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Traditional medical equipment not only has the limitation of its accuracy but also
is expensive and time-consuming. Therefore, it's necessary to take advantage of
computational methods for predicting potential associations between metabolites
and diseases.
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Abstract

Results: In this study, we develop a computational method based on KATZ
algorithm to predict metabolite-disease associations (KATZMDA). Firstly, we extract
data about metabolite-disease pairs from the latest version of HMDB database for
the materials of prediction. Then we take advantage of disease semantic similarity
and the improved disease Gaussian Interaction Profile (GIP) kernel similarity to obtain
more reliable disease similarity and enhance the predictive performance of our
proposed computational method. Simultaneously, KATZ algorithm is applied in the
domains of metabolomics for the first time.

Conclusions: According to three kinds of cross validations and case studies of three
common diseases, KATZMDA is worth serving as an impactful measuring tool for
predicting the potential associations between metabolites and diseases.

Keywords: Metabolite-disease associations, Heterogeneous network, KATZ
.

Background

Metabolism, a generic term for a series of ordered chemical reactions, plays a critical
role in maintaining human life such as the growth and reproduction of organisms and
the reaction to the external environment in body [1-3]. Numerous researches and ex-
periments have indicated that some kinds of metabolites in concentration are distinct
when people get ill compared with healthy people [4]. Hence, relevant metabolite-
disease association is one of the significant judgements for doctors to diagnosing and
treatment [4]. There are many examples such as diabetes. When it comes to blood
sugar, people maybe think of one disease named diabetes naturally. Because the con-
centration of blood sugar in diabetes patient’s body is usually higher than normal body.
In the past 10 years, Many metabolites which changed significantly such as the concen-
tration of blood sugar have been gradually known as one of the criteria for doctors to
diagnose diabetes after a quantity of experiments and clinical cases [5]. Based on the
above example, it apparently reveals that metabolites also play an indispensable role in
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researching human diseases, which increasingly become a hot topic to explore the asso-
ciations of them.

With the improvement of high-throughput metabolomics technologies, re-
searchers could obtain a great deal of precious information. Meanwhile, metabolo-
mic databases have been gradually developed, which is critical to the development
of metabolomics [6]. For instance, HMDB database [7] which contains reliable
information of human metabolites has continued to grow and evolve with
enhancement and expansion of existing data from version 1.0 to 4.0 [7]. However,
the identification of the associations between metabolites and diseases is only a
tip of the iceberg, which indicates that thousands of potential metabolism and
disease associations need to be tested and proved. However, conventional biology
experiments can be tested and verified some assumptions but usually take a
considerable time to get results. If the bias of results and assumptions are too
large or results are not much more significant, experimenters may have to bear
the financial loss. Thus, it is more important to develop computational methods
which can save experimental time and fund and supply available prediction
results. Some relevant methods of predicting potential associations between differ-
ent biological molecules have been delivered for genomics such as gene-disease
correlations [8-10], transcriptomics like circRNA-disease associations [11, 12] and
proteomics such as identification of essential proteins [13—15], but the computa-
tional methods for predicting metabolite-disease associations are very few such as
“Identifying diseases-related metabolites using random walk” [16] which is the first
method to explore the latent associations and promote the development of
computational method in metabolomics. However, they only consider the disease
similarity when calculating metabolite similarity. In order to make full use of the
known data, we use metabolite GIP kernel similarity to metabolite similarity and
add the integrated disease similarity to calculate the predicted results.

In this study, we put forward one computational method named KATZMDA to
explore novel metabolite-disease associations. Our proposed method is enlightened
by KATZ algorithm, which has been utilized to predict the associations in social
networks. Our computational method mainly consists of three steps: Firstly, the
raw resources which come from the newest version of HMDB are gained for the
basic data of prediction. Secondly, we compute the similarity for metabolites and
diseases to rich types of data, where metabolite similarity network is computed by
metabolite GIP kernel similarity while the improved disease GIP kernel similarity
sub-network and semantic similarity sub-network are integrated into the disease
similarity network. Thirdly, we predict metabolite-disease associations based on
KATZ algorithm. Finally, we adopt the leave-one-out cross validation (LOOCYV)
and 5-fold and 10-fold cross validation to evaluate the performance of KATZMDA
which acquired the AUC (area under the ROC curve) values of 0.9186, 0.8897+/— 0.0173
and 0.9029+/-0.0073, respectively. For the sake of further verification, we utilize case
studies of Liver disease, Cerebral infarction and Gestational diabetes, respectively.
What’s more, the values of AUC confirm that our method is better than other
methods in section of Comparison with other methods. Therefore, the results
indicate that KATZMDA is forceful and dependable in predicting potential
metabolite-disease associations.
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Results

Leave-one-out cross validation (LOOCV)

It is a common tool for LOOCV to evaluate the performance of our proposed
computational method. In LOOCYV, if one known association of metabolite and dis-
ease is used as a test set, the rest of known associations are regarded as training
sets and the unknown associations become as candidate sets. Finally, a result will
be obtained when all the known associations take turns as test sets. There are
4537 known metabolite-disease associations, so our experiment needs to be run
4538 times. In every loop, the test sample is considered as successful prediction re-
sult if the rank of the test sample is beyond the given threshold. According to
changing thresholds, we finally acquire a series of values about True Positive Rate
(TPR, sensitivity) and False Positive Rate (FPR, 1-specificity), which can help to
depict the ROC curve. The prediction performance in our model is gained after
calculating AUC. If the AUC tends to 1, the performance will be perfect. More-
over, when the AUC tends to 0.5, it indicates that the performance is random. If
the AUC tends to 0, the performance is terrible. With several experiments, we find
that our proposed computational model acquires better LOOCV performance that
the relevant AUC value is 0.90 when parameter k is equal to 2. While, if parameter
k is beyond to 2, the AUC will drop down (see Fig. 1 (a)).

K-fold cross validation

K-fold cross validation is also implemented for the performance evaluation of our
method. In K-fold cross validation, all the known metabolite-disease pairs are randomly
and averagely decomposed k parts. One part is regarded as a test sample, then the rest
of parts (k-1) is utilized for training. As above mentioned in LOOCYV, unknown rela-
tions in metabolite-disease pairs are utilized as candidate samples in K-fold cross valid-
ation. Specifically, 5-fold and 10-fold cross validation are adopted to deeply evaluate
the prediction performance of KATZMDA. Given the influence of the latent bias, when
dividing random sets for evaluating performance, we set this experiment to loop many
times, then the correlative ROC curves and AUCs are acquired as LOOCV. Lastly, we
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Fig. 1 The ROC about LOOCV. a The AUCs of KATZMDA when k= 2,3,4 for LOOCV b Comparison of
KATZMDA with other computational methods for LOOCY
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get the one of AUCs’ group of these two types of cross validation which are 0.8897 and
0.9029, respectively (see Fig. 2).

Comparison with other methods

In order to evaluate the performance of KATZMDA in predicting potential metabolite-
disease associations, we compare KATZMDA with the methods such as random walk
restart (RWR) and PageRank method and implement the validation experiments
mentioned above on each method based on the same dataset. In RWR, we use the same
parameters as Hu's method [16]. For LOOCV, RWR, PageRank gained AUCs of 0.7633,
0.8242, respectively. For 5-fold cross validation, RWR, PageRank gained AUCs of
0.6692, 0.7951, respectively. For10-fold cross validation, RWR, PageRank gained AUCs
of 0.7266, 0.8113, respectively (see Fig. 2). According to these evaluation mechanisms,
KATZMDA can obtain higher AUC value. It means that KATZMDA is more effective
than those compared methods and has a latent capability to explore more novel
metabolite-disease associations.

Parameters analyzing

In this section, we are committed to find the influence of some parameters and the best
parameters on our proposed method. Then we analyze the following parameters: y as a
weighted parameter determines the proportion of the two types of disease similarities
which affects the final disease similarity. So, it is essential to analyze it which is changed
from 0.1 to 0.9 (see Table 1). Referring to the previous study, the parameter ¢ is
selected below 1/l M || . However, we change its value as y to explore its effect to our
method (see Table 2). We find that it is steadier for AUC when changing § and then
we set 0.1 to the best value. The parameter k which represents the length of path
between metabolites and diseases is always set 3 but we find the suitable value of k is 2
when obtaining the best estimated performance after several tests in our experiment
(see Tables 1 and 2, Fig. 1 (a)). The results of different values of k are displayed (see
Tables 1 and 2, Fig. 3 (a-c)). Considering the efficiency of time, we adopt the five-fold
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Fig. 2 The ROC about k-fold cross-validation. Comparison of KATZMDA with other computational methods
for (@)5-fold cross-validation, (b)10-fold cross-validation
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Table 1 The AUC values based on changing y and k (6 =0.1)

y=0.1 y=0.2 y=0.3 y=04 y=0.5 y=0.6 y=0.7 y=0.8 y=0.9
K=2 0.8897 0.8874 0.8842 0.8800 0.8747 0.8681 0.8600 0.8496 0.8351
K=3 0.7923 0.7932 0.7942 0.7953 0.7965 0.7977 0.7989 0.8002 0.8014
K=4 0.7313 0.7318 0.7324 0.7330 0.7338 0.7348 0.7360 0.7374 0.7391

cross validation to calculate above results. Finally, we select the best parameters group
in each value of k for comparison (see Fig. 3 (d)). The best parameters are set as
follows: k=2, y =0.1 and § =0.1, respectively.

Case study

In this section, we have taken several diseases as examples to make case studies, which
can make us deeply realize the associations between metabolites and diseases. There are
three common diseases which are Liver disease, Cerebral infarction and Gestational dia-
betes, respectively. Considering the accuracy of results in our method, we find some de-
tails in published papers to prove the relevant prediction associations. For the above
mentioned diseases, we select the neighbors of themselves and their relevant known me-
tabolites to seek the associations between these two types of neighbors and predictive me-
tabolites, respectively, which takes Cerebral infarction as an example showing in Fig. 4.

Liver disease means a lesion that occurs in the liver and happens all the time
around people. It is a total name of high-risk disease about liver, which includes
viral hepatitis, liver abscess, alcoholic hepatitis and fatty liver. We carry out a case
study of liver disease with our method. Finally, there are top 10 predicted metabo-
lites having been confirmed to have some influence on the liver disease patients by
calculating known associations on our method (see Table 3). Taking follows as
examples, Glycine(1st) is proved to not only treat alcoholic hepatitis, but also pre-
vent and treat hepatocellular carcinoma in alcoholic cirrhosis [17]. What’s more,
Glycine [18] is a kind of effect immuno-nutrient substance when treated diverse
chronic liver diseases [17]. L-Serine, Creatine, L-Tryptophan, Cholesterol (2nd, 3rd,
4th, 9th) were revealed to have significant influence to one kind of Liver disease
named fatty liver [19-22].

Cerebral infarction is one of the most common diseases in cerebrovascular disease. In
the Cerebral infarction-related metabolites prediction results, top 10 predicted metabolites
have been verified. by published references (see Table 4). For instance, Glycine could
abate Cerebral infarction caused by ischemia/reperfusion in mice [23].

Gestational diabetes is one kind of common diseases which affects 5 to 6% of preg-
nant women [24]. There are some predicting associations which shows top 10 predicted
metabolites and 9 of top 10 predicted Gestational diabetes-related metabolites have
been certified (see Table 5). More and more details indicated that the Substance might

Table 2 The AUC values based on changing 6 and k (y=0.1)

6=0.1 6=0.2 6=03 6=04 6=0.5 6=0.6 6=0.7 6=0.8 6=09
K=2 0.8897 0.8897 0.8897 0.8897 0.8897 0.8897 0.8897 0.8897 0.8897
K=3 0.7923 0.7904 0.7898 0.7894 0.7892 0.7891 0.7890 0.7889 0.7889
K=4 0.7401 0.7319 0.7313 0.7310 0.7309 0.7308 0.7308 0.7308 0.7308
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Fig. 3 Parameter analysis. a, b, ¢: x-axis represents &, y-axis represents AUC, different colors represent
different values of y. d: when k=2, y=0.1, §=[0.1,09]when k=3, y=09, 6=[0.1,09]; when k=4, y=
0.9, §=1[0.1,0.9]; different colors represent different values of 6

be a new role which lead not only to the development of diabetes gestational diabetes,
but also diabetes mellitus type 2 [24]. Although there is no clear evidence to confirm
the associations between Guanidoacetic acid and Gestational diabetes, some experi-
mental literatures show that the detection of Guanidoacetic acid is an available
indicator for renal tubular dysfunction in the early phase of diabetes mellitus [25].

Discussions

Large quantities of evidences have revealed that metabolites in human body are impli-
cated in reflecting human physiological such as complicated disease pathology.
Although biotic experiments can explore potential metabolite-disease associations and
help people acquire data which we need. However, these methods are time-consuming
and expensive. Here, we put forward a practical method named KATZMDA, which not
only guarantees the accuracy of predicting the latent associations between metabolites
and diseases but also effectively cuts down the time and investment. In this study, we
firstly calculate metabolite/disease similarities by combining their relevant similarities.
Secondly, we establish a heterogeneous network based on metabolites-disease associa-
tions network, metabolites similarity network and diseases similarity network. Accord-
ing to different paths with different lengths, KATZMDA searches on a heterogeneous
network and computes a final score for each pair of metabolite and disease which could
estimate whether the disease has association with the metabolite or not.

Experimental results testify the superior performance of KATZMDA compared with
other methods in this study. There are some advantages as follows. Firstly, considering
the characteristic of data, KATZ algorithm is applied in predicting associations of
metabolites and diseases, which lays a foundation for the effectiveness of our final
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Fig. 4 The network between the prediction of metabolites and two kinds of neighbors. This graph shows
which of these two kinds of neighbors have more contributions to the prediction of metabolites. Rectangle
represents the diseases. Green color represents the neighbors of known metabolites about Cerebral
infarction whose ranks of similarity are top 20 and the associations between them. Yellow color represents
Cerebral infarction and its relevant metabolites. Blue color represents the neighbors of Cerebral infarction
and their relations whose similarity scores are above 0.6. Purple represents the predicted metabolites about
Cerebral infarction and the black edges represent the links between the neighbors of Cerebral infarction
and the predicted metabolites about Cerebral infarction

predictions. Secondly, we add properties of topology and biology in disease similarity
networks. Simultaneously, we set an adaptive parameter to balance the two kind of
properties in order to better explore the potential relationships.

Although better prediction results are obtained by KATZMDA, some limitations still
can’t be neglected. For the original data, the associations proved between metabolites

Table 3 Candidate metabolites of liver disease

Liver disease

Rank Metabolite name Evidences

1 Glycine PMID: 16344603
2 L-Serine PMID: 25644346
3 Creatine PMID: 26832170
4 Cholesterol PMID: 28733574
5 L-Alanine PMID: 1742521
6 L-Lysine PMID: 7890898
7 L-Phenylalanine PMID: 17615399
8 L-Tyrosine PMID: 22847184
9 L-Tryptophan PMID: 21841000

o

Creatinine PMID: 26311594

Page 7 of 14
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Table 4 Candidate metabolites of Cerebral infarction

Cerebral infarction

Rank Metabolite name Evidences

1 Glycine PMID: 22796215
2 L-Serine PMID: 20476571
3 Cholesterol PMID: 26957269
4 Homocysteine PMID: 27079234
5 Creatine PMID: 24396424
6 Creatinine PMID: 28326034
7 L-Lysine PMID: 28900508
8 Guanidoacetic acid PMID: 27497517
9 Substance P PMID: 27338372
10 D-Glucose PMID: 23428707

and diseases in the domain of metabolomic are far from satisfied. Additionally, it is
out-off-balance between the proportion of positive samples and negative samples
because of the sparse data. So only one thing we can do is trying to reduce the number
of negative samples to the same number of positive samples by randomly selecting
negative samples. What’s more, the similarity of metabolite-metabolite pairs, one of
significant factor to guarantee the accuracy of result in theory, only has few con-
tributions to the prediction (see Fig. 4). Therefore, we need to take their biological

characteristics besides topological characteristics into consideration in the future.

Conclusions

According to mining a great deal of useful resources about metabolites and diseases,
we can get reliable prediction scores to generate new hypotheses between metabolites
and diseases by our methods, which may be of benefit to identify new research trends
and boost interdisciplinary studies. The experimental results indicated our method is
powerful. Moreover, three common diseases are used to be analyzed which deeply
demonstrates applicability of the method. Uncovering metabolite-disease associations

Table 5 Candidate metabolites of Gestational diabetes

Gestational diabetes

Rank Metabolite name Evidences

1 Glycine PMID: 28278310
2 Cholesterol PMID: 29778664
3 L-Serine PMID: 26406294
4 Creatinine PMID: 29728364
5 L-Lysine PMID: 25419905
6 Creatine PMID: 25925942
7 Substance P PMID: 24720596
8 Homocysteine PMID: 27180921
9 Guanidoacetic acid Unconfirmed

10 D-Glucose PMID: 10855532
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are of great significance in understanding disease mechanism’s and advancing biology
through integrated interdisciplinary research.

Methods

Human metabolite-disease associations network

The known metabolite-diseases associations are extracted from the Human Metabolome
Database(HMDB) which has abundant information about small molecule metabolites
found in the human body [7]. In this study, we download the data about HMDB and
extract the associations between metabolites and diseases. Considering that we need to
use disease semantic similarity in our method, then we select the diseases with DOID and
its relevant metabolites from the associations which has been extracted. Finally, 4537
metabolite-diseases associations are extracted from the initial data, which consist of 216
diseases and 2262 metabolites to be established the known metabolite-disease associations
network(see Fig. 5). For the sake of simplicity of expression, an adjacency matrix
M(nd*nm) is constructed to describe metabolite-disease associations, where nm and nd
represent the number of metabolites and diseases, respectively. If a disease i has been
approved to have an association with a metabolite j, then M(i,j) = 1, otherwise, M(i,j) = 0.

3 n\\.1..,,'~":‘,.\z "
\\ ’\ \V// /ll\\\\\\
A 2‘1‘ \\\! =

Fig. 5 A part of the known metabolite-disease associations network. Yellow nodes represent diseases and
purple nodes represent metabolites
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Disease semantic similarity

According to the Mesh Database, we can obtain some detailed information about
diseases because every disease has their own unique DAG (Directed Acyclic Graph)
which reflects the correlations between diseases [26]. As an example of DAG about
disease D, it could be defined as DAG(D) = (D, T(D), E(D)), where T(D) is composed by
disease D itself and all its ancestor diseases and E(D) is composed by direct edges from
a more general term (parent node) to a more specific term (child node). Additionally,
the semantic value of disease D could be calculated as follows [26, 27]:

Dy(D)= Y Dp(d) (1)
deT (D)
B / 1, ifd=D
Dp(d) = { max{A*DD (d ) |d echildren of d } if d=D (2)

where A is a factor affecting the semantic contribution of connecting parent node d
with its child node 4’ For a given disease D, there are negative correlations that the
nodes far from disease D have less semantic contribution to D. Moreover, there are
same semantic contributions to disease D between nodes whose positions are at the
same levels [26]. Finally, DSS is used to represent disease semantic similarity matrix.
The semantic similarity between disease i and j could be calculated as follows:

_ > ier ()t (L)) +D(j)(2))
DV(D(i)) + DV(D(j))

DSS(d(i), d())) (3)

GIP kernel similarity

GIP kernel similarity is applied in the association network of biological information
nodes to measure similarity based on their topological structures [28]. According
to the metabolite-disease associations network and the hypothesis that similar me-
tabolites are more likely to reflect a similar pattern of interaction and non-
interaction with diseases, GIP kernel similarity of metabolites could calculated as
follows [29]:

GM(m(i), m(})) = exp(~aul[LP(m(D))~IP(m(}))|’) (4)

where the interaction profile /P(m(i)) of metabolite m(i), a binary vector, can be gained
according to whether a metabolite m(i) is associated with each disease. w,, influences
the kernel bandwidth, which is calculated as follows:

1 i

o= (o S0 P00 (5)

My
where 7, represents the number of metabolites in metabolite and disease associa-
tions network. For simplifying experiment, w,, is usually set as 1 according to
previous research [28]. Thereby, metabolites GIP kernel similarity matrix (GM) is
acquired. Then, we can get a metabolite similarity network (MS) based on the GM
matrix. Similar as the way to set up metabolite similarity network, the disease simi-
larity network (DM) is established by the disease GIP kernel similarity matrix(GD)
which is computed as follows [29]:
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GD(d(i) d(j)) = expl(-adIP(d(0))-IP(d())]?) ©
0a=dlaf (. Y P )

According to the relevant research [30], it reveals that disease GIP kernel similarity
which is transformed in logistic function enables to improve predictive accuracy.

Hence, logistic function in the previous research is used [30] as follows:

I I 1
GDL(d(i),d(j)) = 1+ ewGDEd(j)+b (8)

where a =-15, b=10g(9999) [30]. GDL represents the improved disease GIP kernel

similarity.

Integrate similarity for diseases

In this part, in order to tackle the sparse data in disease semantic similarity matrix and
improve the accuracy, a new similarity matric about disease (SD) is constructed which
is composed by disease semantic similarity matrix DSS and improved disease GIP

kernel similarity matrix (GDL). The computing formulas are as follows:

GDL(d(i),d())) if DSS(i, ) = 0
SD(d(i), d(j)) = ©)
(1-y)DSS(d(i),d(j)) + yGD(d(i),d(j))  otherwise

KATZMDA
KATZ, a set of methods to investigate the associations of society, has gradually spread
in domains of bioinformatics. According to the number of paths between each two
nodes and the length of each path, KATZ can calculate the score of each two nodes.
The higher the score is obtained, the greater the potential correlation is. There are a
great deal of experiments confirming its available performance such as identifying the
latent associations of microbes and diseases, IncRNAs and environmental factors. Due
to these successful experiences, the KATZMDA method has been adopted in predicting
metabolite-disease associations in this study (see Fig. 6). This model in the heteroge-
neous network could obtain a score matrix which reflects the possible associations
between each metabolite-disease pair. Generally, the paths’ number of metabolite i
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Fig. 6 Flowchart of KATZMDA
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disease j and the different length of different paths [31] needs to be taken into consid-
eration, when we calculate the potential association between metabolite i and disease j
in the known metabolite-disease associations network. M*l(i,/') represents the number of
paths linking metabolite i and disease j. k represents the length of paths between
metabolite i and disease j. Because of the existence of different length, we gather all
paths with different lengths of metabolite i and disease j. According to the previ-
ous study [32, 33], it cannot be ignored that the longer paths have lower influence
than shorter between each two nodes. So we adopt non-negative coefficient § to
control the influence of different-length paths [32]. If [1<[2, then § 2< § 1.
Accordingly, the latent associations of each metabolite-disease pair could be expressed as
Z(m; d;) of matrix Z:

Z(midj) = ZIZ@M*I(Z} /) (10)

Gathering all associations between metabolite-disease pairs like the eq. (10):
z=>" 6'MD = (1-6M)"-I (11)

where Z represents the similarity of all the metabolite-disease pairs. The parameter 9 is
chosen on the basis of § <1/||M ||* in Zou’s method [33]. The adjacency matrix M is
substituted by the following new form utilizing the similarity matrices of diseases and
metabolites which were previously reconstructed as follows:

M= [ o é‘ﬂ (12)
Additionally, when k is equal to 2, 3, 4, the calculation of the method can be showed
as follows:
ZF2(M*) = 8-M + 8%(SM-M + M-SD) (13)
Z'=3(MF) = ZFH(M) + 8% (M-MT-M + SM*-SD + SM-M-SD + M-SD*) (14)

Zk:4(M*) _ Zk:3 (M*)
+ &% (SMP-M + M-M"-SM-M + SM-M-M"-M + M:SD-M"-M)
+ 8% (M-M"-M-SD + SM*-M-SD + SM-M-SD* + M-SD?) (15)

Abbreviations
AUC: Area under the curve; DAG: Directed Acyclic Graph; FPR: False positive rate; GIP: Gaussian interaction profile;
LOOCV: Leave-one-out across validation; ROC: Receiver operating characteristic; TPR: True positive rate

Acknowledgments
We thank the financial support which comes from National Natural Science Foundation of China (61672334, 61972451,
61902230) and the Fundamental Research Funds for the Central Universities (No. GK201901010).

Authors’ contributions

CZ carried out the KATZMDA method to predict the latent associations of metabolites and diseases and participated
its design and drafted the manuscript. XJL helped to draft the manuscript. All authors read and approved the final
manuscript.

Funding
Financial support comes from National Natural Science Foundation of China (61672334, 61972451, 61902230) and the
Fundamental Research Funds for the Central Universities (No. GK201901010).

Availability of data and materials
Please contact author for data requests.



Lei and Zhang BioData Mining (2019) 12:19

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 14 July 2019 Accepted: 12 September 2019
Published online: 26 October 2019

References

1.
2.

(S

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Timofeeva Y, Lord GJ, Coombes SINM. Metabolite profiles and the risk of developing diabetes; 2011.

Cheng L, Yang H, Zhao H, Pei X, Shi H, Sun J et al. MetSigDis: a manually curated resource for the metabolic
signatures of diseases. 2017.

Lokhov PG, Maslov DL, Kharibin ON, Balashova EE, Archakov Al. Label-free data standardization for clinical
metabolomics. BioData Mining. 2017;10(1):10.

Huang W, ., Alexander GE, Chang L, ., Shetty HU, Krasuski JS, Rapoport SI et al. Brain metabolite concentration and
dementia severity in Alzheimer's disease: a (1)H MRS study. Neurology. 2001;57(4):626.

Lu J, Xie G, Jia W, Jia W. Metabolomics in human type 2 diabetes research. Frontiers of medicine. 2013;7(1):4-13.

K Hollywood, Brison DR, R Goodacre. Metabolomics: current technologies and future trends. Proteomics. 2010,6(17):
4716-4723.

Wishart DS, Feunang YD, Marcu A, Guo AG, Liang K, Vazquezfresno R et al. HMDB 4.0: the human metabolome database
for 2018. Nucleic Acids Research. 2017;46(Database issue):D608-D17.

Zeng X, Ding N, Rodriguez-Paton A, Zou Q. Probability-based collaborative filtering model for predicting gene-disease
associations. BMC Medical Genomics. 2017;10(5):76.

Nagarajan N, Dhillon IS, .Inductive matrix completion for predicting gene-disease associations. Bioinformatics. 2014;
30(12):i60-ii8.

Lei X, Zhang YJIS. Predicting disease-genes based on network information loss and protein complexes in
heterogeneous network. Information Sciences. 2018.

Xiao Q, Luo J, Dai J. Computational prediction of human disease-associated circRNAs based on manifold regularization
learning framework. IEEE Journal of Biomedical and Health Informatics. 2019;PP(99):1.

Yan C, Wang J, Wu F-X. DWNN-RLS: regularized least squares method for predicting circRNA-disease associations.
BMC bioinformatics. 2018;19(19):520.

Lei X, Yang X, Wu F, Artificial fish swarm optimization based method to identify essential proteins. [EEE/ACM
transactions on computational biology and bioinformatics. 2018.

Lei X, Wang S, Wu F. Identification of Essential Proteins Based on Improved HITS Algorithm. Genes. 2019;10(2):177.

Lei X, Fang M, Wu FX, Chen L. Improved flower pollination algorithm for identifying essential proteins. BMC systems
biology. 2018;12(4):46.

Hu Y, Zhao T, Zhang N, Zang T, Zhang J, Cheng L. Identifying diseases-related metabolites using random
walk. BMC bioinformatics. 2018;19(5):116.

Yamashina S, lkejima K, Enomoto N, Takei Y, Sato NJAC, Research E. Glycine as a Therapeutic Immuno-Nutrient for
Alcoholic Liver Disease. Alcoholism: Clinical and Experimental Research. 2005;29:1625-165S.

Luntz SP, Unnebrink K, Seibert-Grafe M, Bunzendahl H, Kraus TW, Buichler MW et al. HEGPOL: randomized, placebo
controlled, multicenter, double-blind clinical trial to investigate hepatoprotective effects of glycine in the postoperative
phase of liver transplantation [ISRCTN69350312]. BMC surgery 5.1. 2005;5(1):18.

Sim W-C, Yin H-Q, Choi H-S, Choi Y-J, Kwak HC, Kim S-K et al. L-serine supplementation attenuates alcoholic fatty liver
by enhancing homocysteine metabolism in mice and rats. The Journal of nutrition. 2014;145(2):260-267.

Deminice R, de Castro GS, Brosnan ME, Brosnan JT. Creatine supplementation as a possible new therapeutic approach
for fatty liver disease: early findings. Amino acids. 2016;48(8):1983-1991.

Osawa Y, Kanamori H, Seki E, Hoshi M, Ohtaki H, Yasuda Y et al. L-tryptophan-mediated enhancement of
susceptibility to nonalcoholic fatty liver disease is dependent on the mammalian target of rapamycin. Journal of
Biological Chemistry. 2011;286(40):34800-34808.

Tu LN, Showalter MR, Cajka T, Fan S, Pillai VWV, Fiehn O et al. Metabolomic characteristics of cholesterol-induced non-
obese nonalcoholic fatty liver disease in mice. Scientific reports. 2017;7(1):6120.

Lu'Y, Zhang J, Ma B, Li K, Li X, Bai H et al. Glycine attenuates cerebral ischemia/reperfusion injury by inhibiting neuronal
apoptosis in mice. Neurochemistry international. 2012;61(5):649-658.

Patro-Malysza J, Kimber-Trojnar Z, Skorzynska-Dziduszko K, Marciniak B, Darmochwal-Kolarz D, Bartosiewicz J

et al. The impact of substance P on the pathogenesis of insulin resistance leading to gestational diabetes.
Current pharmaceutical biotechnology. 2014;15(1):32-37.

Kiyatake I. Guanidinoacetic acid in serum, urine and renal cortex from streptozotocin-induced diabetic rats.
Nihon Jinzo Gakkai shi. 1994,36(6):709-714.

Wang D, Wang J, Lu M, Song F, Cui QJB. Inferring the human microRNA functional similarity and functional network
based on microRNA-associated diseases. Bioinformatics. 2010;26(13):1644-1650.

Liu 'Y, Li X, Feng X, Wang LJC. A Novel Neighborhood-Based Computational Model for Potential MiRNA-Disease
Association Prediction. Computational and mathematical methods in medicine. 2019,2019.

van Laarhoven T, Nabuurs SB, Marchiori EJB. Gaussian interaction profile kernels for predicting drug-target interaction.
Bioinformatics. 2011;27(21):3036-3043.

Sun D, Li A, Feng H, Wang M. NTSMDA: prediction of miRNA-disease associations by integrating network topological
similarity. Molecular biosystems. 2016;12(7):2224-2232.

Page 13 of 14



Lei and Zhang BioData Mining (2019) 12:19

30.

31

32.
33.

Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating Genes and Protein Complexes with Disease via Network
Propagation. PLoS computational biology. 2010,6(1):21000641.

Vural H, Kaya M. Prediction of new potential associations between LncRNAs and environmental factors based on
KATZ measure. Computers in biology and medicine. 2018;102:120-125.

Katz LJP. A new status index derived from sociometric analysis. Psychometrika. 1953;18(1):39-43.

Zou Q, Li J, Hong Q, Lin Z, Wu Y, Shi H et al. Prediction of microRNA-disease associations based on social
network analysis methods. BioMed Research International. 2015;2015:1-9.

Publisher’'s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

e thorough peer review by experienced researchers in your field

 rapid publication on acceptance

e support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC

Page 14 of 14



	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Leave-one-out cross validation (LOOCV)
	K-fold cross validation
	Comparison with other methods
	Parameters analyzing
	Case study

	Discussions
	Conclusions
	Methods
	Human metabolite-disease associations network
	Disease semantic similarity
	GIP kernel similarity
	Integrate similarity for diseases
	KATZMDA
	Abbreviations

	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

