
Moosa et al. BioDataMining (2021) 14:15
https://doi.org/10.1186/s13040-021-00237-y

RESEARCH Open Access

DASSI: differential architecture search
for splice identification from DNA sequences
Shabir Moosa1,2* , Prof. Abbes Amira2 and Dr. Sabri Boughorbel1

*Correspondence:
smoosa@sidra.org;
sboughorbel@sidra.org
1Department of Systems Biology,
SIDRA Medicine, 26999 Doha, Qatar
2Dept. of Computer Science and
Engineering, Qatar University, 2713
Doha, Qatar

Abstract

Background: The data explosion caused by unprecedented advancements in the
field of genomics is constantly challenging the conventional methods used in the
interpretation of the human genome. The demand for robust algorithms over the
recent years has brought huge success in the field of Deep Learning (DL) in solving
many difficult tasks in image, speech and natural language processing by automating
the manual process of architecture design. This has been fueled through the
development of new DL architectures. Yet genomics possesses unique challenges that
requires customization and development of new DL models.

Methods: We proposed a new model, DASSI, by adapting a differential architecture
search method and applying it to the Splice Site (SS) recognition task on DNA
sequences to discover new high-performance convolutional architectures in an
automated manner. We evaluated the discovered model against state-of-the-art tools
to classify true and false SS in Homo sapiens (Human), Arabidopsis thaliana (Plant),
Caenorhabditis elegans (Worm) and Drosophila melanogaster (Fly).

Results: Our experimental evaluation demonstrated that the discovered architecture
outperformed baseline models and fixed architectures and showed competitive results
against state-of-the-art models used in classification of splice sites. The proposed model
- DASSI has a compact architecture and showed very good results on a transfer learning
task. The benchmarking experiments of execution time and precision on architecture
search and evaluation process showed better performance on recently available GPUs
making it feasible to adopt architecture search based methods on large datasets.

Conclusions: We proposed the use of differential architecture search method (DASSI)
to perform SS classification on raw DNA sequences, and discovered new neural
network models with low number of tunable parameters and competitive
performance compared with manually engineered architectures. We have extensively
benchmarked DASSI model with other state-of-the-art models and assessed its
(Continued on next page)

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-021-00237-y&domain=pdf
http://orcid.org/0000-0003-2645-2497
mailto: smoosa@sidra.org
mailto: sboughorbel@sidra.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Moosa et al. BioDataMining (2021) 14:15 Page 2 of 17

(Continued from previous page)

computational efficiency. The results have shown a high potential of using automated
architecture search mechanism for solving various problems in the field of genomics.

Keywords: Deep learning, Splice site, Genomics, Neural architecture search,
Convolutional neural networks

Background
Deep Learning is a class of Machine Learning (ML) algorithms that combines raw inputs
into layers of intermediate features. They take raw features from large datasets and use
them to create a predictive tool from hidden patterns in the data. They have shown
impressive results over existing best-in class ML algorithms across various domains. For
the past five years, DL algorithms have revolutionized fields such as high-energy physics
[1], computational chemistry [2], dermatology [3]. The off-the-shelf implementation of
these algorithms across different fields have produced comparable or higher accuracies
than previous state-of-the art methods that required extensive customization over the
years.
The advancement of neural networks have demonstrated revolutionizing achievements

in the field of image classification, object detection and natural language processing.
Designing these neural network architectures requires computational resources and sig-
nificant efforts from human experts in DL through trial and error. Over the recent years,
there has been a paradigm shift from feature designing to architecture designing in the
field of image classification and natural language processing [4–7] to develop algorith-
mic solutions for automating the manual process of architecture design using Neural
Architecture Search (NAS) methods. They have provided promising results in designing
models better than human designed ones on benchmark datasets. The goal in archi-
tecture search is to find an optimal architecture from a given search space so that the
validation accuracy on a particular task is maximized. NAS has some similarities to pro-
gram synthesis and inductive programming where a program is searched from examples
[8]. Many architecture search algorithms have been proposed such as Reinforcement
Learning (RL) [7] which uses a policy gradient algorithm to optimize architecture config-
urations. This approach is computationally expensive and time consuming as they design
and train each network from scratch during the exploration in the search space. Several
approaches were proposed for improving the efficiency of NAS such as establishing a
particular structure for the search space [4], performance prediction [9] and weight pre-
diction of individual architectures [10] and by a parameter sharing mechanism [11] across
multiple architectures. A novel approach of searching the architectures over a continuous
domain alternate to searching over a discrete set of child architectures was proposed in
[12]. This Differential Architecture Search (DARTS) mechanism has outperformed var-
ious other architecture search algorithms by achieving competitive performance over a
rich architecture search space by using less computation resources.
In this paper, the DARTS technique used in [12] for image classification tasks was

adapted to solve problems in genomics domain. The study was performed on the Splice
Site Recognition (SSR) datasets which provides a scope for analysis of the human genome
and identification of unknown regions to understand the biochemical processes involved

Moosa et al. BioDataMining (2021) 14:15 Page 3 of 17

in building and maintaining a human body. We extended the study to evaluate the discov-
ered architectures on four other different species (Arabidopsis thaliana, Caenorhabditis
elegans and Drosophila melanogaster).

Splice site recognition problem

Proteins form an essential component in all living organism and a major biological pro-
cess that occurs in all living cells is the production of proteins. They play a vital role in the
biochemical reactions within cells and in metabolism. The protein coding process called
gene expression occurs in two stages: Transcription and Translation. During Transcrip-
tion , the DNA (Deoxyribonucleic Acid) is synthesized to produce an mRNA (messenger
Ribonucleic Acid). The protein coding process occurs in the translation phase where the
mRNA sequence is decoded to produce the proteins.
Prokaryotic organisms do not have a cell nucleus and their translation stage is relatively

simpler. But in eukaryotic organisms the genes are composed of alternated segments of
introns and exons. Exons forms the coding regions in a DNA during translation to pro-
teins. The biological significance of intronic regions are not known yet as they do not
participate in the protein building process. During translation stage in eukaryotes, the
process of splicing occurs where the introns are spliced out from the mRNA molecule.
The boundary points where splicing occurs on a gene sequence are called splice junction
sites or splice sites as shown in Fig. 1.
Precise identification of Exon-Intron (EI) junctions or donors and Intron-Exon junc-

tions (IE) or acceptors from a sequence is beneficial for advancements in transcriptome
research and is a crucial step for fully understanding the gene expression. The accurate
detection of splice junctions is challenging because of the high rate of false positives
caused by the presence of short canonical splicing patterns [13]. There are currently
two different techniques used to solve the splice junction prediction problem: Alignment
based techniques and ML based techniques. The sequence alignment-based techniques
maps millions of short RNA sequences produced by RNA-seq to the reference genome
and then estimate where splicing occur by identifying the adjacent exon locations. The
existing alignment based techniques such as SpliceMap [14] and TopHat [15] detects
only canonical SS while missing the non-canonical sites which are required for accu-
rate junction prediction. The ML based techniques can predict non-canonical sites as
well by appropriate training. Different ML approaches has been used such as Support
Vector Machines (SVM) [16–21] Random Forest (RF) [22–24], Decision Trees (DT)
[25], Naïve Bayesian (NB) [26], Markov Model [27] and AdaBoost [28–30] to identify
splice or non-splice sites. Among them, SVM models have been used very often due to

Fig. 1 Splice-junction sites on a sequence where the splicing occurs at the exon-intron pairs

Moosa et al. BioDataMining (2021) 14:15 Page 4 of 17

their capability to handle high-dimensional datasets. However, certain kernel and penalty
parameters in SVM require extensive tuning which is time consuming. The effectiveness
of all these approaches also depends on the feature engineering technique used which is
a major initial step in solving a classification problem. Many feature engineering tech-
niques have been proposed for feature construction directly from the DNA sequence
,such as theMM1 (1-orderMarkovmodel) in [16] for feature construction from splice site
sequences and using the SVM for prediction. In [22] and [17] features were constructed
based different statistical approach with automated feature extraction was proposed in
[26] for prediction of splice sites. A length-variable Markov Model (LVMM) which pro-
duced higher accuracy with low time cost was discussed by [27]. A hybrid algorithm
of AdaBoost classifier was proposed in [28] which provided an improvement in perfor-
mance compared to the other approaches. The efficacy of all these approaches is based
on the feature extraction step which is often a tedious task that is performed by domain
experts. Manual operation of feature extraction often leads to incomplete representa-
tion or one-high dimensional feature space which will cause problems in the machine
learning process. The challenges involved in performing manual feature extraction and
model training led to development of models using Artificial Neural Network (ANN)
[31, 32] that performed automated feature representation. Many DL architectures were
used and developed for splice site prediction based on CNN [33–37], RNN [13, 38],
Restricted Boltzmann Machines (RBM) [39], Autoencoders [40, 41] and Deep Belief Net-
works [39]. Although these DL architectures have removed the burden of manual feature
extraction, they are still time consuming to train and a much deeper knowledge on SS
associated functions and evolution has been strongly urged. In general, the existing meth-
ods still undergoes themanual effort in designing architectures which needs a lot of expert
domain knowledge and is time consuming.

Methods
Our model makes use of deep CNN to distinguish features between true and false splice
junctions. CNN architectures have shown better performance in learning features that
classify true SS from false ones. Figure 2 shows an overview of the proposed methodology
and representation of the sequence data. The method consists of two stages: Architecture
Search and Architecture Evaluation as shown in Figs. 2b and c. In the first stage, architec-
ture search using DARTS was performed to discover the best model and the second stage
validates the discoveredmodel on a held out unseen data. Themodel gains from the infor-
mation present in the genomic sequence of the candidate splice junction to accurately
classify whether the sequence corresponds to a true splice junction or not.

Datasets

We have used two datasets for experimental analysis, each comprising of true and false
acceptor and donor sequences from four species (Homo sapiens, Arabidopsis thaliana,
Caenorhabditis elegans and Drosophila melanogaster). The first dataset DSS1 [42] has
a sequence length of 141 nucleotides and a subset of false SS sequences were randomly
extracted to match the number of true SS sequences inorder to avoid the class imbalance
problem. The second dataset DSS2 [35] is a balanced dataset with equal number of true
and false SS sequences each having a sequence length of 602 nucleotides. DSS1 and DSS2
datasets were used for performance comparison with state-of-the-art models. We used

Moosa et al. BioDataMining (2021) 14:15 Page 5 of 17

Fig. 2 An overview of proposed methodology: It takes the DNA sequence represented as a 2D embedded
input (panel a) for the Architecture Search(panel b) and Architecture evaluation(panel c) process

the acceptor sequences of homo sapiens from DSS1 for computational efficiency evalu-
ation as well as for comparison with generic baseline models. The underlying problem
posed in these datasets is to classify, given a sequence of DNA, as a true splice or a false
splice sequence. The splice junctions are locations in a DNA sequence where ‘superfluous’
DNA is removed during protein creation process. The beginning and end of an exon is
determined by the splice-acceptor and splice-donor sequences present. In this study, the
prediction of splice junctions are performed using the given annotated DNA sequences
with true acceptor SS and true donor SS sequences as well as false acceptor SS and false
donor SS. Table 1 shows the number of true and false SS of each organism used in the
experimental evaluations. The datasets were randomly split into three sets into train,
validation and test datasets respectively of size 0.8, 0.1, 0.1.

DNA representation

Genome sequence data is biologically described using four types of nucleotide, adenine
(A), cytosine (C), guanine(G) and thymine (T). Each of these sequences are converted
into numerical representation using one-hot encoding for downstream analysis. However,
to shape the input appropriately for the DARTS Convolutional Neural Networks (CNN)
model, the DNA sequences are represented as a 2-dimensional tensor. Firstly, one-hot
encoding is applied which converts each nucleotide in the DNA sequence of length nd
into a four-dimensional vector and then concatenates each of them to form the complete
sequence. The next step is to transform the list of one-hot vectors to a 2-dimensional
tensor.
let s ε S where S ={A,T,C,G}, then, a sequence (A,C,G,T,A,C) will be encoded into a

tuple of 4-D binary vectors as shown in Fig. 2a .

Moosa et al. BioDataMining (2021) 14:15 Page 6 of 17

Table 1 Description of DSS1 and DSS2 datasets

Type Organism DSS1 DSS2

Acceptor SS

Homo sapiens (Human) 158,217 (True) 248,150 (True)

158,217 (False) 248,150 (False)

Arabidopsis thaliana (Plant) 76,871 (True) 112,318 (True)

76,871 (False) 112,318 (False)

Caenorhabditis elegans (Worm) 64,838 (True) 77,763 (True)

64,838 (False) 77,763 (False)

Drosophila melanogaster (Fly) 29,501 (True) 28,703 (True)

29,501 (False) 28,703(False)

Donor SS

Homo sapiens (Human) 160,601 (True) 250,400 (True)

160,601 (False) 250,400 (False)

Arabidopsis thaliana (Plant) 76,659 (True) 110,299 (True)

76,659 (False) 110,299 (False)

Caenorhabditis elegans (Worm) 64,844 (True) 77,387 (True)

64,844 (False) 77,387 (False)

Drosophila melanogaster (Fly) 29,788 (True) 30,118 (True)

29,788 (False) 30,118 (False)

([1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0])
The encoded sequence is then represented as a two-dimensional tensor of shape

(nd x 4). The final representation of the input to the model will be in the form (batch size
x nd x 4)

DARTS algorithm

The DARTS method discovers state-of-the art network architectures by formulating the
task in a differential manner. The interesting part in this method is that the search space
is treated as continuous rather than searching over a discrete set of architectures in the
search space.
The cell in the architecture is considered as a Direct Acyclic Graph (DAG) consisting of

a set of nodes and edges. Each cell has one output node and two input nodes. LetN be the
number of nodes and each node represented by xi . Each edge (i, j) performs an operation
represented by o(i,j) that transforms xi. The intermediate nodes are computed based on
its predecessors.

xi =
∑

j<i

(
oi,jxj

)
(1)

The learning of the cell involves learning the operations that transform the input. The
goal of the method is to find a cell that forms the building block of the final architecture.
Initially the operations on the edges are unknown. Let O be the set of operations where
each operation is represented as o(.) to be applied to xi. The choice of the operation is
made in a continuous manner by performing a softmax on all possible operations.

o(i,j)(x) =
∑

oεO

exp
(
α

(i,j)
0

)

∑
o′εO exp

(
α

(i,j)
0′

)o(x) (2)

Moosa et al. BioDataMining (2021) 14:15 Page 7 of 17

Here α
(i,j)
0 is a vector with dimension |O| that indicates the mixing of operation between

a pair of nodes. The architecture search phase jointly performs learning on a set of con-
tinuous variables α = {α(i,j)} and the weights (ω) within each operation in O. The value
of α and ω is obtained through a bi-level optimization algorithm where α becomes the
higher level variable and ω acts as the lower-level variable. The search finds a value of α

that minimizes the validation loss Lval for that value of ω that minimizes the training loss
Ltrain.

min
α

Lvalid(ω∗(α),α) (3)

s.t ω∗(α) = argminω Ltrain(ω,α) (4)

This bi-level optimization Algorithm 1 shows the optimization ofω and α in the respec-
tive search spaces through a gradient-based approach. The operation at each edge is
replaced by the operation that had the maximum value of α.

Algorithm 1: Differentiable Architecture Search

1 Let o(i,j) be the set of operations parameterized by α(i,j) for an edge pair(i, j)
2 while not converged do
3 compute ω by decreasing ∇ωLtrain(ω,α);
4 compute α by decreasing ∇αLvalid(ω − ξ∇ωLtrain(ω,α),α);
5 Replace o(i,j) with o(i,j)= argmaxoεO α

i,j
o for each pair of edge(i, j)

The optimization is performed in the architecture search Algorithm 2 during the train-
ing phase and the best discrete architecture archfinal is saved to be evaluated in the
architecture evaluation step. The training phase in the architecture evaluation phase has a
fixed architecture archfinal and is then trained to obtain the optimal architecture weights.
The trained model is evaluated on unseen data in the architecture evaluation phase.

Experimental setup and implementation

The architecture search and evaluation experiments were performed in the Sidra HPC
environment on NVIDIA DGX-1 server. The implementation was done using Pytorch
which is an open-source library in python based on torch that supports strong GPU accel-
eration. The performance evaluation experiments with the state-of-the art architectures
were done on datasets DSS1 and DSS2 by combining the true and false SS sequences of
all species for acceptor and donor separately and tested on unseen dataset of each organ-
ism. The baseline model comparisons were performed only on acceptor sequences of
homosapiens due to computational overhead.
The computational benchmarking experiments were performed on Intel(R) Xeon(R)

x86_64, Quadro K4100M and Tesla V100-SXM2 architectures. The specification of the
hardware architectures used is listed in Table 2. The GPUs and CPUs were config-
ured with the same environment as the original experiments. The CPU evaluation was
performed by submitting the task as a job to the IBM LSF cluster environment.

Moosa et al. BioDataMining (2021) 14:15 Page 8 of 17

Algorithm 2: Architecture search and evaluation algorithm
Phase1: Architecture search and evaluation
Input : xs=(xs1,1, xs,2, xs,3, ..., xs,|xs|) xsεXs

where X: a set of sequences with |X|=N
xs: a single sequence with length |xs|
x(s,i)ε{A,T ,C,G} for i = 1, 2, 3....|xs|
y: label for xs. yε{0, 1}
where 0 means false SS and 1 represents true SS sequence

Output: acctest
where acctest is the test accuracy

/* Data pre-processing and loading */

1 XT ← transform(Xs); where XT : Transformed dataset
2 (xt , xv, xf) ← split(XT); where xt : Training set, xv: Validation set and xf : Test set
3 initialize best accuracy acca ;
/* Architecture Search */

4 for each epoch do
5 form, n training data randomly selected from xt , xv do
6 train(arch(ω,α)); using Algorithm 1 ; // Training the model

7 for p validation data randomly selected from xv do
8 accval = valid(arch(ω,α)); ; // Validating the model

9 if accval > acca then
10 acca=accval;
11 archfinal = arch(ω,α);
12 initialize best accuracy accb ;
13 initialize weights ω;

/* Architecture evaluation */

14 for each epoch do
15 form training data randomly selected from xt do
16 train(archfinal(ω)) ; // Training the final model

17 update weights ω using SGD with momentum ;
18 for p validation data randomly selected from xv do
19 accval = valid(archfinal(ω)) ; // Validating the trained final

model

20 if accval > accb then
21 accb=accval;
22 save best model archfinal(ω);
23 acctest=test(archfinal(ω)) ; // Testing the final model

Table 2 Hardware for Benchmarking

Device Model Number of available cores Memory size(in GB)

Tesla V100-SXM2 5120 16

Tesla K40m 2880 12

Quadro K4100M 1152 4

Intel(R) Xeon(R) CPU E5-2670 32 256

Moosa et al. BioDataMining (2021) 14:15 Page 9 of 17

Architecture search

The following operations were only included from a rich primitive space used in [12] for
our search space O :3x3 separable convolutions, 5x5 separable convolutions, 7x7 separa-
ble convolutions, 3x3 dilated separable convolutions, 1x7 and 7x1 convolution operations,
3x3 max pooling, 3x3 average pooling and a zero operation. A building block of a convo-
lution operation is formed by three steps: Firstly an activation function is Rectifier Linear
Unit (RELU) applied and then a convolution operation (CN) is executed and finally, a
batch normalization (BN) is performed. This is denoted as ReLU-Conv-BN and we used
the same ReLU-Conv-BN order in [12] for performing convolutional operations. Our dis-
covered convolutional cell consisted of 4 nodes, where the output node is result of the
depth-wise concatenation of the convolution and pooling layers excluding the input node.
The final architecture network was formed by stacking multiple cells together. The archi-
tecture consists of two types of convolutional cells called normal cell and reduction cell
to make it scalable for any input size. When a feature map is taken as input, the normal
cell returns a feature map of same dimension. The reduction cell returns a feature map
where the height and width are reduced by a factor of two. The reduction cells are located
at 1/3 and 2/3 of the total depth of the architecture. The architecture has a reduction cell
in every third cell of the complete architecture. The first and second input nodes of the
cell k are set to the k − 2 and k − 1 cells respectively. A network composed of 3 cells
were trained for 50 epochs using DARTS with batch size 100 set for both training and
validation. The weights ω were optimized using Stochastic Gradient Descent (SGD) with
momentum and Adam as the optimizer for architecture variables. The initial learning rate
was set as 0.0025 and was gradually decreased to a minimum of 0.001. The rest of the
hyperparameters were chosen similar to the original implementation in [12] as shown in
Table 3.

Architecture evaluation

The best architecture cells for acceptor sequences shown in Fig. 3 and donor sequences
shown in Fig. 4 were selected based on the validation performance. The best perform-
ing cell was recorded in epoch 46 for acceptor sequences and in epoch 42 for donor
sequences. The discovered architecture was trained for 70 epochs with batch size 100.
The rest of the hyperparameters were similar to the ones used in the architecture search
process. The selected best architecture was evaluated using a held out test datasets of each
species. It is important to note that the test set was never used during the architecture
search or evaluation processes.

Table 3 Hyperparameters for architecture search

Hyperparameter Value

Batch size 100

Number of layers 3

Initial learning rate 0.0003

Architecture learning rate 0.0025

Minimum learning rate. 0.001

Epochs 50

Weight decay rate 0.0003

Loss function Cross Entropy

Update strategy SGD with momentum

Moosa et al. BioDataMining (2021) 14:15 Page 10 of 17

Fig. 3 Normal (panel a) and Reduction cell (panel b) learned on acceptor data

Results
Classification results

Firstly, an extensive comparison of DASSI with generic convolutional models based on
acceptor sequences of homosapiens from datasetDSS1 was performed. The architectures
of the baseline models are shown in Table 4. The experiments were repeated 10 times
based on different random seeds for splitting the training, validation and test sets. Table 5

Fig. 4 Normal (panel a) and Reduction cell (panel b) learned on donor data

Moosa et al. BioDataMining (2021) 14:15 Page 11 of 17

Table 4 Baseline model architectures

Model Architecture

CNN FC→ Conv → MaxPool → FC → Dropout →FC

CNN(emb.) Emb→ Conv → MaxPool → FC → Dropout →FC

Hybrid FC→ Conv → Pool → LSTM →FC

LSTM FC→ LSTM → FC → Dropout →FC

LSTM(emb.) Emb→ FC → LSTM → FC → Dropout →FC

gives a summary of the results for 5 different performance metrics. Notably, the discov-
ered model outperformed Long Short Term Memory (LSTM) model and baseline CNN
with and without embedding in terms of test accuracy, sensitivity, specificity, F-score and
AUC score. DASSI achieved better accuracy results over the hybrid and LSTM model
with embedding. We also noted that the fixed CNN baseline architectures performed
poorly compared to other architectures. After comparing DASSI with generic baselines,
two well-known models for splice site identification were considered. The first model,
Accurate Splice Prediction (ASP), is a SVMmodel [42]. The secondmodel is a recent deep
learning model named Splice2Deep [35] which achieved state-of-the-art performance for
SS identification. Splice2Deep has 6 parallel convolution layers where the output of these
layers are concatenated and transformed by a fully connected layer. Three versions of
the model were trained: upstream, downstream and global models. The obtained features
of the last fully connected layers of these models were concatenated to train a logistic
regression classifier for the final prediction. In this study, two DASSI architectures were
discovered separately for acceptor and donor, based on sequences from four different
species combined together (Homo Sapiens, Arabidopsis thaliana, Caenorhabditis elegans,
Drosophila melanogaster).
Table 6 presents the comparison of DASSI, ASP and Splice2Deep for the datasets DSS1

and DSS2. The comparison is performed for acceptor and donor on each of the four con-
sidered species. The AUC (Area Under ROC) and accuracy values in Table 6 for ASP
and Splice2Deep were taken from their respective publications. The values that were not
reported in the publications have been indicated as missing in the results table. While
the results of DASSI model was on par or slightly better than ASP in some cases, it
clearly outperformed ASP in the transfer learning scenario as shown in Table 8 and more
details on this scenario is provided in the next paragraph. In addition, DSS1 dataset was
down-sampled to keep the number of true and false sequences balanced. Training DASSI
on a larger dataset from DSS1 could potentially improve its results. For DSS2, while
Splice2Deep outperformed DASSI in most cases, the performance gap between the two
models is not significantly large when the size of the models represented by the number
of tunable parameters is considered. Model sizes are presented in Table 7. DASSI size is

Table 5 Comparison of DASSI Model Performance with baseline models

Model Accuracy Sensitivity Specificity F-score AUC score

DASSIhs 94.15 ±0.1 94.00 ±0.1 95.20±0.3 94 ±0.1 98.8 ±0.01

LSTM (emb.) 93.98 ±0.1 95 ±1.0 92.32 ±1.2 93.74 ±0.2 93.66 ±0.2

Hybrid 93.66 ±0.2 94.63 ±0.7 93.33 ±0.6 94.02 ±0.1 93.66 ±0.2

LSTM 86.99 ±14.6 85.26 ±19.8 88.71 ±9.8 85.87 ±16.9 86.99 ±14.6

CNN 64.15 ±0.6 65.27 ±6.0 63.04 ±6.2 64.43 ±2.1 64.10 ±0.5

CNN (emb.) 53.63 ±3.6 95.62 ±6.6 11.63 ±13.7 67.35 ±0.5 53.63 ±3.6

Moosa et al. BioDataMining (2021) 14:15 Page 12 of 17

Table 6 Performance comparison of models: DASSI, Splice2Deep and ASP-SVM

DSS1 DSS2

ASP-SVM DASSI Splice2Deep DASSI

Site Species AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy

Acceptor Homo Sapiens 97.86 - 98.22 94.56 98.69 96.91 98.98 95.48

Arabidopsis thaliana 99.43 - 99.57 97.33 98.31 95.21 97.78 93.78

Caenorhabditis elegans 99.80 - 99.73 98.18 99.49 98.08 98.42 95.3

Drosophila melanogaster 99.12 - 99.12 96.57 98.16 94.07 97.78 93.41

Donor Homo Sapiens 98.63 - 98.7 95.8 99.1 97.38 98 93.33

Arabidopsis thaliana 99.68 - 99.76 98.24 98.69 95.59 95.51 90.3

Caenorhabditis elegans 99.82 - 99.8 98.24 99.48 97.68 96.49 92.18

Drosophila melanogaster 99.51 - 99.44 96.81 99.56 90.52 95.03 88.91

much smaller than Deep2Splice and represents only 10% to 20% of the Spice2Deep model
size. The performance gap could potentially be closed by increasing the number and size
of the primitives in DASSI for the architecture search. Figure 5 displays the ROC and
precision-recall curves of DASSI model on all the four different species.
We further investigated the generalization of DASSI across datasets. We introduced a

transfer learning scenario (DSS1 → DSS2) in which DASSI and ASP (SVM) were trained
on DSS1 and tested on DSS2. The same test set that was used in previous experiments
on DSS2 was used for the transfer learning approach as well. Since DSS2 has a sequence
length of 602 and the two models were trained on sequences of length 141 from DSS1, we
trimmed the test sequences ofDSS2 such that the dimmer sequence for donor and accep-
tor is located at the same position as in DSS1. The pre-trained model of ASP available on
github1 was used to test on the trimmed sequences of DSS2. Table 8 provides the perfor-
mance comparison of DASSI andASP (SVM) [42] on the trimmed dataset fromDSS2. The
performance of the pre-trained ASP was not estimated in this scenario due uncertainty
on the parts of the data that was used for training and testing. The accuracy is reported
for a default threshold of 0.5. ASP seemed to be not well calibrated for DSS2 and AUC
was chosen as a better metric for comparison. DASSI outperformed ASP in the trans-
fer learning scenario for classifying true and false SS in acceptor and donor sequences on
all four species. The transfer learning scenario DSS2 → DSS1 was not feasible because
the models would need to be trained on sequences of length 602 and tested on shorter
sequences of 141 and padding the test sequences to match the input size would not be
meaningful.

Computational Performance Results

In addition, the proposed model was benchmarked on GPU systems and CPU for
comparison of execution time and precision as shown in Fig. 6

Execution time

The execution time for performing architecture search and architecture evaluation were
calculated on different device architectures and the results are presented in Table 9.
Notably, the most advanced Tesla V100 GPU completed the search in less than 11 hours
and the evaluation in half an hour.

1https://github.com/ratschlab/ASP

Moosa et al. BioDataMining (2021) 14:15 Page 13 of 17

Table 7 The number of trainable parameters for Splice2Deep and DASSI. For Splice2Deep the
architecture is fixed and the total number of parameters is the sum of the three models: upstream,
downsteam and global models [35]. For DASSI, two separate architectures for acceptor and donor
were discovered with different number of parameters

Splice2Deep DASSI

Acceptor 1.33M 272K

Donor 1.33M 103K

Precision

The learning and inference speed of the trained model were compared on different GPU
architectures as shown in Table 10. The experiments were performed on single precision,
half precision, double precision data types. The model was fed with a single batch input of
500 sequences. For training, the time required for 20 forward and backward passes were
averaged. In inference, time duration of 20 forward passes were averaged. Five warm up
steps were included that was not calculated towards the final results.

Discussion
Deep Learning is an emerging research topic among the genomics community. Its appli-
cations can be revolutionized by introducing high-performance computing methods to
analyze datasets in the field of gene therapies, molecular diagnostics and personalized
medicine. In the scope of this paper, DASSI - a differential architecture search approach
was implemented to solve the splice site classification problem in genomics and to dis-
cover new high performance CNN architectures. Despite the slightly lower performance
compared with the state-of-the-art models on certain species, the discovered architec-
tures are highly compact and allow very good generalization across datasets and species.
This work has aided in bridging the gap between the state-of-the art in DL and its appli-
cation to genomics. The evaluation results showed that the newly discovered architecture

Fig. 5 ROC curves (panel a) and precision recall curves (panel b) of DASSI model for splice site classification
on the genome-wide datasets of human, plant, worm and fly

Moosa et al. BioDataMining (2021) 14:15 Page 14 of 17

Table 8 Performance comparison of DASSI and ASP for transfer learning scenario

DSS1→DSS2

ASP-SVM DASSI

Site Species AUC Accuracy AUC Accuracy

Acceptor Homo Sapiens 80.09 65.82 98.53 94.81

Arabidopsis thaliana 79.62 71.10 97.96 94.33

Caenorhabditis elegans 96.72 93.15 99.16 97

Drosophila melanogaster 96.96 86.63 98.34 94.53

Donor Homo Sapiens 68.42 60.82 98.65 94.94

Arabidopsis thaliana 86.94 77.97 98.01 94.63

Caenorhabditis elegans 84.26 72.63 99.51 97.44

Drosophila melanogaster 77.98 71.10 98.52 94.32

Fig. 6 Search and evaluation execution time of the DARTS model on GPU and CPU devices (panel a) and
training and inference speed of DARTS model on each of the devices (panel b)

Moosa et al. BioDataMining (2021) 14:15 Page 15 of 17

Table 9 Comparison of Execution Time

Device Model Architecture Search(hours) Architecture Evaluation(hours)

Tesla V100-SXM2 10.75 0.5

Tesla K40m 38.5 2

Quadro K4100M 101 50

Intel(R) Xeon(R) CPU E5-2670 526 74

outperformed the fixed baseline DL architectures and showed competitive results against
state-of-the-art models. The architecture was also compared alongside the well-known
LSTMmodel and complex hybrid architectures. Furthermore, the discovered architecture
was evaluated onmultiple CPU and GPU architectures. The total time taken for perform-
ing the architecture search and evaluation were determined as well as the floating point
instructions per second for single, double and half precision were compared. The compu-
tational benchmarking results obtained proved that there is significant improvement in
execution time when using advanced GPU architectures.
For all its promises, DL in genomics still possess a number of challenges. The results

largely depend on the quality of the data input that are well annotated so that the model
can learn to distinguish features and identify patterns. Another challenge is the lack of
judgement capability where the technique is able to distinguish from a biologically rele-
vant variation and normal variations. This would require applying further experimental
design and controls. The advancements in the field of DL in the field of computer vision
and speech recognition has led to new methods being constantly proposed that awaits
its application in genomics domain. Furthermore, the availability of quasi-unlimited stor-
age at a reasonable price, the surge in computing power and the lower computational
costs will allow these advanced DL techniques to reshape the capabilities of machines to
completely understand and interpret the human genome.

Conclusions
In this study, we applied the differential architecture search technique for performing
splice site classification using raw DNA sequences and compared the discovered archi-
tectures against well-known fixed baseline architectures and state-of-the art models. As
future steps, we plan to further improve the performance of DASSI by including more
primitives such as skip connect and additional convolutional operations, thereby widen-
ing the architecture search space. This will help to traverse more information to lower
layers. The performance will also be evaluated by increasing the number of layers in
the architecture. We also plan to perform the search on different species seperately and
compare the discovered architectures for different species. DASSI model will further be
evaluated against the recent parallel work of Neural Architecture Optimization (NAO)
which also performs continuous optimization of architecture space. The study showed

Table 10 Comparison of Learning and Inference Speed on GPUs

GPUModel
Training Inference

Single Half Double Single Half Double

Quadro K4100M 1041.24 1090.38 1902.38 134.97 124.59 274.78

Tesla K40m 352.53 470.72 485.17 48.022 49.38 62.13

Tesla V100-SXM2 68.46 119.55 130.09 13.21 11.02 11.07

Moosa et al. BioDataMining (2021) 14:15 Page 16 of 17

that fixed RNN architectures have better results than CNN. It would be interesting to
implement DASSI to search for a recurrent cell that can be recursively connected to
form a RNN that can be applied for tasks of protein function prediction. In addition, this
approach will be tested on additional genomics classification tasks, as it will be highly
useful to uncover new insights from the vast available sequencing data.

Abbreviations
CNN: Convolutional Neural Networks; DARTS: Differential Architecture Search; DL: Deep Learning; SS: Splice Sites; DNA:
Deoxyribonucleic Acid; LSTM: Long Short Term Memory; ML: Machine Learning; NAS: Neural Architecture Search; NAO:
Neural Architecture Optimization; RNN: Recurrent Neural Network; SGD: Stochastic Gradient Descent

Acknowledgements
We would like to thank the HPC team at SIDRA for their computational support with the experimental analysis.

Authors’ contributions
SM and SB implemented the method, conducted the experiments, and drafted the manuscript. SB and AA supervised
every step of the work and provided critical review and valuable input. All authors read and approved the final manuscript.

Funding
Open Access funding provided by the Qatar National Library.

Availability of data andmaterials
The code and data used in the experiments are available at https://github.com/shabirmoosa/DASSI.git

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 1 July 2020 Accepted: 5 January 2021

References
1. Baldi P, Sadowski P, Whiteson D. Searching for exotic particles in high-energy physics with deep learning. Nat

Commun. 2014;5:4308.
2. Goh G, Hodas N, Vishnu A. Deep learning for computational chemistry. J Comput Chem. 2017;38(16):1291–307.
3. Esteva A, Kuprel B, Novoa R, Ko J, Swetter S, Blau H, Thrun S. Dermatologist-level classification of skin cancer with

deep neural networks. Nat. 2017;542(7639):115.
4. Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K. Hierarchical representations for efficient architecture

search. 2017. Preprint at https://arxiv.org/abs/1711.00436.
5. Real E, Aggarwal A, Huang Y, Le Q. Regularized evolution for image classifier architecture search. Proceedings of

the Thirty-Third AAAI conference on artificial intelligence. 2019;33(1):4780–4789.
6. Zoph B, Le QV. Neural architecture search with reinforcement learning. 2016. Preprint at https://arxiv.org/abs/1611.

01578.
7. Zoph B, Vasudevan V, Shlens J, Le Q. Learning transferable architectures for scalable image recognition. In:

Proceedings of the Thirty-First IEEE conference on computer vision and pattern recognition: 18-22 June 2018. Utah;
2017. p. 8697–8710.

8. Summers P. A methodology for lisp program construction from examples. J ACM (JACM). 1977;24(1):161–75.
9. Baker B, Gupta O, Raskar R, Naik N. Accelerating neural architecture search using performance prediction. 2017.

Preprint at https://arxiv.org/abs/1705.10823.
10. Brock A, Lim T, Ritchie JM, Weston N. Smash: one-shot model architecture search through hypernetworks. 2017.

Preprint at https://arxiv.org/abs/1708.05344.
11. Pham H, Guan M, Zoph B, Le Q, Dean J. Efficient neural architecture search via parameters sharing. In: Proceedings

of the Thirty-Fifth International Conference on Machine Learning: 10-15 July. Stockholm; 2018. p. 4095–4104.
12. Liu H, Simonyan K, Yang Y. Darts: Differentiable architecture search. 2018. Preprint at https://arxiv.org/abs/1806.

09055.
13. Lee B, Lee T, Na B, Yoon S. DNA-level splice junction prediction using deep recurrent neural networks. 2015.

Preprint at https://arxiv.org/abs/1512.05135.
14. Au K, Jiang H, Lin L, Xing Y, Wong W. Detection of splice junctions from paired-end rna-seq data by splicemap.

Nucleic Acids Res. 2010;38(14):4570–8.
15. Trapnell C, Pachter L, Salzberg S. Tophat: discovering splice junctions with rna-seq. Bioinforma. 2009;25(9):1105–11.
16. Baten AK, Chang BC, Halgamuge SK, Li J. Splice site identification using probabilistic parameters and svm

classification. BMC Bioinformatics BioMed Central. 2006;7(5):1–15.

https://arxiv.org/abs/1711.00436
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1705.10823
https://arxiv.org/abs/1708.05344
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1512.05135

Moosa et al. BioDataMining (2021) 14:15 Page 17 of 17

17. Meher P, Sahu T, Rao A, Wahi S. Identification of donor splice sites using support vector machine: a computational
approach based on positional, compositional and dependency features. Algorithm Mol Biol. 2016;11(1):16.

18. Zhang Y, Chu C-H, Chen Y, Zha H, Ji X. Splice site prediction using support vector machines with a bayes kernel.
Expert Syst Appl. 2006;30(1):73–81.

19. Wei D, Zhuang W, Jiang Q, Wei Y. A new classification method for human gene splice site prediction. In: He J, Liu
X, Krupinski EA, Xu G, editors. Health Information Science. Springer; 2012. p. 121–30.

20. Pashaei E, Aydin N. Markovian encoding models in human splice site recognition using svm. Comput Biol Chem.
2018;73:159–70.

21. Pashaei E, Yilmaz A, Aydin N. A combined SVM and Markov model approach for splice site identification. In:
Proceedings of the Sixth International Conference on Computer and Knowledge Engineering (ICCKE): 20-21
October 2016. Mashhad: IEEE; 2016. p. 200–4.

22. Meher P, Sahu T, Rao A. Prediction of donor splice sites using random forest with a new sequence encoding
approach. BioData Min. 2016;9(1):4.

23. Pashaei E, Ozen M, Aydin N. Splice site identification in human genome using random forest. Health Technol.
2017;7(1):141–52.

24. Pashaei E, Ozen M, Aydin N. Random forest in splice site prediction of human genome. In: Proceedings of the
Fourteenth Mediterranean Conference on Medical and Biological Engineering and Computing: 31 March-2 April
2016. Paphos: Springer; 2016. p. 518–23.

25. Lopes H, Erig Lima C, Murata N. A configware approach for high-speed parallel analysis of genomic data. J Circ Syst
Comput. 2007;16(04):527–40.

26. Kamath U, De Jong K, Shehu A. Effective automated feature construction and selection for classification of
biological sequences. PloS one. 2014;9(7):99982.

27. Zhang Q, Peng Q, Zhang Q, Yan Y, Li K, Li J. Splice sites prediction of human genome using length-variable
markov model and feature selection. Expert Syst Appl. 2010;37(4):2771–82.

28. Pashaei E, Yilmaz A, Ozen M, Aydin N. Prediction of splice site using AdaBoost with a new sequence encoding
approach. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC): 9-12
October 2016. Budapest: IEEE; 2016. p. 3853–3858.

29. Pashaei E, Yilmaz A, Ozen M, Aydin N. A novel method for splice sites prediction using sequence component and
hidden markov model. In: Proceedings of the 38th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC):16-20 August 2016. Florida: IEEE; 2016. p. 3076–9.

30. Pashaei E, Ozen M, Aydin N. Splice sites prediction of human genome using AdaBoost. In: Proceedings of the
IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI):24-27 February 2016. Las Vegas:
IEEE; 2016. p. 300–3.

31. Pashaei E, Aydin N. Frequency difference based DNA encoding methods in human splice site recognition. In:
Proceedings of the International Conference on Computer Science and Engineering (UBMK):5-7 July 2017. London:
IEEE; 2017. p. 586–91.

32. Ryen T, Eftes T, Kjosmoen T, Ruoff P, et al. Splice site prediction using artificial neural networks. In: Proceedings of
the Fifth International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics:3-4
October 2008. Berlin: Springer; 2008. p. 102–13.

33. Elsousy R, Kathiresan N, Boughorbel S. On the depth of deep learning models for splice site identification. bioRxiv,.
2018380667.

34. Du X, Yao Y, Diao Y, Zhu H, Zhang Y, Li S. Deepss: Exploring splice site motif through convolutional neural
network directly from dna sequence. IEEE Access. 2018;6:32958–78.

35. Albaradei S, Magana-Mora A, Thafar M, Uludag M, Bajic VB, Gojobori T, Magbubah E, Jankovic BR. Splice2Deep:
An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA. Gene: X.
2020;5:100035.

36. Wang R, Wang Z, Wang J, Li S. Splicefinder: ab initio prediction of splice sites using convolutional neural network.
BMC Bioinforma. 2019;20(23):652.

37. Naito T. Human splice-site prediction with deep neural networks. J Comput Biol. 2018;25(8):954–61.
38. Kothen-Hill ST, Zviran A, Schulman RC, Deochand S, Gaiti F, Maloney D, Huang K, Liao W, Robine N, Omans ND,

Landau D. Deep learning mutation prediction enables early stage lung cancer detection in liquid biopsy. In:
Proceedings of the Sixth International Conference on Learning Representations: 30 April-3 May 2018. Vancouver;
2018.

39. Lee T, Yoon S. Boosted categorical restricted Boltzmann machine for computational prediction of splice junctions.
In: Proceedings of the Thirty-Second International conference on machine learning: 6-11 July 2015. France; 2015. p.
2483–92.

40. Lee B, Baek J, Park S, Yoon S. deepTarget: end-to-end learning framework for microRNA target prediction using
deep recurrent neural networks. In: Proceedings of the Seventh ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics: 2-5 October 2016. Seattle: ACM; 2016. p. 434–42.

41. Xu Z-C, Wang P, Qiu W-R, Xiao X. iss-pc: Identifying splicing sites via physical-chemical properties using deep
sparse auto-encoder. Sci Rep. 2017;7(1):8222.

42. Sonnenburg S, Schweikert G, Philips P, Behr J, Rätsch G. Accurate splice site prediction using support vector
machines. In: BMC Bioinforma, vol. 8. Springer; 2007. p. 7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Splice site recognition problem

	Methods
	Datasets
	DNA representation
	DARTS algorithm
	Experimental setup and implementation
	Architecture search
	Architecture evaluation

	Results
	Classification results
	Execution time

	Precision

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

