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Abstract

Background: Acute heart failure (AHF) is associated with significant morbidity and
mortality. Effective patient risk stratification is essential to guiding hospitalization
decisions and the clinical management of AHF. Clinical decision support systems can
be used to improve predictions of mortality made in emergency care settings for the
purpose of AHF risk stratification. In this study, several models for the prediction of
seven-day mortality among AHF patients were developed by applying machine
learning techniques to retrospective patient data from 236,275 total emergency
department (ED) encounters, 1881 of which were considered positive for AHF and
were used for model training and testing. The models used varying subsets of age,
sex, vital signs, and laboratory values. Model performance was compared to the
Emergency Heart Failure Mortality Risk Grade (EHMRG) model, a commonly used
system for prediction of seven-day mortality in the ED with similar (or, in some cases,
more extensive) inputs. Model performance was assessed in terms of area under the
receiver operating characteristic curve (AUROC), sensitivity, and specificity.

Results: When trained and tested on a large academic dataset, the best-performing
model and EHMRG demonstrated test set AUROCs of 0.84 and 0.78, respectively, for
prediction of seven-day mortality. Given only measurements of respiratory rate,
temperature, mean arterial pressure, and FiO2, one model produced a test set
AUROC of 0.83. Neither a logistic regression comparator nor a simple decision tree
outperformed EHMRG.

Conclusions: A model using only the measurements of four clinical variables
outperforms EHMRG in the prediction of seven-day mortality in AHF. With these
inputs, the model could not be replaced by logistic regression or reduced to a
simple decision tree without significant performance loss. In ED settings, this
minimal-input risk stratification tool may assist clinicians in making critical decisions
about patient disposition by providing early and accurate insights into individual
patient’s risk profiles.
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Introduction
Acute heart failure (AHF) refers to new or worsening signs and symptoms of heart

failure leading to unscheduled medical care or hospitalization [1]. The condition

can arise de novo or as an acute decompensation of pre-existing chronic heart fail-

ure [1]. AHF is among the most frequent causes of hospitalization in the United

States and represents a growing healthcare burden [2, 3]. Expenditures for AHF in

the United States approach $39 billion per year, and are expected to almost double

by 2030 [4, 5]. An episode of AHF can herald the onset of rapidly progressive and

ultimately fatal disease: up to half of heart failure patients die within 5 years of

first diagnosis [6–9].

Initial evaluation and triage of AHF patients is often performed in the emer-

gency department (ED). Based on this initial clinical assessment, patients may be

discharged for outpatient management or admitted for more intensive care. Ac-

curate risk stratification of AHF patients is important for optimizing outcomes, as

it may be used to guide hospitalization decisions and clinical management [10].

Estimating near-term mortality has been the cornerstone of risk stratification in

AHF [11]. However, even skilled clinicians may incorrectly prognosticate risk of

death in heart failure patients [12, 13]. The heterogeneity of the underlying dis-

ease process, particularly in de novo AHF, presents a prognostic challenge, since

the clinical course of patients with different etiologies of AHF may vary [14–16].

Risk scoring systems may be used to improve predictions made in the ED context

about mortality in AHF patients beyond clinical judgment alone [10, 12]. Numer-

ous risk scores have been developed, mostly using conventional multivariable stat-

istical modeling [17].

Machine learning (ML), a form of artificial intelligence, provides an opportunity

to improve upon predictions made with such risk scoring systems. Machine learn-

ing algorithms (MLAs) can make clinically relevant predictions about the occur-

rence of future events based on data available within the electronic health record

(EHR) [18]. Many conventional AHF mortality risk scores utilize “one size fits all”

scoring rules and are frequently derived from populations non-representative of the

spectrum of patients seen in real world clinical practice [10]. In contrast, MLAs

provide individualized patient risk assessments and may be trained on data from

diverse, real-life populations [19]. MLAs can utilize large amounts of data available

in the EHR in a manner that is not feasible for tools which require manual scor-

ing, integrating both dynamic changes within, and complex relationships between,

variables into making predictions [20]. MLAs have been shown to outperform

existing mortality prediction approaches in other areas of cardiovascular medicine,

supporting their potential utility for predicting mortality in AHF patients [17, 21,

22]. Indeed, foundational research has illustrated that various types of MLAs can

outperform conventional risk scoring systems at predicting mortality in AHF pa-

tients [23, 24]. We hypothesized that a machine learning based classifier using

minimal inputs may be an effective tool for risk stratification in AHF, and may im-

prove upon the performance of existing mortality prediction tools. This work de-

scribes the development and retrospective validation of a gradient boosted decision

trees model to predict the likelihood of seven-day mortality in AHF patients based

on minimal EHR data during initial patient evaluation in the ED.
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Results
A total of 236,275 ED patient encounters were available in our dataset. Of these en-

counters, 1881 were associated with an AHF diagnosis, had complete chart data and

were present in the ED at eight hours (Fig. 1). For hold-out testing of the models, a

total of 357 patients were included, 19 of whom had a positive mortality event as de-

fined by our gold standard (Fig. 1).

Demographic data for the combined training and testing data are presented in

(Table 1). AHF patients with a seven-day mortality event were, on average, more

likely to be elderly (age > 80 years), more likely to have cancer and dementia, and

less likely to have hypertension (Table 1). Median age for the positive class was 82

years (interquartile range (IQR): 73, 90), and median age among the negative class

was 74 (IQR: 61, 85).

Four models were trained: a 33-feature XGBoost model (33F) and a logistic regres-

sion (LR) model trained using all inputs in Supplementary Table 1, a five-feature

XGBoost model (Top5F) and a five-feature decision tree (DT). From a variety of inputs

provided based on a priori relevance to AHF mortality prediction, XGBoost selected

the 33 features most useful to making predictions; these inputs were then used by the

33F model and the LR model. A SHAP analysis of the 33F XGBoost model revealed the

input features that XGBoost determined to be the most important in making predic-

tions. The top five most important features were then provided as inputs to the Top5F

XGBoost model. The Top5F and DT models used the same five features as inputs.

These four models were tested alongside EHMRG for the prediction of the seven-day

mortality gold standard, where predictions were made at the eighth hour of each stay.

The receiver operating characteristic (ROC) curves for the models on the hold-out test

set are presented in Fig. 2, demonstrating that 33F and Top5F exhibit greater sensitivity

than EHMRG across a range of specificities, while DT and LR do not. Similarly, models

33F and Top5F achieved a greater area under the receiver operating characteristic

(AUROC) curve than EHMRG, DT, and LR (Table 2). Operating points for the models

were selected to maximize sensitivity subject to specificity. For these operating points, 33F

and Top5F outperformed the EHMRG on all evaluated performance metrics (Table 2).

Fig. 1 Patient encounter inclusion diagram. Abbreviations used: acute heart failure (AHF); Emergency
Department (ED); Emergency Heart Failure Mortality Risk Grade (EHMRG)
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Table 1 Demographics of the combined data used to train and test models for the prediction of
seven-day mortality in acute heart failure patients presenting to the Emergency Department.
Differences between the positive and negative class were evaluated for significance with a two
proportions z-test

AHF patients who die within
seven days
N (%)

AHF patients who do not die
within seven days
N (%)

P
value

Age

< 30 0 (0.00) 25 (1.56) 0.2785

30–49 2 (2.70) 153 (9.57) 0.0464

50–59 7 (9.46) 205 (12.82) 0.3955

60–69 8 (10.81) 315 (19.70) 0.0582

70–80 17 (22.97) 311 (19.45) 0.4555

80+ 40 (54.05) 590 (36.90) 0.0029

Sex

Female 33 (44.6) 664 (41.5) 0.601

Male 41 (55.4) 935 (58.5) 0.601

Race

American Indian or Alaska
Native

0 (0) 1 (0.09) 0.8296

Asian 26 (35.14) 256 (22.72) <.0001

Black or African American 8 (10.81) 204 (18.1) 0.6225

Native Hawaiian or Other
Pacific Islander

4 (5.41) 31 (2.75) 0.0416

Other 10 (13.51) 149 (13.22) 0.2290

Unknown/Declined 1 (1.35) 20 (1.77) 0.9394

Ethnicity

Hispanic or Latino 5 (6.76) 93 (8.25) 0.7362

Not Hispanic or Latino 65 (87.84) 1013 (89.88) <.0001

Unknown/Declined 4 (5.41) 21 (1.86) 0.0046

Medical Comorbidities

Dyslipidemia 21 (28.38) 590 (36.9) 0.1367

Diabetes Mellitus 28 (37.84) 703 (43.96) 0.2989

Hypertension 46 (62.16) 1223 (76.49) 0.0049

Peripheral Vascular Disease 4 (5.41) 138 (8.63) 0.3305

Atrial Fibrillation 38 (51.35) 757 (47.34) 0.4996

Chronic Kidney Disease 41 (55.41) 839 (52.47) 0.6211

Hepatic Cirrhosis 4 (5.41) 76 (4.75) 0.7971

Chronic Obstructive
Pulmonary Disease

22 (29.73) 399 (24.95) 0.3546

Cancer 21 (28.38) 145 (9.07) <.0001

Dementia 12 (16.22) 129 (8.07) 0.0136

Depression 6 (8.11) 176 (11.01) 0.4337

History of TIA or Ischemic
Stroke

2 (2.7) 54 (3.38) 0.7525

History of MI 12 (16.22) 261 (16.32) 0.9807
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The two most recent (i.e., at the seventh and eighth hour of the stay) measurements

of respiratory rate, and single measurements of temperature, mean arterial pressure,

and FiO2 (the features of model Top5F), were the most important features for 33F, as

measured by their SHAP values (Fig. 3). Laboratory test results were also important for

33F. For LR, serum glucose and blood urea nitrogen were the most important features.

Repeated blood pressure and heart rate measurements had relatively high SHAP values,

Fig. 2 Receiver operating characteristic (ROC) curves for the prediction of seven-day mortality among acute
heart failure patients for gradient-boosted decision trees models with 33 and five features (33F and Top5F,
respectively), the Emergency Heart Failure Mortality Risk Grade (EHMRG) model, a logistic regression (LR)
model, and a single decision tree (DT) with the same five features as Top5F

Table 2 Performance metrics of the gradient-boosted decision trees models with 33 and five
features (33F and Top5F, respectively), the Emergency Heart Failure Mortality Risk Grade (EHMRG)
model, a single decision tree (DT) with the same five features as Top5F, and a logistic regression
(LR) model for the prediction of seven-day mortality

33F Top5F EHMRG DT LR

AUROC 0.843 0.830 0.776 0.589 0.685

Sensitivity 0.895 0.895 0.684 0.211 0.579

Specificity 0.749 0.618 0.642 0.967 0.722

LR+ 3.558 2.344 1.911 6.469 2.082

LR- 0.141 0.170 0.492 0.816 0.583

DOR 25.300 13.771 3.886 7.927 3.569
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suggesting the importance of dynamic measurements for LR. Feature correlations and

distribution of feature importance for each patient encounter for each model are pre-

sented in Fig. 3.

Discussion
Key findings

Accurate AHF patient risk stratification in the ED is critical to informing clinical man-

agement decisions, with implications both for patient outcomes and healthcare costs.

In this study, we describe the development of models which can accurately predict

seven-day mortality among AHF patients in the ED setting using only a subset of age,

sex, and a limited collection of common clinical and laboratory measurements as inputs

(Supplementary Table 1). In particular, one model approximated the best performance

using a total of only five observations (in total) of four clinical variables–respiratory

rate, temperature, mean arterial pressure, and FiO2.

The best-performing model used only 33 features derived from 20 clinical variables.

Model 33F achieved a sensitivity of 89.5% and specificity of 74.9%, with an AUROC of

0.843 (Fig. 2), demonstrating a low false negative rate while accurately discriminating

between low- and high-risk patient groups. Cardiovascular risk prediction models that

obtain AUROCs above 0.8 are generally considered to have strong discriminatory per-

formance [25]. Notably, 33F outperformed the EHMRG on all performance metrics

(Table 2). Previous research has shown that the EHMRG can perform with high dis-

crimination (e.g. AUROC > 0.7) in ED populations [26, 27], underscoring that an MLA

can improve upon even well-performing clinical prediction tools developed using con-

ventional statistical methods.

Using only five measurements, model Top5F effectively matched the AUROC of

model 33F and offered an operating point with the same sensitivity but lower specificity

(Fig. 2, Table 2). Model Top5F may be preferable to model 33F given the benefits pro-

vided by the use of fewer inputs. However, as predictive models of acute conditions

sometimes use thousands of features [28], Top5F and 33F can both be considered to

use a minimal set of inputs.

Justification for model architectures

There are many advantages to using a minimal set of commonly available inputs for

MLAs [29, 30]. First, using fewer measurements lessens the risk of overfitting the data

and avoids poor generalization of model performance. Second, by using inputs which

are measured for most patients (and measured frequently), one increases the chance of

model predictions being made on the basis of complete and up-to-date information.

Third, by using few measurements, one greatly reduces the burden of model integration

with the EHR during prospective implementation. Fourth, models which use a few,

easy-to-collect inputs may be adapted to limited resource settings.

To determine if a structurally simpler model could be substituted for Top5F while

outperforming EHMRG, we experimented with two other models–a logistic regression

using the same inputs as 33F, and a single decision tree using the same five inputs as

Top5F. A similar approach was used to produce a “clinically portable” decision tree

model for COVID-19 mortality prediction, to be used in place of a corresponding
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Fig. 3 Feature correlations and distribution of feature importance for (a) the 33-feature gradient-boosted
decision trees model (33F) and (b) the logistic regression (LR) model. Model input variables are ranked in
descending order of feature importance. Red is indicative of a high feature value and blue is indicative of a
low feature value. Points to the right of the line of neutral contribution resulted in a higher score; points to
the left of this line resulted in a lower score
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gradient-boosted decision trees model [31]. We found that a structurally simpler model

could not be substituted for Top5F without significant performance losses and a

failure to exceed the benchmark provided by EHMRG (Fig. 2, Table 2). Specifically,

the structural simplicity and limited depth of the simple DT prevent this model

from effectively using the limited input features, likely contributing to the poor

sensitivity and AUROC. By its nature, a simple DT is a weak learner relative to an

ensemble learning approach like XGBoost, which successively learns from a collec-

tion of decision trees to ultimately create a more powerful model. XGBoost creates

this ensemble of decision trees by iteratively building trees which perform better

on misclassified examples.

Among the many MLAs suitable for creating mortality prediction models, we chose

the XGBoost algorithm because of the ease with which it handles missing or null values

[32]. Given the high levels of “missingness” within EHR data - due to variability in data

acquisition and recording habits in the live clinical environment - this quality is attract-

ive, even when using common and frequently measured clinical variables [33]. Boosted

regression classifiers generally, and XGBoost specifically, perform as well or better than

other machine learning approaches in predicting mortality among heart failure patients

[34–36]. XGBoost architectures are appropriate for training from minimal feature sets

because they are able to learn adaptively and can utilize dynamic data. While EHMRG

uses a predetermined set of validated inputs, XGBoost models can use these inputs or a

wider range of inputs, testing and selecting the best inputs to make accurate predic-

tions. In addition, the EHMRG only uses static features which cannot account for

changes (e.g. in laboratory measurements or vital signs) during an ED encounter. These

differences likely enabled the XGBoost models to attain higher performance compared

to EHMRG (Table 2).

Providing context: alternative risk scores and prediction systems

The most important features used by the models were consistent with prognostic fac-

tors reported in the literature. For example, increased respiratory rate in the ED has

been linked to ICU admission, mechanical ventilation and death in AHF patients [37].

Hemodynamic instability has also been associated with a poor prognosis for AHF pa-

tients, including death post-discharge [38]. The importance of repeated vital sign mea-

surements at different time points–as well as the changes in vital signs measurements–

in generating predictions highlights the value of a machine learning-based tool which

can effectively process dynamic trends in data [17].

Increased attention to the potential clinical and economic benefits of effective AHF

risk stratification has led to the development of risk scores for use in the ED [39], in-

cluding the EHMRG [16]. However, many extant risk stratification tools were derived

from populations not representative of the heterogeneous spectrum of real world ED

patients, or have only been validated for risk evaluation in certain sub-types of AHF

[10]. Few risk tools have been developed with clear, robust methods for adjusting pre-

diction to account for missing input data [17]. The effectiveness of conventional risk

scores in supporting clinical decision making may be hindered by decision rule com-

plexity and by the absence of standardized use across providers and healthcare systems

[40–42]. Further, conventional scores evaluate the risk of a cohort of patients with
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similar characteristics, and do not provide an individualized assessment of risk for each

patient [10].

MLAs have been developed to accomplish a variety of tasks in the management of

heart failure, including diagnosis, classification of disease type, prediction of outcomes,

and predicting response to treatment [43–46]. A rapidly growing body of work has fo-

cused on the use of machine learning for prediction of mortality in patients with AHF

[23, 47, 48, 49]. For example, Kwon et al. developed and validated a deep neural net-

work algorithm that predicted in-hospital, 1- and 3- year mortality among AHF pa-

tients more accurately than both the conventional Guidelines-Heart Failure (GWTG-

HF) risk score [48] and other machine learning approaches [23]. The deep neural net-

work developed by Kwon et al. obtained AUROCs of 0.880, 0.782, and 0.813 for predic-

tion of in-hospital, 1 year, and 3 year mortality, respectively. Models 33F and Top5F

achieved comparable results (AUROCs of 0.843 and 0.830), without requiring the abun-

dance of input variables and large-scale training data neural networks require [50].

Adler et al. developed an MLA to discriminate between heart failure patients at high

and low risk of death [47] and Awan et al. used a battery of similar machine learning

methods to predict risk of readmission or death in elderly heart failure patients [48].

However, the models developed in these studies were not specifically designed and

trained for use in ED settings. It is important that models intended to guide patient dis-

position planning are developed on targeted patient populations who present to the

ED, as opposed to being developed on broader hospitalized populations [16]. While

some MLAs designed to predict mortality in heart failure have not been validated out-

side of training data [17], the XGBoost model in this study demonstrated strong per-

formance on a hold-out test set, suggesting that it was not overfit in training and can

successfully make predictions on other data.

Both conventional risk models and MLAs have been developed which leverage B-type

natriuretic peptide (BNP) or N-terminal prohormone BNP (NT-proBNP) as inputs [36,

51, 52]. These data were not available within our dataset, and so could not be incorpo-

rated as input features. BNP and NT-proBNP can be useful in diagnostic evaluation

and have prognostic value, including for mortality prediction [9, 53–56]. Models 33F

and Top5F were able to perform well without these laboratory results, and adaptations

of these models to clinical datasets in which these results are available have the poten-

tial to perform better.

Limitations

This study has several limitations. Our inclusion criteria resulted in a relatively small

positive class size, which may limit generalizability of results. Our dataset also did not

include information on home metolazone use or whether patients arrived at the ED via

emergency medical services. Without these inputs, the EHMRG could not be calculated

to yield scores comparable to the risk thresholds described in the literature. However,

metolazone use has previously been identified as contributing minimally to final

EHMRG risk categorizations [57]. In addition, our approach to selecting a threshold

intentionally optimized the performance of the adjusted EHMRG. The AUROC of the

adjusted EHMRG in our study is comparable with reported AUROCs of the unadjusted

EHMRG in the literature [26, 27], suggesting that the performance of the EHMRG was
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preserved and remains a suitable comparison for the performance of the models. Fur-

ther, because this is a retrospective study, we were unable to determine the perform-

ance of the AHF prediction algorithms in a prospective clinical setting. Prospective

validation is required to determine how clinicians may respond to predictions of mor-

tality among AHF patients, as well as to determine whether predictions can affect pa-

tient outcomes or resource allocation.

Conclusions
A model using only four clinical variables outperforms EHMRG in the prediction of

seven-day mortality of AHF patients in the ED. This tool may assist clinicians in mak-

ing critical decisions about patient disposition by providing early and accurate insights

into individual patient’s risk profiles.

Materials and methods
Data processing

The MLA development workflow, including data processing, is outlined in Supplemen-

tary Fig. 1. Patient data were extracted from the EHR of a large academic medical cen-

ter. We included data extracted from patients between 2011 and 2015 who were

assessed in the ED. These data included patient demographics, medical diagnoses from

prior encounters, vital signs, and laboratory data. Data were de-identified in compliance

with the Health Insurance Portability and Accountability Act (HIPAA) and were col-

lected passively. Since data were de-identified and collected retrospectively, this study

was considered non-human subjects research and did not require Institutional Review

Board approval.

We only included data from patients with ED encounters for AHF and complete

chart data. ED encounters for AHF were identified by the presence of International

Classification of Diseases, Tenth Revision (ICD-10) codes for acute heart failure in the

inpatient chart (Supplementary Table 2). No data were included for ED encounters not

associated with an AHF diagnosis. Chart data were considered to be incomplete if it

did not contain any vital sign measurements or if it did not contain a start time for the

ED encounter.

Seven-day mortality among AHF patients was the primary endpoint. Based on

the desired functionality of this MLA–as a clinical decision tool which physicians

might use when making clinical management and patient disposition decisions–it

was necessary to select a prediction time at which the majority of AHF patients

had not already been admitted or discharged from the ED. For the majority of

AHF patients with a documented disposition time in our dataset (77.5%), admission

or discharge occurred after 8 h into the ED encounter. Therefore, the MLA was

designed to generate predictions 8 h after the start of the ED encounter, and all

patients with a documented disposition decision prior to 8 h were excluded from

analysis.

Algorithm scores were computed using patient demographics, clinical and laboratory

measurements, and medical history extracted from the EHR (Supplementary Table 2).

Vital sign measurements were averaged across each hour to yield a single mean vital

sign measurement at each hour. The change in value between the hourly average vital
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sign measurements was also used as an input. If multiple tests were ordered for a given la-

boratory measure, the first laboratory value available was used as an input to the algo-

rithm. If a specific laboratory test was not performed for the patient, a null value was

reported and implicitly handled by the MLA. Inputs were selected based on prior research

on mortality in AHF were provided to the 33F XGBoost model during training, including

vital sign measurements, laboratory test results, medical history and basic demographic

information (Supplementary Table 2). Multiple individual features were derived from each

input based on the time of observation, or changes in the observation over time; each of

these individual features could then be used by XGBoost as part of classification.

Gold standard

Mortality was determined by the date of death associated with the unique patient iden-

tification codes linked to each patient encounter. If a patient had a death date within 7

days of the initial ED encounter, they were considered to have a mortality event and

were included in the positive class. Patients were included in the positive class only if

the death date occurred within the selected time window (7 days) for mortality predic-

tion. Patients with mortality dates later than the seven-day window were included in

the negative class, as they were still alive within the prediction window. Surviving pa-

tients with no documented mortality event were also included in the negative class.

Machine learning models

Models 33F and Top5F were created using gradient boosting implemented in the

XGBoost method in Python [32]. Using this method, results were combined from various

decision trees to generate prediction scores. The patient population was split into succes-

sively smaller groups within each decision tree, and each tree branch divided patients who

entered it into one of two groups according to their covariate value and whether this value

fell above or below a determined threshold. The decision tree ended in a set of “leaves”

with each AHF patient encounter represented in exactly one leaf. Each patient in a certain

“leaf” was predicted to have the same risk of mortality. For comparison, logistic regression

and decision tree classifiers were also trained and tested, in order to evaluate the relative

utility of the more structurally complex models 33F and Top5F.

A 70:30 training and test split was used to train and evaluate each model’s performance.

70% of AHF patient encounters were randomly selected to train the models, and the

remaining 30% were used as a hold-out test set to generate model predictions. We

emphasize that, during the training process, XGBoost was not required to use all of the in-

put features in order to make a mortality prediction. Instead, the model could select the

subset of features that enabled it to most accurately make classifications based on the train-

ing data. Ultimately, this resulted in 33 features being used for the 33F model, despite many

more inputs being available, as described in the Data Processing subsection and Supplemen-

tary Table 1. The five features with the highest absolute SHAP values for the 33F model

were then selected as the input features for the Top5F model and the DT model.

Separately for models 33F and Top5F, a 5-fold cross-validation grid search was con-

ducted on the training set for the purposes of hyperparameter optimization. The opti-

mizations of the hyperparameters for the 33F and Top5F XGBoost models were

confirmed by evaluating the AUROC for different combinations of hyperparameters
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included in the grid search, as demonstrated in Supplementary Table 3. Optimized

hyperparameters included maximum tree depth, L1 regularization term (lambda), L2

regularization term (alpha), scale positive weight and number of estimators. By restrict-

ing the tree depth to a maximum of 3 branching levels and using a relatively high

lambda regularization term we were able to prevent overfitting and increase sensitivity.

We also included a constant hyperparameter for the early stopping of the iterative tree-

addition procedure, with a value of 5. The only hyperparameter of the DT model that

was optimized through a 5-fold cross-validation grid search was the maximum tree

depth. The final optimized hyperparameter for the model based on the grid search was

9 for the maximum tree depth. Due to the imbalance of the two classes, the scale posi-

tive weight hyperparameter was of particular importance as it determines the rate at

which the minority class is oversampled during training. This ensures that as much in-

formation as possible is learned about the positive class during training.

For the logistic regression model, first, missing values had to be handled with various

imputation strategies. Missing vital signs measurements were imputed using forward

filling and backward filling. Missing lab measurements were imputed using the mean

measurement of the lab feature from the training set. Then, a 5-fold cross-validation

grid search was conducted on the training set for hyperparameter optimization. The

only optimized hyperparameter was the strength of regularization. The final optimized

value was 1e-5. L2 regularization was used to help prevent overfitting.

After model training, performance was evaluated on a subset of the 30% test set. As a

defined list of inputs are required to calculate the EHMRG, evaluating the score’s per-

formance among patients without the required data available would unfairly disadvan-

tage the EHMRG in comparison to the MLAs. To enable a fair comparison between

the MLAs and the EHMRG, model performance was evaluated only on test-set patients

whose EHR data contained a value for each variable used to calculate the EHMRG, so

that the EHMRG could be calculated for all patients in the test-set. These patients

comprised 63.2% of the test set. The reported performance metrics are based on the

model performance on this subset of the test set. The chosen operating point or thresh-

old is the value above which a patient’s encounter was considered to be positive, or end

in the patient’s death (as defined in our gold standard), with performance measured by

AUROC. Sensitivity, specificity, positive and negative likelihood ratios, and the diagnos-

tic odds ratios were also evaluated at the clinical operating points for all models. A

SHAP (SHapley Additive exPlanations) analysis [13] was performed to evaluate which

inputs were most important for the model in generating predictions. A SHAP analysis

examines the feature values for each element of the training dataset and evaluates the

way in which different values for different features affect the classification of the train-

ing examples. The SHAP plot ranks features by importance to model predictions, such

that the features which contribute the most to predictions are listed first.

Comparator

The EHMRG was selected as a comparator for the MLAs [16]. EHMRG also predicts

seven-day mortality in AHF patients presenting to the ED and was developed for a

comparable use case (i.e., risk stratification to inform hospitalization decisions and clin-

ical management of AHF patients presenting to the ED). In addition, the EHMRG has
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demonstrated strong discriminatory performance in multiple clinical settings [12, 26,

27, 57], such that it may reasonably be understood to represent the standard of care in

mortality prediction for AHF patients in the ED. The following inputs for EHMRG were

available within our dataset, and were fed into the comparator model: age, initial systolic

blood pressure (SBP), initial heart rate (HR), initial peripheral oxygen saturation (SpO2),

first potassium measurement, first creatinine measurement, highest troponin measure-

ment and active cancer diagnosis. Home medication use and method of presentation to

the ED were not available in our dataset. Therefore, a complete EHMRG score using pre-

viously described thresholds for defining high risk of mortality could not be calculated. In-

stead, an adjusted EHMRG score was calculated using all available inputs and normalized.

To normalize the adjusted EHMRG scores, the maximum and minimum possible

EHMRG scores were calculated using the available variables and were then used to rescale

adjusted scores between 0 and 1. In order to provide the adjusted EHMRG with the best

chance of success in predicting mortality, a new operating point was selected to optimize

the adjusted EHMRG’s performance. The operating point on the ROC curve which maxi-

mized the square root of the product of true positive rate (sensitivity) and 1-false positive

rate (specificity) was selected, for the purpose of balancing demands for sensitivity and

specificity. Based on this choice, an adjusted EHMRG score of 49.79, which corresponds

to a scaled operating point of 0.364, was selected.
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