

models [15]. We employed the Combenefit tool to quantify the synergy level between

two drugs and a cancer cell line using dose-response data. If the actual effect of a drug

combination is greater than the additive effect, the synergy score is greater than zero;

otherwise, it is less than zero. A higher synergy score denotes greater synergy of the

corresponding drug combination. Figure 2 is a histogram of the distribution of synergy

scores across all drug combinations. The average synergy score is 4.52, and the stand-

ard deviation is 20.65. The synergy scores obtained using Combenefit are target vari-

ables in the deep learning model used in the study.

Architecture of the feedforward neural network

The architecture of the deep learning model was determined by the hyperpara-

meter selection procedure. This procedure identified that tanh normalization, com-

prising standardization and then a hyperbolic tangent followed by a second

standardization, performed the best. The model has conic layers with good per-

formance, possibly due to their regularizing effect. Fewer parameters are available

in the higher layers, which forces the model to generalize by constructing only the

most important representations of chemical properties of the input drug combin-

ation. Additionally, the model had better performance with a large number of units

in the first layer (107). A smaller learning rate (10− 5) and dropout regularization

were essential for learning networks. In summary, the model has a conic architec-

ture comprising two hidden layers, with 107 neurons in the first layer and 54 in

the second. It uses tanh input normalization and has a learning rate of 10− 5, an in-

put dropout rate of 0.2, and a hidden layer dropout rate of 0.5.

Predictive performance

Figure 3 is a scatter plot that visualizes the correlation of the observed vs. the predicted

synergy scores. The correlation coefficient is 0.761. We also analyzed the performance

Table 3 Hyperparameters considered for Random Forests

Hyperparameter Values considered

Preprocessing norm; norm+tanh; norm+tanh+norm

Number of estimators (decision trees) 128; 512; 1024; 2048

Features considered Log2(# of features); sqrt(# of features); auto

Table 4 Hyperparameters considered for XGBoost

Hyperparameter Values considered

Preprocessing norm; norm+tanh; norm+tanh+norm

Number of estimators (decision trees) 128; 512; 1024; 2048

Learning rates 1; 0.1; 0.01
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of the deep learning approach across cell lines and drugs by determining the re-

spective rank correlation coefficients. The prediction accuracy varies significantly

among cell lines and drugs, which may be due to the distinct mechanisms of dif-

ferent drug pairs’ synergistic/antagonistic effects on specific cell lines. As shown in

Fig. 4B, for individual cell lines, the rank correlation coefficients vary from 0.56 to

0.81. The rank correlation coefficient is < 0.6 for three cell lines; for more than

55% of the cell lines, the correlation coefficient is > 0.7. As shown in Fig. 4A, the

MSE varies from 61 to 526. Similarly, three cell lines have MSEs > 400, and for

50% of the cell lines, the correlation coefficient is < 0.7. As shown in Fig. 5B, the

rank correlation coefficients for individual drugs range from 0.55 to 0.86. Two

drugs have rank correlation coefficients < 0.6, and approximately 67% of the drugs

have rank correlation coefficients > 0.7. As shown in Fig. 5A, the MSEs for
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Fig. 2 Distribution of synergy scores across all drug combinations. The synergy scores are Loewe additivity
values calculated using Combenefit. If the effect of a drug combination is greater than the additive effect,
the synergy score is > 0; if the effect of a drug combination is less than the additive effect, the synergy
score is < 0. A higher synergy score denotes greater synergy of the corresponding drug combination
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Fig. 3 Scatterplot of observed synergy scores vs. predicted synergy scores. For most of the tested cell lines,
the drug pair predicted to be the most synergistic is among the top-five synergistic drug combinations
observed in the experimental data
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individual drugs vary from 64 to 846. Three drugs have MSEs > 400, and approxi-

mately 67% of the drugs have MSEs < 200.

Moreover, we ranked the observed synergy scores and compared them with the

drug pairs with the highest predicted scores. For about 96% of the tested cell lines,

the drug pair predicted to be the most synergistic is among the top-five synergistic

drug combinations according to the experimental data. For around 72.2% of the

cell lines, the model can correctly predict the most synergistic pairs. Table 5 sum-

marizes this result.
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Table 5 Predicted ranks of the best drug pairs

Rank Percentage

1 72.2%

2 8.0%

3 4.1%

4 6.0%

5 5.7%

> 5 4.0%
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Comparison of the PCA and autoencoder methods

PCA and autoencoder are commonly used dimensionality reduction techniques. The

autoencoder method represents a branch of neural networks and attempts to compress

information on the input variables into a reduced dimensional space and then recreate

the input dataset. We compared the performance of the PCA and autoencoder tech-

niques, as outlined in Table 6. The results suggest that for drug synergy prediction,

PCA has better performance than the autoencoder method.

Comparison of the methods with experimental data

We compared the methods’ ability to predict synergy values of novel drug combina-

tions. The models were optimized for MSE, the primary metric, during training. Table 7

reports the performance of the methods based on the MSE, root mean square error

(RMSE), and Pearson correlation coefficient for validation drug combinations (that

were not used in training the model).

As shown in Table 7, deep learning with PCA achieved an MSE of 241.20 while Ran-

dom Forests [43], XGBoost [44], and elastic net [42] achieved relatively inferior per-

formance with MSEs of 319.80, 341.86, and 362.48, respectively. Additionally, as shown

in Table 8, deep learning with PCA achieved similar performance with significantly re-

duced execution time compared with deep learning without PCA, suggesting that it is

necessary to conduct dimensionality reduction before running deep learning.

Additionally, we evaluated the predictive performance of these methods on a separate

dataset from the AstraZeneca-Sanger Drug Combination Prediction DREAM Challenge

[14]. Table 9 shows the results, which exhibit similar trends.

Discussion
In this study, we present a new deep learning approach with dimensionality reduction

to predict synergistic drug combinations by integrating gene expression profiles of cell

lines and chemical structure data. Specifically, we use PCA to reduce the dimensionality

Table 6 Comparison of the PCA and autoencoder methods

Method MSE RMSE Pearson’s r

Deep learning (PCA) 240.6 ± 38.44 15.14 ± 1.82 0.77 ± 0.02

Deep learning 254.6 ± 41.32 15.95 ± 1.57 0.73 ± 0.04

Deep learning (autoencoder) 298.06 ± 48.61 17.26 ± 1.53 0.68 ± 0.02

Table 7 Comparison of methods using O’Neil’s high-throughput drug combination screening data

Method MSE RMSE Pearson’s r

PCA + Deep learning 241.20 ± 43.50 15.46 ± 1.44 0.76 ± 0.03

Deep learning 255.50 ± 49.54 15.91 ± 1.56 0.74 ± 0.04

PCA + Random Forests 319.80 ± 50.62 17.88 ± 1.31 0.55 ± 0.03

PCA + XGBoost 341.86 ± 49.71 18.49 ± 1.42 0.46 ± 0.02

PCA + Elastic net 362.48 ± 52.18 19.04 ± 1.38 0.41 ± 0.02
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of chemical descriptor data and gene expression data and then propagate the low-

dimensional data through the neural network to the linear output unit (drug synergy

values). Our results suggest that deep learning outperforms three other machine learn-

ing methods in terms of predictive accuracy and stability.

The novelty of our proposed work lies in the use of PCA to reduce a dataset’s dimen-

sionality before running deep learning. Among the disadvantages of deep learning is

that it is computationally expensive and requires large amounts of processing power.

Network training converges faster if its inputs are whitened (i.e., linearly transformed

to have zero means and unit variances) and decorrelated. PCA yields decorrelated vec-

tors, and subtracting the mean and rescaling by the standard deviation achieves the

final whitened results, giving the model a boost in terms of training time. Further, leav-

ing uninformative features in an analysis can lead to biased estimates and can decrease

its power. In addition, reducing the dimensionality of the dataset may prevent overfit-

ting issues. According to our results, the predictive performance of deep learning with

PCA is slightly better than deep learning without PCA. However, in terms of execution

time, deep learning with PCA runs 60 times faster than without PCA. Additionally, re-

sults from our comparisons with an autoencoder dimensionality reduction approach

support the superior performance of PCA.

Various directions can improve and extend our PCA-initialed deep learning models.

Most importantly, we plan to apply it to drug combination screens from primary

patient-derived cancer cells. Such a model would better represent clinical cases and

would increase the model’s potential for application in precision medicine. Moreover,

we plan to integrate multi-omics data to improve the model’s predictive performance.

It is important to note that while our approach improves predictive performance in

drug screening data, this does not equate to guarantees in regard to the translatability

of findings [14, 45]. Screening exercises are limited by the drug and chemical class rep-

resentations tested and do not represent or reflect in vivo challenges, which may limit

translation of the findings to practice [45]. Further, pharmacokinetics and pharmaco-

dynamics are not fully modeled by cell lines, which could limit efficacy or result in

drug-drug toxicities [46].

Table 8 Execution time of deep learning (PCA) vs. deep learning

Method Runtime

Deep learning (PCA) 43 min 22 s

Deep learning 46 h 21 min

Table 9 Comparison of methods using the DREAM Challenge dataset

Method MSE RMSE Pearson’s r

PCA + Deep learning 279.30 ± 47.62 16.71 ± 1.30 0.56 ± 0.02

PCA + XGBoost 376.14 ± 51.27 19.39 ± 1.46 0.43 ± 0.04

PCA + Random Forests 395.18 ± 54.39 19.87 ± 1.28 0.39 ± 0.02

PCA + Elastic net 501.29 ± 58.37 22.39 ± 1.58 0.31 ± 0.03
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