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Abstract

Background: Intrinsically disordered proteins possess flexible 3-D structures, which
makes them play an important role in a variety of biological functions. Molecular
recognition features (MoRFs) act as an important type of functional regions, which
are located within longer intrinsically disordered regions and undergo disorder-to-
order transitions upon binding their interaction partners.

Results: We develop a method, MoRFCNN, to predict MoRFs based on sequence
properties and convolutional neural networks (CNNs). The sequence properties
contain structural and physicochemical properties which are used to describe the
differences between MoRFs and non-MoRFs. Especially, to highlight the correlation
between the target residue and adjacent residues, three windows are selected to
preprocess the selected properties. After that, these calculated properties are
combined into the feature matrix to predict MoRFs through the constructed CNN.
Comparing with other existing methods, MoRFCNN obtains better performance.

Conclusions: MoRFCNN is a new individual MoRFs prediction method which just uses
protein sequence properties without evolutionary information. The simulation results
show that MoRFCNN is effective and competitive.

Keywords: Molecular recognition features, Intrinsically disordered proteins,
Prediction, Convolutional neural network

Background
Recently, it has been recognized that many proteins, or regions of proteins, lack

stable 3-D structures under apparently native conditions [1]. These proteins are called

intrinsically disordered proteins (IDPs). Despite the lack of stable 3-D structures, IDPs

have been confirmed to perform a variety of important biological functions, and thus

are correlated with some diseases such as cancer and Alzheimer’s disease [2]. Molecu-

lar recognition features (MoRFs) act as an important type of functional region in IDPs.

MoRFs permit interaction with structured partner proteins and can undergo disorder-

to-order transitions upon interaction [3]. They generally vary in size and are up to 70

residues long, which are located within longer intrinsically disordered regions [4].
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Usually, the unbound forms of MoRFs tend to adopt the conformation in the com-

plex [5]. Because of the flexible structure, MoRFs can combine with their partner

accurately. Therefore, they play important roles in regulatory processes and signal

transduction [6].

MoRFs contain four subtypes: α-MoRFs, β-MoRFs, -MoRFs and complex-MoRFs

[7]. When MoRFs bond, the four subtypes correspond to α-helices, β-strands, irregular

secondary structures and multiple secondary structures respectively. The earliest pre-

diction methods for MoRFs can only predict α-MoRFs, such as α-MoRF-PredI [8] and

α-MoRF-PredII [9] based on neural network. Then, a number of methods have

emerged to predict all kinds of MoRFs. MoRFpred [10] is the most used comparison

prediction method. It contains five types of features which are gained from five disorder

predictions [11–14], evolutionary profiles [15], selected amino acid indices [16], pre-

dicted B-factors [17] and RSA [18]. Then, a linear kernel support vector machine

(SVM) is trained using these features to predict MoRFs. MoRFCHiBi [17] is a representa-

tive method which does not rely on other predictors and evolutionary profiles, but ob-

tains good prediction performance. It trains two SVM based on local physicochemical

sequence properties, and combines the outcomes of them to predict MoRFs. MoRFCHi-

Bi_Light [19] utilizes Bayes rule to combine the scores obtained from ESpritz [20] and

MoRFCHiBi. MoRFCHiBi_Web [21] calculates the initial conservation score (ICS) by in-

corporating three values from the position specific scoring matrixes (PSSM). Then, the

prediction results can be obtained by incorporating the ICS and the scores of ESpritz

and MoRFCHiBi. OPAL [22] is also a combined prediction method. It first designs PRO-

MIS [22] through training a SVM model based on half-sphere exposure, solvent access-

ible surface area and backbone angle information of MoRFs. Finally, OPAL is obtained

by incorporating PROMIS and MoRFCHiBi. Besides, our previous work MoRFMPM [23]

and MoRFMLP [24] also obtain good prediction results. MoRFMPM selects 16 features

and uses minimax probability machine to predict MoRFs. MoRFMLP adds PSSM as evo-

lutionary information to the 16 features selected by MoRFMPM, and trains MLPs separ-

ately for the two kinds of features. Then, their results are fused together to get the final

result.

In this paper, we propose a new individual MoRFs prediction method, MoRFCNN, by

training three convolutional neural networks (CNNs) based on three feature sets re-

spectively, and then connecting them together. The first feature set obtains 16 sequence

properties from our previous work MoRFMPM. The second and third feature sets, de-

rived from MoRFCHiBi, contain 13 and 14 physicochemical sequence properties respect-

ively. A preprocessing scheme is used to improve the effect of each feature set. Three

windows of appropriate length are selected to calculate the features for each residue.

Then, they are arranged into a feature matrix for conforming to the input form of

CNN. The simulation results show that MoRFCNN obtains better performance than

other similar prediction methods.

Results
Datasets

In order to train our prediction method and compare with other methods, we utilize

the widely used datasets that are created by Disfani et al. [10] They collect a lot of
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protein complexes concerning interaction between a protein and a small peptide from

Protein Data Band [25] of March 2008. These complexes are filtered using a series of

principles, and 840 protein sequences are selected. Then, they are divided into TRAIN-

ING and TEST sets which contain 421 and 419 protein sequences respectively. After

that, using the same protocol, Disfani et al. create another test set TESTNEW which

contains 45 protein sequences. To keep up with the comparison methods, we combine

TEST and TESTNEW sets into TEST464. Besides, we also utilize TEST_EXP53 set [17]

as another independent test set. TEST_EXP53 contains 53 protein sequences and is as-

sembled by Malhis et al. The length of MoRFs in TRAINING and TEST464 sets is be-

tween 5 and 25 residues. However, TEST_EXP53 includes 729 MoRF residues from

regions with up to 30 residues and 1703 from regions longer than 30 residues. Table 1

lists the specific information.

Performance evaluation

We mainly utilize ROC (receiver operating characteristic) curve and AUC (the area

under the ROC curve) to evaluate the performance. In addition, to evaluate the per-

formance in detail, we also calculate the FPR (the false positive rate) at different TPR

(the true positive rate). The FPR and TPR can be denoted as FPR = TN/Nnon, TPR =

TP/NMoRF, where Nnon and NMoRF represent the total number of non-MoRFs and

MoRFs residues, TN and TP represent the numbers of accurately predicted MoRFs and

non-MoRFs residues, respectively.

Impact of different windows

In the proposed method, we train three different CNNs based on three feature sets re-

spectively. Based on our previous work, we select three windows for preprocessing with

each feature set. The length 10 and 90 windows are used to highlight the characteristics

of MoRFs and the surrounding environment, and the length 45 window is used to re-

duce the noise impact. In this section, we analyze the effect of increasing the number

of windows on predictive performance. For comparison, we selected 9 windows in step

10 between windows of length 10 and 90. The performance of each CNN with 3 win-

dows and 9 windows in TEST set is shown in Fig. 1. The left figures are the full ROC

curves of them, and the right figures show their ROC curves at low FPR. Since the

number of MoRF residue is much smaller than the number of non-MoRF residue, we

will pay more attention to the prediction performance in the low FPR region.

From Fig. 1, the full ROC curves and the ROC curves at low FPR of CNN1, CNN2

and CNN3 of 3 windows are better than that of 9 windows. The results indicate that

selecting too many windows will greatly increase the redundancy in the information,

Table 1 Data sets used in this paper

Number TRAINING TEST TESTNEW TEST464 TEST_EXP53

Sequences 421 419 45 464 53

MoRFs Residues 5396 5153 626 5779 2432

non-MoRFs Residues 240,588 253,676 36,907 290,583 22,754

Total Residues 245,984 258,829 37,533 296,362 25,186

He et al. BioData Mining           (2021) 14:39 Page 3 of 11



and thus increase the noise in the feature matrix. Therefore, only 3 windows with

length of 10, 45 and 90 are selected for preprocessing and feature matrix calculation.

Impact of different activation functions

In this section, we compare the effects of different activation functions of each convolu-

tional layer on the prediction performance. Figure 2 shows the prediction performance

of ReLu function, sigmoid function and hyperbolic tangent function based on the third

feature sets in TEST set.

From Fig. 2, the full ROC curve and the ROC curve at low FPR of ReLu function are

similar to that of hyperbolic tangent function. However, the performance of sigmoid

function is significantly worse. Thus, we select ReLu function as the activation

function.

Comparing CNNs and their combination

In this section, we compare the prediction performance of each CNN and the predic-

tion performance of combining the prediction results of CNN directly. Figure 3 shows

Fig. 1 The ROC curves of each CNN with 3 windows and 9 windows. The blue curves are the results of 3
windows and the red curves are the results of 9 windows. The left figures are the full ROC curves. The right
figures are the ROC curves at low FPR region
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the prediction performance of them in TEST set. The left figure is the full ROC curves

of them, and the right figure shows their ROC curves at low FPR. The red curves de-

scribe the average values of the prediction results of three CNNs. Through averaging,

prediction performance improves a bit on both the full ROC curve and the ROC curve

at low FPR.

Impact of different convolutional layers

We change the number of convolutional layers to analyze the influence on the predic-

tion performance. Figure 4 shows the prediction performance of the combined results

of three CNNs in TEST set with different convolutional layers.

From Fig. 4, the performance of 3 layers is similar to that of 2 layers. Besides, as the

number of convolutional layers continues to increase, the prediction performance does

not improve. Therefore, we still choose two convolutional layers for prediction.

Comparing with other prediction methods

In this section, we compare our method, MoRFCNN, with MoRFpred, MoRFCHiBi,

MoRFCHiBi_Light and MoRFMPM. Among these methods, MoRFpred is a classical

Fig. 2 The ROC curves of CNN3 with different activation functions. The left figure is the full ROC curves. The
right figure is the ROC curves at low FPR region

Fig. 3 The ROC curves of three CNNs and their combined result. The red curves describe the combination
result. The left figure shows the full ROC curves. The right figure shows the ROC curves at low FPR region
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method, MoRFCHiBi and MoRFMPM are individual methods and do not use evolutionary

information, MoRFCHiBi_Light combines the scores of ESpritz and MoRFCHiBi. Because

MoRFCNN is a new individual MoRFs prediction method without evolutionary informa-

tion, it is compared with similar types of methods. We use TEST464 and TEST_EXP53

sets for the performance comparison. Table 2 shows the AUC values of MoRFCNN and

other methods. From Table 2, MoRFCNN gets higher AUC than MoRFpred, MoRFCHiBi,

MoRFCHiBi_Light and MoRFMPM on both TEST464 and TEST_EXP53 sets. In addition,

MoRFCNN can process about 9000 residues per minute, which is similar to

MoRFCHiBi_Light.

We also compute the FPR values at different TPR to further analyze the performance

of our method, as shown in Table 3. Obviously, MoRFCNN obtains lower FPR values

than MoRFpred as well as MoRFCHiBi, and obtains similar FPR values to MoRFCHiBi_-

Light and MoRFMPM.

Discussion
The proposed method MoRFCNN is an individual MoRFs prediction method which just

uses protein sequence properties. These protein sequence properties are divided into

three feature sets. The first feature set is from MoRFMPM containing 13 physicochemi-

cal properties, 2 disorder propensities and topological entropy. The second and third

feature sets, derived from MoRFCHiBi, contain 13 and 14 physicochemical properties re-

spectively. To highlight the relationship between the residue and its surrounding envir-

onment, three windows are utilized to preprocess these three feature sets. Then, the

preprocessed features are arranged into a feature matrix conforming to the input form

of CNN. We train three CNNs based on three feature sets respectively, and then com-

bine their results together. The simulation results show that MoRFCNN is effective and

competitive.

Fig. 4 The ROC curves of the combined results with different convolutional layers. The left figure describes
the full ROC curves. The right figure describes the ROC curves at low FPR region

Table 2 AUC on TEST464 and TEST_EXP53

MoRFCNN MoRFpred MoRFCHiBi MoRFCHiBi_Light MoRFMPM

TEST464 0.787 0.675 0.743 0.777 0.778

TEST_EXP53 0.801 0.620 0.712 0.799 0.758
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The following points enable MoRFCNN to obtain good performance. First, the three

feature sets of protein sequence properties are effective for predicting MoRFs. Second,

the preprocessing process enhances the performance of these selected properties.

Third, the constructed CNN prediction model can reflect the relationship between each

feature and its neighboring features in the protein feature matrix, and find out more in-

formation from different features, and thus enrich the information proposed by protein

sequences.

Conclusions
In this paper, we propose a new individual MoRFs prediction method, MoRFCNN, based

on sequence properties and convolutional neural networks. Comparing with other

methods on TEST464 and TEST_EXP53 sets, MoRFCNN obtains higher AUC than

MoRFpred, MoRFCHiBi, MoRFCHiBi_Light and MoRFMPM. In addition, MoRFCNN achieves

lower FPR than MoRFpred and MoRFCHiBi, as well as similar FPR to MoRFCHiBi_Light

and MoRFMPM when TPR is set to 0.2, 0.3 and 0.4. In the future, we will research dif-

ferent combination of the feature matrix and modify the topological structure of CNN

to further improve the prediction performance.

Methods
Feature selection

We select three feature sets to describe the properties of MoRFs in this paper. The

first feature set obtains 16 sequence properties which are from our previous work

MoRFMPM. This feature set includes 13 physicochemical properties, 2 disorder pro-

pensities and topological entropy. Among them, the 13 physicochemical properties

are selected from Amino Acid Index [16] using simulated annealing algorithm, the

2 disorder propensities are the Remark 465 and Deleage/Roux from GlobPlot NAR

paper [26], the topological entropy is calculated after mapping the protein se-

quence to 0–1 sequence [27]. The second and third feature sets, derived from

MoRFCHiBi, contain 13 and 14 physicochemical sequence properties from Amino

Acid Index respectively.

In order to highlight the effect of these feature sets, we preprocess protein se-

quences according to each feature set. Taking the first feature set as an example,

for a general protein sequence w w with length L, we select a window with the

length of N(N < L) and fill N0 = ⌊(N − 1)/2⌋ zeros at the beginning and end of the

sequence. Then, the sequence length becomes L0 = L + 2N0. We slide the window

Table 3 FPR at different TPR on TEST464 and TEST_EXP53

TPR = 0.2 TPR = 0.3 TPR = 0.4

TEST464 TEST_EXP53 TEST464 TEST_EXP533 TEST464 TEST_EXP533

MoRFCNN 0.026 0.025 0.045 0.041 0.072 0.073

MoRFpred 0.033 0.083 0.071 0.146 0.143 0.221

MoRFCHiBi 0.031 0.031 0.063 0.064 0.104 0.125

MoRFCHiBi_Light 0.020 0.016 0.040 0.043 0.073 0.068

MoRFMPM 0.027 0.025 0.047 0.056 0.074 0.096
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to intercept regions of length N with step of 1. For each intercept region, topo-

logical entropy is calculated through Eq. 14 of [27], and the remaining 15 sequence

properties are calculated by the average value of mapped region of these properties.

The calculated 16 dimensional vector vi(1 ≤ i ≤ L) is assigned to each residue in the

region. After that, as the window slides, the vectors obtained by each residue are

accumulated, and the average value is taken as the final feature vector for each

residue under this window. This process can be represented as

x j ¼

1
jþ N0

XjþN0

i¼1

vi; 1≤ j≤N0

1
N

XjþN0

i¼ jþN0−Nþ1

vi;N0 < j≤L−N0

1
L0− j−N0 þ 1

XL0−Nþ1

i¼ jþN0−Nþ1

vi; L−N0 < j≤L

8
>>>>>>>>>><

>>>>>>>>>>:

ð1Þ

We can get a 16 dimensional feature vector for each residue under one window. In

this paper, we choose several windows to preprocess. In order to conform to the input

characteristics of CNN, we combine the feature vectors calculated from different win-

dows into a feature matrix for each residue. Then, each residue can obtain a Nwin × 16

feature matrix for the first feature set, where Nwin denotes the number of windows.

Similarly, each residue can obtain Nwin × 13 and Nwin × 14 feature matrices for the sec-

ond and third feature sets.

Based on our previous work, we select three windows of length 10, 45, and 90 for

preprocessing. Among them, the short window is used to highlight the characteristics

of MoRFs, the long window is used to highlight the characteristics of MoRFs surround-

ing environment, and the middle window is used to reduce the noise impact brought

by the long window.

Fig. 5 The structure of prediction model. Three CNNs are trained for three different feature sets. The finally
prediction result is obtained by combining three CNNs results
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Prediction model

We utilize the TRAINING set to train our prediction model. Three CNNs (CNN1,

CNN2 and CNN3) are trained based on the selected three feature sets respectively. The

finally prediction result is obtained by the average values of three CNNs results. Figure

5 shows the structure of prediction model.

Each CNN contains two convolutional layers and one pooling layer as well as one

fully connected layer. The activation function of each convolutional layer is ReLu func-

tion, and the activation function of the output layer is sigmoid function. In each convo-

lution layer, the convolution step is 1 and performs same padding with zero. The

parameters of conv1 and conv2 are set to 2 × 2 × 1 × 16 and 2 × 2 × 16 × 8 respectively.

The pooling layer uses max pooling with 2 × 2 filter. In the designed CNN, the gradient

descent algorithm is replaced by Adam algorithm [28] in the backward propagation to

update parameters. In order to improve the operation speed, mini-batch is used to up-

date parameters. That is, the sample set is divided into multiple subsets of equal scale

for the each iteration, and each subset is used to calculate the gradient and update pa-

rameters one by one. In order to present our method more visually, combined with the

feature selection, Fig. 6 shows the detailed paradigm of the proposed method.
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