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Abstract

Background: B-cell epitopes play important roles in vaccine design, clinical diagnosis,
and antibody production. Although some models have been developed to predict
linear or conformational B-cell epitopes, their performance is still unsatisfactory.
Hundreds of thousands of linear B-cell epitope data have accumulated in the Immune
Epitope Database (IEDB). These data can be explored using the deep learning methods,
in order to create better predictive models for linear B-cell epitopes.

Results: After data cleaning, we obtained 240,563 peptide samples with experimental
evidence from the IEDB database, including 25,884 linear B-cell epitopes and 214,679
non-epitopes. Based on the peptide center, we adapted each peptide to the same
length by trimming or extending. A random portion of the data, with the same
amount of epitopes and non-epitopes, were set aside as test dataset. Then a same
number of epitopes and non-epitopes were randomly selected from the remaining
data to build a classifier with the feedforward deep neural network. We built eleven
classifiers to form an ensemble prediction model. The model will report a peptide as an
epitope if it was classified as epitope by all eleven classifiers. Then we used the test
data set to evaluate the performance of the model using the area value under the
receiver operating characteristic (ROC) curve (AUC) as an indicator. We established 40
models to predict linear B-cell epitopes of length from 11 to 50 separately, and found
that the AUC value increased with the length and tended to be stable when the length
was 38. Repeated results showed that the models constructed by this method were
robust. Tested on our and two public test datasets, our models outperformed current
major models available.

Conclusions: We applied the feedforward deep neural network to the large amount of
linear B-cell epitope data with experimental evidence in the IEDB database, and
constructed ensemble prediction models with better performance than the current
major models available. We named the models as DLBEpitope and provided web
services using the models at http://ccb1.bmi.ac.cn:81/dlbepitope/.

Keywords: Deep learning, Prediction, Linear B-cell epitope

Background
As B-cell epitopes play an important role in vaccine design, clinical diagnosis, and anti-

body production, a limited number of prediction models for linear or conformational
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B-cell epitopes have been developed [1, 2]. However, due to the easy operation of linear

epitopes in experiments, it is highly desirable to develop accurate prediction models for

linear B-cell epitopes, including traditional propensity scale-based methods [3–6] and

machine learning-based models [7–18].

The traditional methods firstly assign some physicochemical properties to each amino

acid (AA) in an antigen sequence. The commonly-used properties are hydrophilicity

[3], flexibility [4], accessibility [5], and antigenicity [6]. In addition, there are 544 prop-

erties in the AAindex database [19]. Then a smoothing window was applied to calculate

the average index along the antigen. Eventually, the peptides flanking the local max-

imum average index were taken as the potential B-cell epitopes. However, a study con-

ducted by Blythe and Flower demonstrated that propensity scale-based methods are

only marginally better than random ones [20].

To improve the performance, some machine learning-based models have been devel-

oped [7–18]. For example, based on the training dataset of 700 B-cell epitopes and 700

non-B-cell epitopes, the ABCpred model was developed using recurrent neural network

[7]. The accuracy of five-cross-validation was 65.93%. In Bepipred1.0 [8], the combin-

ation of Hidden Markov Model and propensity scale methods was applied. In

Bepipred2.0 [11], the random forest methods were applied to develop models with the

annotated PDB data as the training and test datasets. Especially, the support vector ma-

chines were extensively used in developing models, which included AAP [12], BCpred

and FBCpred [13], AAPpred [14], Bayesb [15], LEPS [16], SVMTriP [17], BEST [18],

Lbtope [9], and APCpred [10]. Although these models have been developed, their per-

formance is still away from satisfactory level. For example, the newly developed

BepiPred2.0 [11] model and previous version Bepipred1.0 [8] were assessed on a test

dataset, which contained 11,839 positive and 18,722 negative validated peptides ob-

tained from the Immune Epitope Database (IEDB) [21]. The results indicated that the

values of area under the receiver operating characteristic (ROC) curve (AUC) were only

57.40 and 54.80%, respectively. Therefore, it is necessary to develop more accurate

models. In the present study, we explored the application of feedforward deep neural

network for developing prediction models for linear B-cell epitopes.

Methods
This work aimed to improve performance of linear B-cell epitope prediction by devel-

oping new models. To ensure the quality of training and testing samples, the sample

data was obtained from the IEDB database and only those with experimental evidence

were used. Feedforward deep neural network based classifiers were trained on these

data and used as an ensemble model to improve prediction performance.

IEDB dataset

To develop prediction models for linear B-cell epitopes, it is necessary to collect

experimentally-confirmed datasets. To date, some databases for B-cell epitopes have

been developed [1, 2]. However, the IEDB database is the most comprehensive database

[21], containing the largest number of confirmed epitopes and non-epitopes. Therefore,

we chose the IEDB database to develop the models.
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For this purpose, we initially downloaded all 408,251 IEDB entries (March 28, 2018).

Each entry contained 114 fields, such as host, antigen sequence name, peptide, and the

start and end positions of peptide on the antigen sequence. From the 408,251 entries,

we extracted 377,839 peptides as linear epitopes or non-epitopes. Through data wash-

ing strategies such as having full antigen sequence, unique epitope IRI accession num-

ber (IEDB ID), and peptide length located in the interval (10, 50], we finally achieved

240,563 peptides. Here, we considered the peptides with some properties, including

“Positive”, “Positive-High”, “Positive-Intermediate”, or “Positive-Low” as the positive

samples, which led to obtain 25,884 positive samples. The remaining were 214,679

negative samples. These IEDB peptides have different lengths as well.

To determine the optimal length for linear B-cell epitope prediction, we applied the

traditional truncation and extension technique to generate a series of IEDBx datasets

(x = 11, 12, …, 50), in which x represents the length of extracted peptides. We firstly

downloaded 6086 antigen sequences from National Center for Biotechnology Informa-

tion (NCBI) database using antigen sequence’s names associated with the samples.

Then, we mapped each IEDB peptide on the antigen sequence. The integer part of the

average of start and end positions was taken as the center position. According to the

center position and the expected peptide length x, the corresponding peptides were ex-

tracted, and the IEDBx datasets were then constructed. Subsequently, duplicates were

checked to ensure that all samples were unique in each dataset. An IEDBx dataset con-

taining peptides of length x was used to build a model predicting epitopes of length x.

The series of IEDBx datasets were used to build models predicting epitopes of length

from 11 to 50, and thus determine the optimal length for epitope prediction.

Lbtope_Fixed dataset

To compare performance between our models and existing models, it is necessary to

construct a large independent test dataset. We downloaded the Lbtope_Fixed dataset

from the Lbtope web server as one of the third-party datasets [9]. It was derived from

peptides not less than 5 AAs in IEDB database, and published in 2013, containing 12,

063 positive and 20,589 negative samples with 20 AAs long. We removed the intersec-

tion of Lbtope_Fixed and IEDB20 from Lbtope_Fixed. Therefore, the rest of the

Lbtope_Fixed dataset had not been seen by our model and could be used fairly to com-

pare our method with other methods. The rest of the Lbtope_Fixed dataset contained

8661 positive and 16,492 negative samples which can be downloaded from http://ccb1.

bmi.ac.cn:81/dlbepitope/independenttest/Lbtope_Fixed.csv.

ABCpred16 dataset

The ABCpred [7] web server provided an independent test dataset for comparing per-

formance of different models. It contains 109 positive and 200 negative samples with

16 AAs long, and another 78 positive samples longer than 16 AAs, which generated 78

additional samples with 16 AAs long through the traditional truncation and extension

technique. After carefully checking, three samples with unknown amino acid letter and

two repeat samples were deleted. Also, we removed the intersection of ABCpred16 and

IEDB16 from ABCpred16. Therefore, the rest of the ABCpred16 dataset had not been

seen by our model and could be used fairly to compare our method with other
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methods. The rest of ABCpred16 dataset contained 107 positive and 196 negative sam-

ples which can be downloaded from http://ccb1.bmi.ac.cn:81/dlbepitope/independent-

test/ABCpred16.csv.

Feature extraction

There are 20 amino acids that make up peptides. Dipeptide means two amino acids

joined by a single peptide bond. So, there are 400 possible dipeptides. For a peptide of

length n, it can be divided into n-1 dipeptide. The fractions of all 400 dipeptides in a

peptide form a vector of 400 elements named dipeptide composition, whose elements

should add up to 1. Therefore, each peptide is represented by its dipeptide composition.

We applied dipeptide composition to describe each peptide (epitope or non-epitope).

And these dipeptide composition vectors were utilized for developing prediction

models. In fact, dipeptide composition has been used to obtain amino acid pair antige-

nicity scale in AAP model [12].

Ensemble deep learning methods

In IEDBx datasets, the numbers of positive samples approximately ranged from 21 to

24 thousands, and the numbers of negative samples approximately ranged from 196 to

211 thousands. Therefore, ensemble learning was adopted to deal with the imbalance

in the number of negative and positive samples. We used subsampling to make child

datasets with diversity and balanced samples. For each IEDBx dataset, 20 thousands

positive samples were randomly selected as the positive training set. The remaining

positive samples were taken as the hold-out positive test set, and the same amount of

negative samples were randomly selected as the hold-out negative test set. As a pool of

negative training samples, the remaining negative samples were used to generate ran-

dom subsample containing 20 thousands samples. The training set and hold-out test

set can be obtained from http://ccb1.bmi.ac.cn:81/dlbepitope/index.php?r=/site/inde-

pendenttest. The positive training set and a negative subsample made up a child train-

ing set with positive and negative samples balanced. Totally 11 negative subsamples

were generated, and thus 11 child training sets were created, from which 11 classifiers

were generated. These classifiers were combined as an ensemble model to score candi-

date epitope. If a peptide was predicted as epitope by a classifier, one was assigned;

otherwise, zero was given. When all 11 classifiers were applied, 11 values achieved. The

sum of these 11 values was taken as an index to indicate whether a peptide is an epi-

tope. Obviously, if the sum is 11, the peptide will have the strongest signal to be an epi-

tope. The procedure of ensemble learning is illustrated in Fig. 1b, in which IEDB38

dataset was used as an example to demonstrate the process. Finally, the AUC value

from the hold-out test set was used to evaluate the performance of the ensemble

model. And the allocation of training and hold-out test sets was selected to ensure the

stable performance on hold-out test sets.

The classifiers were generated by the feedforward deep neural network. The R pack-

age “keras” was used to build the network. The input layer is a vector of 400 elements,

which are dipeptide compositions from each peptide. The output layer contained 2

units corresponding to epitope and non-epitope respectively, which had a full connec-

tion with the previous layer. The activation function “softmax” was used for the output
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layer. Here, we set up “categorical_crossentropy” as the loss function, “optimizer_

rmsprop” as the optimizer function, and “accuracy” as the metric. The network was

evaluated on the corresponding hold-out test set. The R package “tfruns” was used to

tune the hyperparameters for an evaluation accuracy as high as possible. To prevent

overfitting, it’s usually best to start with relatively few layers and parameters, then begin

increasing the size of the layers or adding new layers. We started with one hidden layer

and ended up with four hidden layers with evaluation accuracy reaching about 0.8. The

number of units in the hidden layers was 200, 100, 40, and 20, respectively. The de-

tailed architecture is provided in Fig. 1a. Additionally, the rate 0.4 was assigned for each

layer dropout to prevent overfitting, and the activation function “relu” was used as well.

The other parameters are as follows: shuffle = TRUE, epochs = 400, batch_size = 8000,

and validation_split = 0.2, in which the last parameter means that 20% of samples in the

training dataset were used as the validation set to optimize the training parameters.

Additionally, because performance of models measured by accuracy, sensitivity, speci-

ficity, positive prediction rate, or Mathew’s correlation coefficient was dependent on

the parameters used, herein, we applied AUC value, which was not dependent on the

parameters used, to compare the performance of different models. Here, the R package

“pROC” was used to calculate AUC value [22].

Fig. 1 Architecture of feedforward deep neural network (panel a) and flowchart of ensemble model
development using IEDB38 dataset as an example (panel b). “pos” and “neg” mean positive and negative
samples; “test” stands for test dataset, and “training” for training dataset
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Performance stability analysis

To determine whether the performance was associated with the sampling strategy to

form the training and test datasets, we developed 10 models for IEDBx through repeat-

edly using the procedures as demonstrated in Fig. 1b by ten times, and correspondingly

10 AUC values were obtained from the test datasets. The standard deviation of the ten

AUC values was used to evaluate the performance stability.

Results
Optimal length for prediction of linear B-cell epitope

To determine the optimal length for prediction of linear B-cell epitope, each IEDBx

dataset was applied to extract the training and test datasets separately. Considering that

the number of negative samples is far larger than that of positive samples, we adopted

the ensemble learning and feedforward deep neural network to develop predictive

models. The detailed processes for developing models are illustrated in Fig. 1b, in

which IEDB38 was used as an example to demonstrate the process.

The IEDB38 dataset contains 22,012 positive and 201,563 negative samples. We ran-

domly extracted 20,000 positive samples as the positive training set. The remaining

2012 positive samples were taken as the independent positive test set. Then, 2012 nega-

tive samples were randomly extracted as the independent negative test sets. The

remaining 199,551 negative samples were applied to establish 11 negative training sets

through sampling with replacement, in which each set contains 20,000 samples. The

third step is to develop a prediction ensemble model, DLBEpitope, using the positive

training set and each of 11 negative training set.

For another IEDBx dataset, each training set was also composed of 20,000 positive

and 20,000 negative samples. However, the number of test samples may be different.

We used the AUC value from the independent test set to evaluate the performance of

the ensemble model. The relationship between the epitope lengths and AUC values

was displayed in Fig. 2a. It can be seen that the AUC values gradually increased with

the epitope length. When the length reached 38, the AUC values become relatively

stable. Herein, we selected values of epitope length equal to 16, 22, 31, and 38 for con-

ducting further AUC stability analysis. The length of 16 was chosen because this length

was often used in other models, such as ABCpred [7] and APCpred [10]. The other

Fig. 2 Models for different epitope length result in different AUC values (panel a), while the AUC values
keep stable for models with the same epitope length (panel b). The AUC values were calculated using test
datasets. The “sd” stands for standard deviation of 10 AUC values
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length values equal to 22, 31, and 38 were also selected because the corresponding

AUC values of these lengths were local maximum, as shown in Fig. 2a.

The DLBEpitope models are stable

We developed ten ensemble models for each IEDBx (x = 16, 22, 31, 38) through repeat-

ing ten times the procedure as demonstrated in Fig. 1b, and obtained ten AUC values.

The boxplots of these AUC values are illustrated in Fig. 2b, in which it can be seen that

the AUC values were maintained, which implied that the performance of the ensemble

models is stable.

Comparing with other models

We applied three datasets to compare the performance of DLBEpitope model with

ABCpred [7], BepiPred1.0 [8], BepiPred2.0 [11], AAPpred [14], and APCpred [10] models.

The first dataset was derived from each IEDBx (x = 16, 18, 20, 22, 31, and 38). Here, the

lengths of 16, 18, and 20 were selected because ABCpred [7] and APCpred [10] models

only provided these options. Additionally, the AAPpred [14] model only considers the

length of 20 AAs. The reason to choose the lengths of 22, 31, and 38 is that the AUC

values of these lengths were the local maximum (Fig. 2a). The second dataset was

Lbtope_Fixed, which contained 8661 epitopes and 16,492 non-epitopes. Each sample had

20 AAs long. The third dataset was ABCpred16 with 107 positive and 196 negative sam-

ples. All three datasets can be downloaded from our web server as well.

Utilizing the DLBEpitope dataset to compare the performance of different models

Here the test datasets obtained from IEDBx (x = 16, 18, 20, 22, 31 and 38) were used to

compare the performance of the ABCpred [7], APCpred [10], AAPpred [14],

BepiPred1.0 [8], BepiPred2.0 [11] models and our model DLBEpitope. For each IEDBx,

the test dataset had no overlap with the training dataset, which led to guarantee a fair

comparison. The number of samples in the test datasets was 6922, 6614, 6454, 6072,

4990, and 4024, respectively, in which the number of positive samples was as same as

the number of negative samples. In view that some models only predict certain length

values of epitopes, the detailed strategies for making comparison are as follows:

DLBEpitope16-test, DLBEpitope18-test, and DLBEpitope20-test for ABCpred [7],

APCpred [10], BepiPred1.0 [8], BepiPred2.0 [11], and DLBEpitope models;

DLBEpitope22-test, DLBEpitope31-test, and DLBEpitope38-test for BepiPred1.0 [8],

BepiPred2.0 [11], and DLBEpitope models. Additionally, the AAPpred model [14] was

incorporated into the DLBEpitope20-test dataset-based comparison. The ROC plots

and the corresponding AUC values are illustrated in Fig. 3 and Table 1, in which two

conclusions were drawn. The first conclusion is that the DLBEpitope model has the

best AUC value for each epitope length. The second one is that the Bepipred2.0 model

[11] has superior performance than that of Bepipred1.0 model [8], which is consistent

with the results obtained from a previous study [11].

For ABCpred [7] and APCpred [10] models, all peptides from each test dataset were

linked together and were submitted to the ABCpred web server or were predicted using

in-house program, in which the options were set up to ensure that the potential epi-

topes were obtained as many as possible. Finally, all peptides and their scores in each
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test dataset were achieved through the intersection set of the prediction results and the

relevant test datasets. Those scores were used to calculate AUC values.

For the Bepipred1.0 model [8], all peptides from each test dataset were submitted to

the Bepipred1.0 web server with the default parameters. The outputs were the list of

residues and their scores in each peptide. To obtain AUC values, each peptide was

assigned a score by the average, minimum or maximum of the residue scores in the

peptide, respectively. We found that the average-based AUC values were always the lar-

gest. Therefore, the average-based ROCs and associated AUC values were provided.

Fig. 3 Performance comparisons among various models, including DLBEpitope, APCpred, Bepipred2.0,
Bepipred1.0, ABCpred, AAPpred_svm1 and AAPpred_svm2 using DLBEpitopeX-test datasets (X is 16, 18, 20,
22, 31 and 38 for panels a-f separately). Epitope lengths of each dataset and AUC values for each model
are displayed

Table 1 Linear B-cell epitope prediction performance of various methods

Method Performance (AUC values) on datasets

IEDB16 IEDB18 IEDB20 IEDB22 IEDB31 IEDB38 Lbtope_Fixed ABCpred16

AAPpred_svm1 NA NA 50.26 NA NA NA 53.01 NA

AAPpred_svm2 NA NA 52.05 NA NA NA 53.83 NA

ABCpred 51.41 51.33 53.19 NA NA NA 51.54 55.29

APCpred 62.42 37.63 48.43 NA NA NA 51.01 61.19

Bepipred1.0 51.22 51.03 50.61 52.18 51.4 50.32 55.79 61.88

Bepipred2.0 51.89 52.10 51.26 52.8 54.02 53.85 53.23 55.33

DLBEpitope 88.80 89.98 90.85 91.58 93.95 95.68 73.83 65.5

NA the method does not predict epitope of this length

Liu et al. BioData Mining            (2020) 13:1 Page 8 of 13



For the Bepipred2.0 model [11], we downloaded and ran the software locally. Then,

the processes similar to those used for Bepipred1.0 [8] were used to calculate the

average-based AUC values.

For the AAPpred model [14], we only considered the DLBEpitope20-test dataset, be-

cause the web server only predicted the peptides of 20 AAs long. Furthermore, the web

server only predicted one peptide each time. Herein, we wrote a local R program

AAPpred to submit the peptides to the web server and automatically fetch the predic-

tion results. This model provided two prediction results for each sample, one from the

combination of amino acid pair antigenicity (AAP) and amino acid propensity scales

(AAPpred_svm1), the other from only the AAP (AAPpred_svm2). The AUC values

were calculated using the prediction results as well.

For the DLBEpitope model, we firstly calculated the dipeptide compositions of

each sample in each test dataset. Then, the DLBEpitopeX model, which was com-

posed of 11 classifiers, was applied to predict each sample. In other words, each

sample was assigned 1 (positive) or 0 (negative) by 11 times. The sum of these 11

values were used to calculate AUC values for the lengths of 16, 18, 20, 22, 31, and

38, respectively. Additionally, all samples were also directly submitted to the DLBE-

pitope web server. Then, each peptide was given a score ranged from 0 to 11 in

order to calculate AUC values.

Utilizing the Lbtope_Fixed and ABCpred16 datasets to compare the performance of

different models

With the intersection of IEDB20 and Lbtope_Fixed removed, the modified Lbtope_

Fixed test dataset contained 8661 positive and 16,492 negative samples. To the best of

our knownledge, this is the largest third-party dataset for comparing the performance

of different models. Therefore, the dataset facilitated making objective comparison on

performance among the models of DLBEpitope, ABCpred [7], Beprpred1.0 [8],

Bepipred2.0 [11], AAPpred_svm1.0, AAPpred_svm2 [14],and APCpred [10]. According

to the prediction results, the AUC values were calculated and displayed in Fig. 4a and

Table 1. It can be clearly seen that our model, DLBEpitope, has the best performance

with the AUC value of 73.83%, which is far larger than 55.79%, as the second largest

AUC value derived from the Bepipred1.0 model [8].

With the intersection of IEDB16 and ABCpred16 removed, the modified ABCpred16

dataset was used to compare the performance of the following models: ABCpred [7],

Bepipred1.0 [8], Bepipred2.0 [11], APCpred [10], Parker Hydrophilicity-based Predic-

tion (Parker) [3], Emini Surface Accessibility-based Prediction (Emini) [5], Kolaskar &

Tongaonkar Antigenicity-based prediction (Kolaskar) [6], Chou & Fasman Beta-Turn-

based Prediction (Chou-Fasman) [23], and our model (DLBEpitope16). The models of

Chou_Fasman, Emini, Parker and Kolaskar were run on the IEDB web server [21]. Ac-

cording to the prediction results, the AUC values were calculated and illustrated in

Fig. 4b and Table 1. Although our model performed best, it was not significant com-

pared with other models. It might be due to the very small size of this dataset, contain-

ing only 107 positive and 196 negative samples. The limited number of samples

couldn’t distinguish the performance of different models, thereby necessitating the

presence of more samples.
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Developing DLBEpitope web server

According to the models developed here, we developed a web server to provide service

for linear B-cell epitope prediction. Users can paste the antigen sequences in FastA for-

mat into the sequence window, or provide a file containing antigen sequences in FastA

format. Then, the DLBEpitopeX model was chosen and a threshold (0 ~ 11) was

adopted to predict linear B-cell epitopes. The prediction results can be fetched by pro-

viding task ID or email notification or refreshing the webpage. The detailed information

can be found in http://ccb1.bmi.ac.cn:81/dlbepitope/.

Discussion
In this study, we applied feedforward deep neural network to develop a prediction

model for linear B-cell epitope with dipeptide compositions as features. Comparing to

the existing machine learning-based models, including ABCpred [7], BepiPred1.0 [8],

BepiPred2.0 [11], AAPpred [14], and APCpred [10], our model possessed four advan-

tages. The first one was that the model DLBEpitopeX had the best performance on

DLBEpitopeX-test dataset, as well as two public test datasets (Lbtope_Fixed and

ABCpred16). The second advantage was that all samples in both training and test data-

sets were achieved from the experiments. However, the negative samples in models of

ABCpred [7], Bepipred1.0 [8], AAPpred [14], and APCpred [10] were randomly gener-

ated from the SWISS-Prot database. The third one was that we had the largest number

of samples in training datasets, which could better statistically describe features of lin-

ear B-cell epitopes. In fact, each classifier in DLBEpitopeX model was trained on a

dataset of 20,000 positive and 20,000 negative samples, of which the number of samples

was far greater than those of the existing models. For example, the Lbtope model [9]

was trained on a dataset with about 10,000 positive and 18,500 negative samples, which

involved the largest number of samples in the training dataset in the existing models.

The fourth was that, to the best of our knowledge, the deep learning methods were

used for the first time to develop prediction models for linear B-cell epitopes. Eventu-

ally, we developed a web server to provide better support for linear B-cell epitope

prediction.

As shown in Fig. 3, our method performed far better than other methods on the test

dataset derived from the 2018 IEDB database. These test datasets were randomly se-

lected and not used for training our models. And overfitted models usually performed

poorly in predicting test dataset they had not seen before. The performance

Fig. 4 Performance comparisons among various models, including DLBEpitope, APCpred, Bepipred2.0,
Bepipred1.0, ABCpred, AAPpred_svm1, AAPpred_svm2, Parker, Emini, Kolaska and Chou-Fasman using
public test datasets Lbtope_Fixed (panel a) and ABCpred16 (panel b). Epitope lengths of each dataset and
AUC values for each model are displayed
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improvement may be due to the large training dataset with experimental evidences and

the combination of ensemble learning and deep neural network. The large training

dataset provided more comprehensive recognition information. Multiple deep neural

networks can learn more complex and accurate distinguishing information from mul-

tiple aspects. And ensemble learning can combine these networks to achieve much

stronger generalization ability and make more accurate predictions.

However, on two existing public datasets, the Lbtope_Fixed and ABCpred16 datasets,

our method performed much worse than on the IEDBx test datasets (Fig. 4). The

Lbtope_Fixed dataset consisted of samples of 20 AAs in length and was derived from

peptides not less than 5 residues in the 2012 edition of IEDB, whereas the IEDB20 was

derived from epitopes with 10 to 50 residues in the 2018 edition of IEDB. Removing

the overlap with IEDB20, the remained Lbtope_Fixed data should be derived only from

epitopes of length 5 to 9 or greater than 50 in the 2012 edition of IEDB. This may lead

to some bias, and thus make our method perform worse than when tested with IEDB20

test dataset. Even though, our method performed far better on the final Lbtope_Fixed

dataset than other methods. The ABCpred16 dataset consisted of samples of 16 AAs in

length. We have also removed the intersection of ABCpred16 and IEDB16 to make sure

that the rest of the ABCpred16 has not been seen by our models. On the remaining

ABCpred16 dataset, our method did not significantly outperformed the other methods.

The reason may be that the remained ABCpred16 dataset is too small (107 positive and

196 negative samples), which likely lead to some bias.

Except for the features of dipeptide compositions, we also explored the application of

AAindex [19] database in predicting linear B-cell epitopes. In AAindex database [19],

each amino acid was represented by 544 physicochemical properties. Therefore, each

peptide was described by the average of 544 indexes, among which there were 13 prop-

erties with missed values. Each peptide was finally represented by a vector with 531 ele-

ments. According to the IEDBx and DLBEpitopeX-test datasets (X = 16, 22, 31, and

38), the relevant models were developed and assessed. The AUC values for epitope

lengths of 16, 22, 31, and 38 were 74.83, 77.54, 79.64, and 81.32%, respectively, which

were less than the AUC values obtained from the dipeptide compositions-based model

of DLBEpitopeX (X = 16, 22, 31, and 38). Therefore, the AAindex-based models were

not used in our web server.

Finally, it should be mentioned that herein some machine learning-based models

have not been used for comparing the performance because of the following reasons.

The Bcpred [13] web server provides options for the models of BCpred, FBCpred, and

AAP. However, the web servers cannot provide complete prediction results for the test

datasets. For example, for the ABCpred16 dataset containing 107 positive and 196

negative samples, there were 29 positive samples overlapping with the positive training

dataset obtained from the BCpred model. The remaining 78 positive and 196 negative

samples were submitted to the web server by setting up the specificity of 65% to ensure

that more prediction results were available. The prediction only returned the scores for

136 samples. There were 138 samples without scores. Therefore, the ROC plots and re-

lated AUC values couldn’t be provided. Additionally, the speed of running for SVMTrip

[17] and Lbtope [9] web servers was very slow. Finally, we couldn’t access Besysb [15],

LEPs [16],and BEST [18] web servers. In summary, these eight models were not used

for comparing the performance.
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In future, we will attempt to incorporate more samples into the development of pre-

diction models for linear B-cell epitopes. In fact, the population space for linear B-cell

epitopes was very large. For example, the population for epitope length of 16 contained

2016 (6.5536e+20) possible samples, which was far larger than 233,362, the number of

samples in IEDB16 dataset. The ratio of 233,362 and 6.5536e+20 is only 3.560822e-16.

Therefore, more samples are required to develop accurate prediction models for linear

B-cell epitopes. Additionally, using more and more samples, deep learning methods will

play a key role in developing prediction models not only for B-cell epitopes, but also

for other biological problems.

Conclusions
Trained on the large amount of linear B-cell epitope data with experimental evidence

in the IEDB database, ensemble deep learning improved the performance of linear B-

cell epitope prediction.
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