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Abstract

Background: Accurate identification of acute ischemic stroke (AIS) patient cohorts is
essential for a wide range of clinical investigations. Automated phenotyping
methods that leverage electronic health records (EHRs) represent a fundamentally
new approach cohort identification without current laborious and ungeneralizable
generation of phenotyping algorithms. We systematically compared and evaluated
the ability of machine learning algorithms and case-control combinations to
phenotype acute ischemic stroke patients using data from an EHR.

Materials and methods: Using structured patient data from the EHR at a tertiary-
care hospital system, we built and evaluated machine learning models to identify
patients with AIS based on 75 different case-control and classifier combinations. We
then estimated the prevalence of AIS patients across the EHR. Finally, we externally
validated the ability of the models to detect AIS patients without AIS diagnosis
codes using the UK Biobank.

Results: Across all models, we found that the mean AUROC for detecting AIS was
0.963 ± 0.0520 and average precision score 0.790 ± 0.196 with minimal feature
processing. Classifiers trained with cases with AIS diagnosis codes and controls with
no cerebrovascular disease codes had the best average F1 score (0.832 ± 0.0383). In
the external validation, we found that the top probabilities from a model-predicted
AIS cohort were significantly enriched for AIS patients without AIS diagnosis codes
(60–150 fold over expected).

Conclusions: Our findings support machine learning algorithms as a generalizable
way to accurately identify AIS patients without using process-intensive manual
feature curation. When a set of AIS patients is unavailable, diagnosis codes may be
used to train classifier models.
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Background
Stroke is a complex disease that is a leading cause of death and severe disability for

millions of survivors worldwide [1]. Accurate identification of stroke etiology, which is

most commonly ischemic but encompasses several other causative mechanisms, is

essential for risk stratification, optimal treatment, and support of clinical research.

While electronic health records (EHR) are an emerging resource that can be used to

study stroke patients, identification of stroke patient cohorts using the EHR requires

the integration of multiple facets of data, including medical notes, labs, imaging reports,

and medical expertise of neurologists. This process is often manually performed and

time-consuming, and can reveal mis-classification errors [2]. One simple approach to

identify acute ischemic stroke (AIS) is the diagnosis-code based algorithm created by

Tirschwell and Longstreth [3]. However, identifying every AIS patient using these cri-

teria can be difficult due to the inaccuracy and incompleteness of diagnosis recording

through insurance billing [3–5]. Additionally, this approach prevents the identification

of AIS patients until after hospital discharge, thereby limiting the clinical usability of

identification algorithms in time-sensitive situations, such as in-hospital care manage-

ment, research protocol enrollment, or acute treatment.

Reproducibility and computability of phenotyping algorithms stem from the use of

structured data, standardized terminologies, and rule-based logic [6]. Phenotyping fea-

tures from the EHR have been traditionally culled and curated by experts to manually

construct algorithms [7], but machine learning techniques present the potential advan-

tage of automating this process of feature selection and refinement [8–11]. Recent ma-

chine learning approaches have also combined publicly available knowledge sources

with EHR data to facilitate feature curation [12, 13]. Additionally, while case and con-

trol phenotyping using EHR data has also relied on a small number of expert curated

cohorts, recent studies have demonstrated that ML approaches can expand upon and

identify such cohorts using automated feature selection and imperfect case definitions

in a high-throughput manner [14–18]. Studies have also shown that case and control

selection with diagnosis codes can significantly affect model performance, the hierarch-

ical organization of structured medical data can be utilized for feature reduction and

model performance improvement, and calibration is essential for understanding the

clinical utility of a phenotyping model [19–22]. Stroke phenotyping algorithms have

also used machine learning to enhance the classification performance of a diagnosis-

code based AIS phenotyping algorithm [23–26]. However, while ML models present an

opportunity to automate identification of AIS patients (i.e. phenotyping) with com-

monly accessible EHR data and develop new approaches to etiologic identification and

subtyping, the optimal combination of cases and controls to train such models remains

unclear.

Given the limitations of manual and diagnosis-code cohort identification, we sought

to develop phenotypic classifiers for AIS using machine learning approaches, with the

objective of specifically identifying AIS patients that were missing diagnosis codes.
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Additionally, considering the challenge of identifying true controls in the EHR for the

purpose of model training, we also attempted to determine the optimal grouping of

cases and controls by selecting and comparing model discriminatory performance with

multiple case-control group combinations. We also sought to contrast model training

based on cases defined by diagnostic code with that using manually-curated cohorts.

Our phenotyping method utilizes machine learning classifiers with minimal data pro-

cessing to increase the number of stroke patients recovered within the EHR and reduce

the time and effort needed to find them for research studies.

Results
Study cohort

Table 1 presents the data and the total number of patients available for each set of

cases and controls used in the training and internal and external validation parts of this

study. Out of the Columbia University Irving Medical Center (CUIMC) Clinical Data

Warehouse (CDW), which has a total of 6.4 million patients, we extracted 4844 stroke

service patients, which we found to have a 4–16% false positive rate for stroke through

manual review. Supplementary Table 2 presents demographic characteristics for the

training sets, and Supplementary Tables 3 and 4 present demographic and feature

category coverage for the testing sets.

Algorithm performance

We trained 75 models using all combinations of cases, controls, and model types after

excluding 15 neural network models due to poor performance (architecture described

in supplemental methods). Logistic regression classifiers with L1 penalty gave the best

area under the receiving operator curve (AUROC) performance (0.913–0.997) and the

Table 1 Select Structured Data and Sample Case/Controls for models available in Columbia
University Irving Medical Center Common Data Warehouse

Variable Identification N Samples

Total Patients CUIMC CDW Person ID 6,377,222

Diagnosis Codes ICD9-CM, ICD10-CM, SNOMED 140,300,457

Procedure Codes ICD9-CM, ICD10-CM, CPT, SNOMED 64,383,775

Prescription Orders RxNorm 40,759,814

Training Categories: Cases

(S) Cases: Stroke Service Patients Seen by NYP Stroke Service 4484

(T) Cases: AIS Tirschwell Criteria ICD9-CM: 434.×1, 433.×1, ICD10-CM: I63.xxx 79,306

(C) Cases: CCS Cerebrovascular Disease ICD9-CM: 346.6x,430, 431, 432.x, 433.xx 181,698

Training Categories: Controls

(N) Controls: AIS Mimetic Diseases ICD9-CM: 191.x, 225.x, 340, 250.0, 431 8438

(I) Controls: Without AIS Tirschwell Criteria No (T) Codes 5,243,646

(C) Controls: Without CCS Cerebrovascular
Disease

No (C) Codes 5,149,975

(CI) Controls: With CCS Cerebrovascular
disease, w/o AIS Tirschwell Criteria

(C) codes, No (T) codes 102,435

(R) Random set of patients With > = 1 ICD9-CM or ICD10-CM diagnosis code 5,396,172

NYP New York Presbyterian, AIS Acute Ischemic Stroke, CCS Clinical Classifications Software
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best average precision score (0.662–0.969), followed by logistic regression classifiers

with elastic net penalty (Fig. 1, Supplementary Table 5).

Across all classifier types, the models using the T-C case-control combination had

the best average F1 score (0.832 ± 0.0383), whereas logistic regression models with L1

penalty (LR) and elastic-net penalty had the best classifier average F1 score (0.705 ±

0.146 and 0.710 ± 0.134 respectively) (Fig. 1b, Supplementary Table 8). Use of cases

from the CUIMC stroke service gave the highest average precision (0.932 ± .0536),

while cases identified through AIS diagnosis codes and controls without cerebrovascu-

lar disease or acute ischemic stroke (AIS)-related diagnosis codes (TC, TI) gave high

precision as well (0.896 ± 0.0488 and 0.918 ± 0.0316, respectively). The sensitivity of the

models ranged widely, between 0.18 and 0.96, while specificity narrowly ranged be-

tween 0.993–1.0 (Supplementary Table 9).

We also evaluated the AUROC and maximum F1 Score using a hold-out test set of

Tirschwell (T) criteria cases and a random selection of (I) controls. We trained on S, T,

and C cases and C controls, and found AUROC of 0.932–0.937 for the TC and CC

trained sets and 0.69–0.87 for the SC trained sets. We also see a maximum F1 score of

0.351–0.432 for the TC and CC trained sets and 0.298–0.321 for the SC trained sets

(Supplementary Figure 35).

Feature importance

We found the most commonly chosen features associated with stroke diagnosis were

procedures used in evaluation of AIS, including extra- and intra-cranial arterial scans,

computerized tomography (CT) scans and magnetic resonance imaging (MRI) of the

brain, and MR angiography (Fig. 2a). We also found that all 75 models relied on incre-

mental contributions from many different features (Fig. 2b, Supplementary Figures 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34).

Fig. 1 Performance of select models on Stroke Service holdout test set ((a): AUROC (circle: median, bars: 50%
CI), (b): F1 (circle: median, bars: 50% CI)). Different combinations of cases and controls are shown on the y-axis.
(LR) logistic regression with l1 penalty, (RF) random forest, (AB) AdaBoost, (GB) gradient boosting, (EN) logistic
regression with elastic net penalty. Different combinations of cases and controls are shown on the y-axis. Cases
(first letter) may be one of cerebrovascular (C), T-L (T), or Stroke Service (S). Controls (second and third letters)
may be one of random (R), cerebrovascular disease but no AIS code (CI), no cerebrovascular disease (C), no AIS
code (I), or a stroke mimetic disease (N), See Methods and Supplementary Table 1 for definitions of sets.
Threshold to compute the F1 score on the testing set was chosen as the threshold that yielded the maximum
F1 in cross-validation on the training set (Methods, Supplementary Table 10)
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Internal validation in institutional EHR

We applied the 75 models to the entire CUIMC EHR with at least one diagnosis code,

totaling between 5,324,725 and 5,315,923 patients depending on the case/control set.

We found that the results varied widely across models, but most predicted a prevalence

of between 0.2–2% of patients in the EHR were AIS patients. The models with controls

with cerebrovascular disease codes but no AIS codes predicted the lowest prevalence of

AIS patients, and found 50.3–100% of the proposed patients had AIS diagnosis codes.

The models with the best performance and robustness, 1) stroke service cases and con-

trols without cerebrovascular disease codes and 2) cases with AIS codes and controls

without cerebrovascular disease codes with 1) Logistic Regression and L1 Penalty

classifier and 2) Adaboost classifier, had sensitivities between 0.822–0.959, specificities

0.994–0.999, and estimated AIS prevalence in the EHR ranging between 1.3–2.0%

(Supplementary Table 9, Table 2). Within these proposed AIS patients, 37.7–41.4% had

an AIS diagnosis code (Table 2).

External validation

We evaluated the performance of the TC models on identifying 2624 patients without

AIS ICD10 codes (Table 3). The top 50, 100, 500, and 2624 probabilities had a preci-

sion of over 29%, and up to 80% (Fig. 3). Since within the test set only 0.5% of the pa-

tients had AIS, this translates to a 60–150-fold increase in AIS detection over random

choice.

Discussion
Using a feature-agnostic, data-driven approach with minimal data transformation,

we developed models that identify acute ischemic stroke (AIS) patients from com-

monly-accessible EHR data at the time of patient hospitalization without making use of

Fig. 2 a Common top 10 features in the models. After each of the 75 models were trained, we counted
the number of times each feature was represented as one of the top ten by absolute coefficient weight, for
methods like logistic regression, or by feature importance, for methods like random forest. Above are
features from this analysis along with the proportion of models in which they were in the top ten (%
Models), the average frequency in the cases (Ave. Freq. Cases) and the average frequency in the controls
(Ave. Freq. Controls). b Prevalence of features in cases vs controls in the TC AB model. Axes were on a
logarithmic scale. Increasing size of blue dot correlates with higher feature importance or beta coefficient
weight, depending on the classifier type. Gray dots are features with zero importance
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AIS-related ICD9 and ICD10 codes as defined by Tirschwell and Longstreth. In demon-

strating that AIS patients can be recovered from other EHR-available structured clinical

features without AIS codes, this approach is in contrast to previous machine learning phe-

notyping algorithms, which have relied on manually curated features or use AIS-related

diagnosis codes as the sole nonzero features in their models [3, 23, 24].

Cases and controls for training of phenotyping algorithms can be challenging to iden-

tify and define given the richness of available EHR data. From the sparsity of diagnosis

codes in the EHR, it follows that patients lacking an AIS-related diagnosis code may

not always be considered as a control in stroke cohorts. Similarly, it is difficult to deter-

mine whether patients with cerebrovascular diseases, which can serve as risk factors for

AIS, or share genetic and pathophysiologic underpinnings with AIS should be consid-

ered controls. Additionally, due to the prevalence of AIS mimics, cohort definitions

based on diagnosis code criteria may be unreliable. In light of the problems in defining

patient cohorts from EHR data, we found marked differences in classifying performance

across 15 different case-control training sets. While training with cases from the

CUIMC stroke service cases identified stroke patients most accurately and with the

highest precision and recall, we also found that training with cases identified from AIS

Table 3 Select Structured Data and Case/Control criteria for external validation in the UK Biobank

UK Biobank Variables Identification N samples

Subject Data Diagnosis codes (ICD10), procedure codes (OCPS4),
medication prescriptions (Mapped to RxNorm), or
demographics

384,208

(T) Cases: AIS Tirschwell Criteria ICD10 I63.xxx, I64.x (41,202,41,204) 4922

(C) Controls: Without Cerebrovascular Disease No (C) Codes (41,202,41,204) 312,500

Self-reported AIS but no diagnosis codes Date of AIS (42008), no AIS Tirschwell Criteria 163

Table 2 Prevalence of acute ischemic stroke patients identified by each classifier across the EHR
and proportion of those patients with T-L criteria

Case/
Control
Combo

LR
EHR
Prev

RF
EHR
Prev

AB
EHR
Prev

GB
EHR
Prev

EN
EHR
Prev

LR with
AIS
codes

RF with
AIS
codes

AB with
AIS
codes

GB with
AIS
codes

EN with
AIS
codes

SN 0.7 0.7 1.0 1.3 0.7 41.3 32.2 35.6 29.0 26.4

SI 1.1 2.0 1.5 1.7 1.1 40.5 23.0 35.7 29.8 27.1

SC 1.3 1.7 1.5 1.8 1.3 37.7 25.4 37.9 30.8 28.5

SCI 0.2 0.1 0.2 0.3 0.2 83.1 82.6 76.9 72.2 63.5

SR 0.2 0.2 0.3 0.5 0.2 75.4 63.2 68.8 58.2 48.9

TN 0.9 0.8 0.9 1.0 0.9 44.7 28.5 47.2 35.6 22.5

TI 1.6 2.3 1.4 4.7 1.6 43.8 31.4 47.9 21.8 8.10

TC 1.7 2.7 2.0 1.6 1.7 41.4 28.2 39.0 43.1 32.6

TCI 0.1 0.0 0.1 0.1 0.1 94.6 96.1 85.9 95.3 79.0

TR 0.8 0.8 0.8 0.4 0.8 46.1 40.0 44.0 61.4 31.1

CN 1.3 1.3 1.3 1.0 1.3 34.0 17.1 33.5 31.5 21.4

CI 2.0 3.3 1.9 1.9 2.0 37.5 24.2 39.5 39.8 39.9

CC 2.3 3.3 2.2 2.1 2.3 35.6 25.3 37.2 37.1 29.9

CCI 0.0 0.0 0.1 0.0 0.0 97.5 100 50.3 92.8 74.2

CR 1.0 0.9 0.9 0.7 1.0 37.3 35.6 37.7 42.6 29.6

Prev: prevalence. See Supplementary Table 1 for case-control and model abbreviations’ definitions
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codes with controls from either 1) no cerebrovascular disease or 2) no AIS codes

afforded high precision (Supplementary Table 5). These findings suggest that a manu-

ally curated cohort may not be necessary to train the phenotyping models, and the AIS

codes may be enough to define a training set. Using these models, we also increased

our AIS patient cohort by 60% across the EHR, suggesting that the AIS codes them-

selves are not sufficient to identify all AIS patients.

We found that stroke evaluation procedures, such as a CT scan or MRI, were import-

ant features in many of the models, which corroborates with a previous study [23].

Since none of these models use AIS diagnosis codes as features, this suggests that pro-

cedures may serve as proxies for them when identifying AIS cohorts. In some cases, the

AIS code will only be added during outpatient follow up. For example, while in the

stroke service set, 13.5% of cases did not have AIS codes in the inpatient setting but

did in the outpatient setting, and 90% of these patients had had a CT scan of the head.

We also found evidence that procedures provided a significant contribution to classifi-

cation in the models in supplementary analysis (Supplementary Methods, Results, and

Supplementary Figure 4).

We found that as measured by AUROC and AP, discriminatory performance of the

random forest, logistic regression with L1 and elastic net penalties, and gradient boost-

ing models was robust, even when up to 95% of the training set was removed. These

findings showed that a training set size as small as 70–350 samples can maintain high

performance, depending on the model.

Our results from traditional model performance and robustness evaluations show

that our best machine learning phenotyping algorithm used Logistic Regression with

L1 penalty or AdaBoost classifiers trained with controls without any cerebrovascular

disease-related codes and a stroke service case population. However, we found that a

similar model performed comparably well using cases identified by AIS-related diagno-

sis codes, suggesting that these models do not require manual case curation for high

performance. In addition, our validation study in the UK Biobank detected AIS patients

without ICD10-CM codes up to 150-fold better than random selection.

Fig. 3 Precision-fold over random sampling of acute ischemic stroke cases without related ICD10 codes at
top 50, 100, 500, and 2624 patient probabilities assigned by machine learning algorithms. With 95%
confidence intervals in error bars. See Supplementary Table 1 for model abbreviations’ definitions

Thangaraj et al. BioData Mining           (2020) 13:21 Page 7 of 14



In light of our findings, we recommend using machine learning models trained on all

available structured EHR data, not just AIS diagnosis codes, to identify AIS patients.

Previous studies required time-consuming manual curation of features or trained on

only AIS codes, which would have missed AIS patients identified through a CT scan or

MRI but without AIS diagnosis codes [23, 24]. Our thorough investigation of feature

importance shows that each feature contributes to the improved performance of the

models. We also recommend restricting controls further to patients without cerebro-

vascular disease diagnosis codes, rather than just without AIS diagnosis codes to im-

prove discriminatory ability. In addition, we show improved AUROC and specificity,

and comparable sensitivity, precision, recall, and F1-score using SC and TC case-

control sets, to previous studies [23, 24]. Finally, as shown in Table 2, we show the vast

potential for identifying AIS cases in the EHR that do not have an AIS diagnosis code.

This study has several limitations. First, we relied on noisy labels and proxies for

training our models, as evidenced by our manual review false positive rate. Without a

gold standard set of cases, model performance is difficult to definitively evaluate. We

relied on pre-defined codes, the Tirschwell criteria, and patients evaluated for stroke as

our cases. We included a random set of patients as our holdout control test set for rep-

resentation of all patients in the EHR. This is a limitation, however, because patients

with Tirschwell criteria could be labeled as random controls. We addressed this by re-

moving any Tirschwell criteria patients from the hold out controls. In general, the use

of random controls could lead to overlapping of cases and controls, especially in com-

mon disease, but one can use known diagnostic codes for the disease to separate cases

and controls. Our method importantly does not include any codes used in the case and

control definitions in our machine learned features in order to identify other features

involved in defining stroke patients. We do this so that our models are not reidentifying

Tirschwell criteria, and instead are identifying novel features complementary to the cri-

teria. This removal of overlapping cases and controls can also influence our calibration

results described in the supplementary materials by changing the proportion of ex-

pected stroke cases at each probability score; however, this only amounted to a removal

of 0.05% of overlapping patients. We also do see a marked decreased in F1 performance

and a slight decrease in AUROC when testing on hold out Tirschwell criteria cases in-

stead of Stroke Service cases in the Columbia EHR. This may be due to better docu-

mentation of structured EHR data, particularly procedures and medications, in Stroke

Service patients as seen in Supplementary Table 4. However, in the UK Biobank, which

used Tirschwell criteria cases as a holdout test set, we see high precision in identifying

AIS patients over random. This would suggest reduction in sensitivity of our model.

Second, we used only structured features contained within standard terminologies

across the patients’ entire timeline, and did not use clinical notes. In addition, the

biases inherent in phenotyping with billing codes are a significant limitation. Often the

data is missing not at random, and data completeness relies on patient interaction with

the healthcare system, which can lead to ascertainment bias towards diagnoses and

tests that doctors already suspect or patients who actively seek care and make general-

izing outcomes from these patients difficult [5, 27–30]. Diagnosis also often are chosen

for reimbursement purposes rather than actual diagnosis, and diagnosis code use

changes over time, leading to inaccuracies in phenotyping [27, 28]. Given previous

studies, however, it has been established that stroke can be identified by diagnosis codes
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with high sensitivity, specificity, and positive predictive value [3, 31]. While clinical notes

may contain much highly relevant information, they may also give rise to less reproducible

and generalizable feature sets. Additionally, each feature contributed incrementally to high

performance of the models and required minimal processing to acquire. Third, due to

limitations of time and computational complexity, we did not exhaustively explore all pos-

sible combinations of cases and controls, including other potential AIS mimetic diseases.

Despite these limitations, precision in the internal validation using the held-out set was

high, and when applied to an external validation cohort, the developed models improved

detection of AIS patients between 60 and 150-fold over random patient identification.

Fourth, we did not study clinical implementation of the models. However, the discrimin-

atory ability of the classifiers in the external validation suggest that although these models

have not been implemented clinically, they may potentially be useful for improving the

power of existing clinical and research study cohorts.

Our study benefits from several strengths. First, to address the current deficiencies in de-

veloping phenotyping algorithms, we developed an approach that demonstrates comparable

discriminatory ability of identifying patients with AIS to past methods but has the added

benefit of using EHR data that is generally available during inpatient hospitalization. Second,

our model features were composed of structured data that encompass a larger feature var-

iety than purely ICD-code based algorithms. Third, because our model incorporated struc-

tured data from standard terminologies, they therefore may be generalizable to other health

systems outside CUIMC, whereas recent studies have relied on manually curated feature

sets [23]. Fourth, we examined several different combinations of cases, controls and classi-

fiers for the purposes of training phenotyping models. Finally, our phenotype classifiers as-

sign probability of having had an AIS, which moves beyond binary classification of patients

to develop a more granular description of patient’s disease state.

Conclusions
In addition to research tasks such as cohort identification, future models could focus on

timely interventions such as care planning prior to discharge and risk stratification. We

showed that structured data may be sufficiently accurate for classification, allowing for

widespread usability of the algorithm. We also demonstrated the potential for using ma-

chine learning classifiers for cohort identification, which achieve high performance with

many features acquired through minimal processing. In addition, patient cohorts derived

using AIS diagnosis codes may obviate the need for manually-curated cohorts of patients

with AIS, and procedure codes may be useful in identifying patients with AIS that may

not have been coded with AIS-related diagnosis codes. We, and others, hypothesize that

expanding cohort size by assigning a probability of disease may improve the power of her-

itability and genome-wide association studies [5, 32–36]. Utilizing the structured frame-

work present in many current EHRs, along with machine learning models may provide a

generalizable approach for expanding research study cohort size.

Methods
Study design

In this study, we developed several machine learning phenotyping models for AIS using

combinations of different case and control groups derived from our institution’s EHR
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data. Use of Columbia patient data was approved by Columbia’s institutional review

board and UK Biobank data approved with UK Biobank Research Ethics Committee

(REC) approval number 16/NW/0274. We also applied key methods to optimize num-

ber of features for generalizability, as well as calibration to ensure a clinically meaning-

ful model output, and model robustness to missing data. To estimate the prevalence of

potential AIS patients without AIS-related International Classification of Diseases-

Clinical Modification (ICD-CM) codes, we then applied the developed models to all pa-

tients in our institutional EHR. Finally, we externally validated our best-performing

model in an independent cohort from the UK Biobank to evaluate its ability to detect

AIS patients without the requisite ICD codes. Figure 4 shows the overall workflow of

training and testing the models, the models’ evaluation, and its testing in an independ-

ent test set.

Data sources

We used data from patients in the Columbia University Irving Medical Center Clinical

Data Warehouse (CUIMC CDW), which contains longitudinal health records of 6.4

million patients from CUIMC’s EHR, spanning 1985–2018. The data are organized into

tables and standardized vocabularies and terminologies in the format of the Observa-

tional Health Data Sciences and Informatics (OHDSI) Observational Medical Outcomes

Partnership Common Data Model (OMOP CDM) [37]. The data include structured

medical data such as conditions, procedures, medication orders, lab measurement

values, visit type, demographics, and observations. This includes patients from the

CUIMC stroke service (Fig. 4, Table 1) that were part of a larger group of patients with

acute cerebrovascular diseases and were prospectively identified upon admission to

Fig. 4 Schematic of Model Training, Testing, Evaluation, and Application to UK Biobank. See methods for case/
control abbreviations. Case: Control ratio was 1:1, subjects overlapping in the case and control definitions were
removed from the control set, and subjects overlapping between the training and testing sets were removed
from the testing set before any training or testing. Models included Random Forest (RF), Logistic Regression
with L1 penalty (LR), Neural Network (NN), Gradient Boosting (GB), Logistic Regression with Elastic Net Penalty
(EN) and Adaboost (AB). AUROC: Area Under the Receiver Operating Curve, AUPR: Area under the Precision-
Recall Curve, Sens: Sensitivity, Spec: Specificity, PPV: Positive Predictive Value, NPV: Negative Predictive Value
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New York Presbyterian Hospital and recorded as part of daily research activities by a

CUIMC stroke physician between 2011 and 2018. Two researchers (PT and BK) each

manually reviewed 50 patients’ charts for a total of 100 patients from this cohort to de-

termine baseline false positive rates.

Patient population

We defined 3 case groups. We first included all patients from the CUIMC stroke ser-

vice that were recorded as having AIS (cohort S). We then defined all patients in the

CDW that met the Tirschwell-Longstreth (T-L) diagnosis code criteria for AIS (cohort

T), which comprise ICD9-CM codes 434.× 1, 433.× 1, 436 (where x is any number) and

the code is in the primary diagnostic position [3]. Our dataset did not specify the diag-

nostic position of codes. We also included ICD10-CM code equivalents, I63.xxx or

I67.89, with the ICD10-CM codes being determined from ICD9-CM from Centers for

Medicaid and Medicare Services (CMS) General Equivalence Mappings,] with a “10,

000” flag [38]. Because patients with cerebrovascular disease are also likely to have suf-

fered AIS, but may not have an attached AIS-related diagnosis code, we also created a

group of cases according to cerebrovascular disease-related ICD codes defined by the

ICD-9-Clinical Modification (CM) Clinical Classifications Software tool (CCS), as well

as their ICD10-CM equivalents (cohort C) [39].

We then defined 4 control groups (Fig. 4, Table 1). First, we defined a control group

of patients without AIS-related diagnosis codes (I). Due to the fact that cerebrovascular

disease is a major risk factor for stroke [40, 41], and to test a more stringent control

definition than that of group (I), we also defined an additional group without any of the

CCS cerebrovascular disease codes defined in cohort (C). Then, we defined a control

set using CCS cerebrovascular disease diagnosis codes other than AIS (CI). Because

multiple clinical entities can present as AIS, we also defined a group of controls accord-

ing to diagnosis codes for AIS mimetic diseases (N), including hemiplegic migraine

(ICD9-CM 346.3), brain tumor (191.xx, 225.0), multiple sclerosis (340), cerebral

hemorrhage (431), and hypoglycemia with coma (251.0). Finally, we identified a control

group culled from a random sample of patients (R).

Model features

From the CDW, we gathered race, ethnicity, age, sex, diagnostic and procedure insur-

ance billing codes as well as medication prescriptions for all patients. We dichotomized

each feature based on its presence or absence in the data. Because Systematized No-

menclature of Medicine (SNOMED) concept IDs perform similarly to ICD9-CM and

ICD10-CM codes for phenotyping [42], we mapped diagnoses and procedure features

from ICD9-CM, ICD10-CM, and Current Procedural Terminology 4 (CPT4) codes to

SNOMED concept IDs using the OHDSI OMOP mappings, and used RxNorm IDs for

medication prescriptions. We identified patients with Hispanic ethnicity using an algo-

rithm combining race and ethnicity codes [43]. The most recent diagnosis in the med-

ical record served as the age end point and we dichotomized age as greater than or

equal, or less than 50 years. We excluded from our feature set any diagnosis codes that

were used in any case or control definitions. Because approximately 5 million patients

exist in the CUIMC CDW without a cerebrovascular disease diagnosis code, we
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addressed this large resultant imbalance in cases and controls by randomly sampling

controls to create a balanced, or 1:1 case to control ratio. In addition, we set the max-

imum sample size to 16,000 patients in order to control the size of the feature set.

See Supplementary Methods for model development.

Internal validation using all EHR patients

To identify the number of patients classified as having AIS in our institutional EHR, we

applied each of the 75 models to the entire patient population in the CUIMC CDW

with at least one diagnosis code. We chose a probability threshold based on the max-

imum F1 score determined for each model from the training set. We also determined

the percentage of patients that had AIS ICD9-CM codes as defined by T-L criteria and

associated ICD10-CM codes.

External validation

The UK Biobank is a prospective health study of over 500,000 participants, ages 40–69,

containing comprehensive EHR and genetic data [44]. Given that this dataset contains

4922 patients with an AIS related ICD10 code, similar to our T case cohort criteria,

and 163 patients with self-reported AIS, the UK Biobank can evaluate our machine

learning models’ ability to recover potential AIS patients that lack AIS-related ICD10

codes. In a systemic review, the UK Biobank Stroke Outcomes group found positive

predictive value between 22 and 87% and negative predictive value between 88 and 99%

for self-reported strokes [31]. One difference between the UK Biobank definition of the

AIS related ICD10 codes and our definition is their addition of code I64, which trans-

lates as “Stroke, not specified as haemorrhage or infarction”. We chose the most accur-

ate and robust case-control combination from our models (cases defined by the T-L

AIS codes (T) and controls without codes for cerebrovascular disease (C) in a 1:1 case-

control ratio as our training set) to train the phenotyping model using conditions speci-

fied by ICD10 codes, procedures specified by OCPS4 codes, medications specified by

RxNorm codes, and demographics as features, excluding features that were used to cre-

ate the training and testing cohorts. We trained on half of the patients with AIS related

ICD10 codes, and then tested our models on the rest of the UK Biobank data which in-

cluded self-reported AIS cases and the other half of the patients with AIS related

ICD10 codes. We added these patients to improve the power of detecting cases, and we

removed the AIS related ICD10 codes from our feature set to prevent recovery of

patients due to these codes. We resampled the control set 50 times and evaluated the

performance of the algorithm through AUROC, AP, and precision at the top 50, 100,

500 and 2624 patients (ordered by model probability).
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