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Abstract
Background: It is becoming increasingly clear that the quantification of mitochondria
and synapses is of great significance to understand the function of biological nervous
systems. Electron microscopy (EM), with the necessary resolution in three directions, is
the only available imaging method to look closely into these issues. Therefore,
estimating the number of mitochondria and synapses from the serial EM images is
coming into prominence. Since previous studies have achieved preferable 2D
segmentation performance, it holds great promise to obtain the 3D connection
relationship from the 2D segmentation results.

Results: In this paper, we improve upon Matlab’s function bwconncomp and propose
a fast forward 3D connection algorithm for mitochondria and synapse segmentations
from serial EM images. To benchmark the performance of the proposed method, two
EM datasets with the annotated ground truth are produced for mitochondria and
synapses, respectively. Experimental results show that the proposed method can
achieve the preferable connection performance that closely matches the ground truth.
Moreover, it greatly reduces the computational burden and alleviates the memory
requirements compared with the function bwconncomp.

Conclusions: The proposed method can be deemed as an effective strategy to obtain
the 3D connection relationship from serial mitochondria and synapse segmentations. It
is helpful to accurately and quickly quantify the statistics of the numbers, volumes,
surface areas, and lengths, which will greatly facilitate the data analysis of neurobiology
research.
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Background
Recently, due to the rapid development of neuroscience, considerable attention has been
paid for the statistics of the numbers, volumes, surface areas, and lengths of sub-cellular
structures in the brain, allowing neuroscientists to compare these objects in healthy
animals and those with degenerative brain diseases [1]. It acts as an important role in
studying the sub-cellular structures and their implied behaviors of nervous systems [2].
Among these structures, mitochondria and synapses are of particular interest to neuro-
science [3]. Indeed, mitochondria, known as the powerhouse of the cell, have been proven
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to carry out all types of important cellular functions by producing the overwhelming
majority of cellular adenosine triphosphate (ATP) [4]. Meanwhile, they also take substan-
tial responsibility for the regulation of cellular life and death, as well as disease states. For
example, mitochondrial dysfunction has been directly linked to the aging process, which
is the largest single risk factor for Alzheimer Disease [5, 6]. In addition, synapses, known
as the information transmitters, permit a neuron to pass an electrical or chemical signal
to another neuron in the mammalian nervous system. Mounting evidence also indicates
that synaptic plasticity has a close link with learning and memory. To be specific, sen-
sory experience, motor learning and aging are found to induce alterations in presynaptic
axon boutons and postsynaptic dendritic spines [7, 8]. Consequently, the quantification
of mitochondria and synapses is of great significance to the prevention and treatment of
brain diseases.
The above researches provide the motivation for looking closely into these issues in

a nervous system, and image analysis techniques as an important approach are widely
adopted. For image acquisition, electron microscopy (EM), with sufficiently high res-
olution on the nanoscale, can provide not only the details of intra-cellular structures
but also the synapses and gap junctions. In particular, focused ion beam scanning elec-
tron microscopy (FIB-SEM) [9] can provide an isotropic resolution up to 5 nm in three
directions, and automated tape-collecting ultramicrotome scanning electron microscopy
(ATUM-SEM) [10] can offer an anisotropic voxel (4 nm× 4 nm× 30 nm) with a low res-
olution in the z direction. However, the FIB-SEM technique is limited to a small volume
while the ATUM-SEM technique does not suffer from the limitation and can be applied
to a large volume for the statistics and analysis [11]. To extract the invaluable structural
information (mitochondria and synapses) from the serial EM images, substantial effort
has been recently put into developing specialized algorithms for accurate segmentation of
mitochondria and synapses. For some representative results, Lucchi et al. [12] clustered
groups of similar voxels into regularly spaced supervoxels and incorporated mitochon-
drial shape features to an automated graph partitioning scheme for segmentation. On
this base, they [13] introduced context-based features and modelled mitochondrial mem-
branes for improvement. Staffler et al. [14] presented a method for automated detection
of synapses, which focused on classifying borders between neuronal processes as synaptic
or non-synaptic. Neila et al. [3] proposed an automated approach for both mitochondria
and synapses that involved anisotropy-aware regularization via conditional random field
inference and surface smoothing techniques to improve the segmentation and visualiza-
tion. Moreover, due to the powerful representation capability of deep neural network,
Xiao et al. [15] put forward a fusion fully convolutional network for mitochondrial seg-
mentation and a fully connected conditional random field to optimize the segmentation
results. Santurkar et al. [16] took a compositional approach to segment synapses by train-
ing lighter networks tomodel the simpler marginal distributions of membranes, clefts and
vesicles.
Although above approaches have demonstrated preferable segmentation performance,

it seems that the connection mode from serial binary segmentation results has not
received enough attention in the anisotropic case. A recent research, Neila et al. [3]
adopted an approximate, simple solution under the assumption that each connected com-
ponent of the segmentation is one structure, and they also pointed out that estimating the
number of structures from the segmentation results is still an open problem with plenty
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of ongoing research. Consequently, our aim in this paper is to develop a fast and effective
3D connection algorithm based on these segmentation results. The main contributions
can be roughly grouped in two different directions.

• Methods: Since the shapes of mitochondria and synapses have great differences in
EM images, we propose a new similarity indicator that takes the shape into
consideration. It could accurately measure the probability that the segmentation
results belong to the same 3D mitochondrion or 3D synapse. In addition, we propose
a forward connection mode that can effectively handle the problems of split and
merge. This connection mode can be generalized to serial detection results, but not
limited to serial segmentation results.

• Data:We benchmark the performance of the proposed method against a previously
unreleased corpus of manually annotated data. The corpus consists of two EM
datasets acquired by the ATUM-SEM technique and the ground truth of
mitochondria and synapses are manually annotated by 2-3 independent labelers,
respectively. Both the EM datasets and manual annotations are released to the
community providing a valuable tool for benchmarking.

The subsequent sections of this study present the detailed information about the
datasets, the proposed connection algorithm, the experimental results, the meaningful
discussions and conclusions.

Materials
In this paper, the biological specimens were selected from mouse cortex and the ATUM-
SEM technique was adopted for image acquisition. The datasets were collected from a
water bath using a custom designed tape-collection conveyor belt in the Institute of Neu-
roscience, Chinese Academy of Sciences, where several slices with thicknesses of more or
less 50 nm were cut automatically. Next, these sections were imaged through SEM (Zeiss
Supra55) in the Institute of Automation, Chinese Academy of Sciences, where the pixel
size was set at 2 nm and the dwell time was set at 2 μs. Since the datasets acquired by
the ATUM-SEM technique were unregistered, the image registration method applied in
[17] was adopted in this paper. After registration, two ATUM-SEM datasets are used to
construct the corresponding databases for mitochondria and synapses, respectively.

Mitochondria dataset

The mitochondria dataset consists of 31 slices with a resolution of 2× 2× 50 nm3/voxel,
and each slice has a size of 8416 × 8624 [18]. The ground truth were prepared via the
hand segmentation outlining the mitochondrial membrane by two labelers with cross val-
idation. A total of 473 mitochondria including the incomplete ones were annotated with
the plugin TrakEm2 in software ImageJ [19]. Figure 1a-b present the acquired images
and annotated mitochondria in the adjacent slices, where different mitochondria are
represented by different colors. To accelerate the neurobiology research, we share the
mitochondria dataset and the annotated ground truth publicly available in the website1.

Synapse dataset

Since the synapses are more sparsely distributed than the mitochondria in the biologi-
cal tissue, we need a larger volume for statistics and analysis. Here, the synapse dataset
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a b c d

Fig. 1 a and b: adjacent ATUM-SEM images with the mitochondria annotated by different colors; c and d:
adjacent ATUM-SEM images with the annotated synapses

consists of 178 slices with the resolution 2× 2× 50 nm3/voxel and size 8576× 7616 [15].
The ground truth were prepared via the hand segmentation outlining the synaptic junc-
tions by three labelers with cross validation. A total of 1230 synapses were annotated by
different colors. Figure 1c-d present the acquired images and annotated synapses in the
adjacent slices. Also, the synapse dataset and the annotated ground truth are provided
publicly available in the website2.
It is worthwhile to emphasize that creating such two databases requires a considerable

amount of human effort, and it is a considerably time-consuming process which also jus-
tifies that previous endeavors on computerized segmentation are of great significance for
the neurobiology research.

Methods
As mentioned above, the EM images with high resolution will inevitably produce large
data even at small neural circuit. From a practical point of view, it is time consuming
and memory consuming to directly measure the similarity of segmentations in the adja-
cent slices. Therefore, we propose a fast coarse-to-fine connection algorithm instead. The
main motivation is given by the following axiom.
Axiom 1: Let s1 and s2 be the segmentations, and d1 and d2 be the regions satisfying

s1 ⊂ d1 and s2 ⊂ d2. Then if d1
⋂

d2 = ∅, s1 ⋂
s2 = ∅.

This axiom indicates that we can use the bounding boxes containing the segmenta-
tions for screening to reduce the computation cost. The proposed connection algorithm is
divided into four steps: coarse screening, validation, fine connection and skip connection.
The detailed procedures are summarized in the following subsections.

Coarse screening

On basis of the 2D segmentation results, we first obtain the corresponding bounding
boxes by the Matlab’s function regionprops. Assume that there are n slices and each slice
has ki segmentations i = 1, 2, · · · , n, and the pth segmentation in the ith slice is denoted
bymatrix sip and its bounding box is denoted by coordinate vectorXi

p, the coarse similarity
cipq of segmentations sip and si+1

q is measured by the Intersection-over-Union (IoU) of
bounding boxes Xi

p and Xi+1
q :

cipq := IoU
(
Xi
p,Xi+1

q

)
=

A
(
Xi
p ∩ Xi+1

q

)

A
(
Xi
p ∪ Xi+1

q
) . (1)
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Here, A
(
Xi
p ∩ Xi+1

q

)
and A

(
Xi
p ∪ Xi+1

q

)
denote the areas of the intersection and union

of Xi
p and Xi+1

q , respectively. Since the intersection is empty with high probability when
Xi
p and Xi+1

q belong to the different 3D structures, it is clear that cipq, p = 1, · · · , ki, q =
1, · · · , ki+1 are almost zeros. Therefore, we can use a sparse matrixCi to denote the coarse
connection relation between the ith slice and the i + 1th slice as follows:

Ci =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ci11 ci12 · · · ci1ki+1

ci21 ci22 · · · ci2ki+1
...

...
. . .

...
ciki1 ciki2 · · · cikiki+1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, i = 1, 2, · · · , n − 1. (2)

According to axiom 1, the position information provided by the bounding box is only
a necessary condition, it may produce superfluous connections. As illustrated in Fig. 2c,
the connection matrix cannot accurately reflect the connection relationship between the
segmentations in Fig. 2a-b. Note that a larger similarity cipq means a higher probability
that the segmentations sip and si+1

q belong to the same 3D structure. Two thresholds 0 ≤
Tl ≤ Th ≤ 1 are adopted to judge whether the sip and si+1

q are connected. Three cases are
listed as below:

(1) If cipq ∈[Th, 1], there exists a connection between the sip and si+1
q ;

(2) If cipq ∈[ 0,Tl), there exists no connection between the sip and si+1
q . Set cipq = 0;

(3) If cipq ∈[Tl,Th), there may be a connection between the sip and si+1
q , which needs to

be validated as marked in red in Fig. 2c (Tl = 0.01 and Th = 0.4 are used).

Validation

In this subsection, we utilize the segmentation information to validate the similarities in
case (3). According to the coordinate vectors Xi

p and Xi+1
q , we can find a minimum image

domain I that contains the corresponding segmentations, namely, two binary images
denoted by Iip and Ii+1

q , respectively. On this base, we update the similarity cipq of the seg-
mentations sip and si+1

q by considering the invariable position term P
(
sip, si+1

q

)
and the

variational shape term S
(
sip, si+1

q

)
:

cipq =
P2

(
sip, si+1

q

)
+ λ · S2

(
sip, si+1

q

)

1 + λ
. (3)

a b c

d

Fig. 2 A schematic diagram of coarse-to-fine similarity measure. a and b present the original images in the
adjacent slices, where the segmentation results are outlined by red curves and the corresponding bounding
boxes are depicted by green boxes. c and d present the coarse connection matrix and the updated matrix
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Here, λ ≥ 0 is a regularization parameter for balance. P
(
sip, si+1

q

)
characterizes the invari-

ance of segmentations sip and si+1
q , and is defined by the IoU of the corresponding binary

images Iip and Ii+1
q :

P
(
sip, si+1

q

)
= IoU

(
Iip, Ii+1

q

)
. (4)

In contrast, S
(
sip, si+1

q

)
characterizes the variability of segmentations sip and si+1

q .
Assume that the essential transformation h : sip −→ si+1

q has the form h = hαhβ ,
hα(x) = αx (scaling), and hβ(x′) = x′ + β (translation) [20]. Then given a set of H
transformationsH = {h1, h2, · · ·, hH}, S

(
sip, si+1

q

)
is defined by:

S
(
sip, si+1

q

)
= max

{
P

(
hk

(
sip

)
, si+1
q

)∣
∣
∣ k = 1, 2, · · · ,H

}
. (5)

After updating all the similarities in case (3), we can obtain new connection matrices
Ci, i = 1, 2, · · · , n − 1. For example, the similarities marked in red in Fig. 2c are validated
and the updated matrix is shown in Fig. 2d. It is clear that the updated matrix effec-
tively eliminates the false connections. Then, another threshold Ts ∈[ 0,Th) is adopted to
determine the fine connection matrices:

Bi = Ci > Ts, i = 1, 2, · · · , n − 1. (6)

Fine connection

For each binary connectionmatrices Bi, i = 1, 2, · · · , n−1, the sum of the pth row Ri
p (p =

1, 2, · · · , ki) implies that sip connects with Ri
p segmentations in the i + 1th slice, and the

sum of the qth column Ni+1
q (q = 1, 2, · · · , ki+1) implies that Ni+1

q segmentations in the
ith slice connects with si+1

q . Based on this fact, we propose a forward connection mode
instead of the iterative bidirectional connection mode in [21]. The details are divided into
three steps.
Firstly, we assign several categories to each segmentation according to the Ri

p and Ni+1
q

as illustrated in Fig. 3a. These categories include One-to-one (O), Start (S), End (E), Split1
(S1), Merge1 (M1), Split2 (S2) and Merge2 (M2). For clarity of presentation, we provide a
simplified matrix of Bi in Table 1. The five general connection cases are listed as follows:
(1) since Ri

1 = Ni+1
1 = 1, we assign O to the first segmentation in the ith slice; (2) since

Ri
2 = 0, we assign E to the second segmentation in the ith slice; (3) since Ni+1

4 = 0, we
assign S to the fourth segmentation in the i + 1th slice; (4) since Ri

3 = 2 and Ni+1
2 =

Ni+1
3 = 1, we assign S1 to the third segmentation in the ith slice and S2 to the second

and the third segmentations in the i + 1th slice; (5) since Ri
4 = Ri

5 = 1 and Ni+1
5 = 2,

we assignM1 to the fourth and the fifth segmentations in the ith slice andM2 to the fifth
segmentation in the i+1th slice. Moreover, S is assigned to each segmentation in the first
slice and E is assigned to each segmentation in the final slice. It should be noted that each
segmentation may have two or more categories as shown in Fig. 3a.
Secondly, we assign an initial label to each segmentation according to the categories as

illustrated in Fig. 3b. Specifically, we first denote the segmentation sets with category O,
with category S, with category E, with category S1, with category M1, with category S2
and with categoryM2 in the ith slice asOi, Si, Ei, Si1,Mi

1, Si2 andMi
2, respectively. Then we

begin with each segmentation s ∈ Si
⋃

Si2
⋃

Mi
2, i = 1, 2, · · · n, and assign a unique label j

to it. If s ∈ Oi, find the connected segmentation s1 in the i + 1 slice by Bi and assign the
same label j to s1. Set s = s1, i = i + 1, and repeat above steps until s /∈ Oi.
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a b c
Fig. 3 A schematic diagram of the proposed connection mode. a assigning several categories to each
segmentation; b assigning an initial label to each segmentation; c reassigning the same label to the
segmentations in case of split and merge

Thirdly, we reassign the same label to the segmentations in case of split and merge as
illustrated in Fig. 3c. Specifically, for each segmentation s1 ∈ Mi

1
⋃

Si1, i = 1, 2, · · · n − 1,
we first obtain the label j1 of s1 and the label j2 of the connected segmentation s2 ∈
Mi+1

2
⋃

Si+1
2 in the i + 1 slice by Bi. Then, we reassign the label min{j1, j2} to these

segmentations with labels j1 and j2.

Remark 1 By this connection mode, we assign different labels to these segmentations.
When λ = 0, Ts = Td2 = 0, the coarse-to-fine connection method has the same per-
formance as the Matlab’s function bwconncomp, which judges whether the segmentation
results are connected by the specified connectivity for the connected components.

Skip connection

The matrices Bi, i = 1, 2, · · · , n − 1, only characterize the connection relationship in the
adjacent slices. However, it is usually hard to prevent wrinkle and damage from sample
preparation and imaging in practice. Additionally, a minority of objects are difficult to
be identified because they sometimes do not exhibit their typical characteristics on a
certain slice. Therefore, the connection relationship in the skipped slices should also be
considered. Based on the above considerations, we first calculate the coarse connection
matrices as:

Table 1 A simplified matrix of Bi with five general connection cases

Category −− Split2 Split2 Start Merge2

One-to-one 1 0 0 0 0

End 0 0 0 0 0

Split1 0 1 1 0 0

Merge1 0 0 0 0 1

Merge1 0 0 0 0 1
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Ci2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ci211 ci212 · · · ci21ki+2

ci221 ci222 · · · ci22ki+2
...

...
. . .

...
ci2ki1 ci2ki2 · · · ci2kiki+2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, i = 1, 2, · · · , n − 2, (7)

where the ci2pq, p = 1, 2, · · · , ki, q = 1, 2, · · · , ki+2 is the coarse similarity of sip and si+2
q .

Then, we focus on each pair of segmentations sip ∈ Ei and si+2
q ∈ Si+2. If ci2pq > 0, update

the ci2pq by formula (3) and judge the connectivity by threshold Ts. If ci2pq > Ts, reassign
a new label min{j1, j2} to the segmentations with labels j1 and j2, where j1 and j2 are the
labels of sip and si+2

q , respectively.
The proposed method is sketched in the following Algorithm 1. By using the proposed

algorithm, we divide the whole segmentations into several disjoint sets, which satisfies
that the segmentations in the same set belong to the same 3D object while these in the
different sets belong to different 3D objects.

Algorithm 1: A Fast Forward 3D Connection Algorithm
Input: Series segmentation results in 2D.
Output: Labeled segmentations.

1 Obtain the coarse connection matrices Ci, i = 1, 2, · · · n − 1 and Ci2, i = 1, 2, · · · n − 2.
2 Update Ci and obtain the fine connection matrices Bi, i = 1, 2, · · · n − 1.
3 Obtain the categories of each segmentation from Bi, i = 1, 2, · · · n − 1.
4 Denote the segmentation sets with different categories in the ith slice as Oi, Si, Ei, Si1,M

i
1,

Si2 andMi
2, i = 1, 2, · · · n.

5 Initialize j = 1.
6 for i = 1 : n do
7 for each segmentation s ∈ (

Si
⋃

Si2
⋃

Mi
2
)
do

8 Assign a label j to s.
9 while s ∈ Oi do

10 Find the connected segmentation s1 by Bi;
11 Assign the same label j to s1 and set s = s1, i = i + 1;
12 end
13 j = j + 1.
14 end
15 end
16 for i = 1 : n − 1 do
17 for each segmentation s1 ∈ (

Mi
1
⋃

Si1
)
do

18 Obtain the label j1 of s1 and the label j2 of the connected segmentation s2 by Bi;
19 Reassign the label min{j1, j2} to these segmentations with labels j1 and j2;
20 end
21 end
22 for i = 1 : n − 2 do
23 for each pair of segmentations

(
sip ∈ Ei, si+2

q ∈ Si+2
)
do

24 if Ci2(p, q) > 0 then
25 Update the ci2pq by formula (3);
26 if ci2pq > Ts then
27 Obtain the label j1 of sip and the label j2 of si+2

q ;
28 Reassign the label min{j1, j2} to these segmentations with labels j1 and j2;
29 end
30 end
31 end
32 end
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Results
In this section, we conduct several experiments to evaluate the performance of the pro-
posed algorithm on the above mentioned datasets. The connection capacity is measured
by two fundamental performance indicators, split error and merge error [22]. Here, the
split error means that a true 3D object is regarded as several 3D objects, which often
occurs when large objects sometimes split into two or more connected components. In
contrast, the merge error means that several true 3D objects are regarded as a whole 3D
object and it will occur when a group of structures close to each other often merge in a
single connected component [3].

Performance comparison

The parameters in the proposed algorithm have a huge impact on the final connection
performance. For example, a larger Tl tends to produce split errors and a smaller Th tends
to producemerge errors. To guarantee a better connection performance, a relatively small
thresholdTl = 0.01 and a relatively large thresholdTh = 0.4 are chosen for coarse screen-
ing although it will take more time for verification. The choice of parameter λ depends on
the size of the segmentation results. In the mitochondria experiments, since the diameter
of mitochondria is commonly between 0.75 and 3 μm [23], the segmentation results that
belong to the same 3D mitochondrion usually have large overlap in the adjacent slices.
Then λ is set from 0 to 1 with step size 0.1 to satisfy that the position term in (3) is the
dominant contribution for the similarity measure. In the synapse experiments, the mean
cleft width of wild-type synapses is 22 ± 0.5 nm between the pre- and postsynaptic neu-
rons [24, 25]. Due to the offsets and differences in the adjacent slices, the segmentation
results that belong to the same 3D synapse usually have small or even no overlaps. Then
λ is set from 0 to 10 with step size 1 to satisfy that the shape term in (3) is the dominant
contribution. Meanwhile, we adjust the threshold Ts from 0 to 0.1 with step size 0.01. The
number of split errors, the number of merge errors and the number of total errors of the
proposed method at varying thresholds λ and Ts are illustrated in Fig. 4a-b, c-d and e-f,
respectively, where the results of the function bwconncomp are also presented as baseline
for comparison. Several useful conclusions can be drawn from Fig. 4.
Firstly, the step ‘skip connection’ in the proposed method is capable of reducing

the number of split errors. As mentioned in Remark 1, the function bwconncomp is a
special case of the proposed method. Specifically, adding the step ‘skip connection’ to the
function bwconncomp has the same performance as the proposed method at λ = 0 and
Ts = 0. As shown in Fig. 4a-b, the step ‘skip connection’ can greatly reduce the split errors
compared with the function bwconncomp. That is because the function bwconncomp only
finds the connected components in the adjacent slices and splits a 3D object into two
connected components when the information is missing. In contrast, our approach avoids
this shortcoming by the step ‘skip connection’.
Secondly, the suitable parameters λ and Ts play an important role in the final

connection performance. The regularization parameter λ is used for controlling the sig-
nificance of the shape term in (3). Usually, a large λ is prone to produce merge errors
while a small λ usually leads to split errors. The suitable choice of λ plays an important
role in the balance. As shown in Fig. 4a-b, the choice λ > 0 significantly reduces the
number of split errors compared with λ = 0 (function bwconncomp), especially in the
synapse dataset. It demonstrates the superiority of the proposed similarity indicator. In
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a

c

e

b

d

f

Fig. 4 a and b the number of split errors of the function bwconncomp and the proposed method at varying
thresholds λ and Ts ; c and d the number of merge errors; e and f the number of total errors

addition, as another threshold Ts for determining the fine connection, a large Ts tends
to produce split errors while a small Ts tends to produce merge errors. Similarly, com-
pared with Ts = 0 (function bwconncomp) in Fig. 4c-d, the choice Ts > 0 greatly
reduces the number of merge errors. Taking these factors into consideration, the sug-
gested parameters are λ ∈ (0.4, 0.6),Ts ∈ (0.02, 0.03) for the mitochondria dataset and
λ ∈ (1, 3),Ts ∈ (0.03, 0.05) for the synapse dataset, respectively as shown in Fig. 4e-f.
Thirdly, the proposed method achieves the near-human performance in obtaining

the 3D connection relationship. Given the suggested parameters, there are only three
split errors on the mitochondria dataset, and the optimal case without split error and
merge error is achieved on the synapse dataset. Note that the proposed method achieves
the optimal performance for a wide range of thresholds in Fig. 4e-f. The robustness is
demonstrated.
To have a visual presentation, we provide the specific connection results of the pro-

posed method on the mitochondria dataset and the synapse dataset in Fig. 5, where these
segmentations that belong to the same 3D object are described by the same colors. It is
clear that the proposed connection algorithm can effectively handle the problems of split
and merge (Fig. 5).

Running time comparison

As mentioned in the previous subsection, the choices of Tl and Th are not only related to
the connection performance but also the time consumption. In this subsection, we first
preset the optimal parameters Ts = 0.03, λ = 0.5 for the mitochondria experiments and
Ts = 0.03, λ = 2 for the synapse experiments. Then, the threshold Tl from 0 to 0.1



Li et al. BioDataMining           (2018) 11:24 Page 11 of 15

a

b

Fig. 5 a and b the specific connection results of the proposed method

with step size 0.01 and threshold Th from 0.2 to 0.4 with step size 0.02 are adjusted to
estimate the time consumption. Figure 6a-b present the time consumption of the function
bwconncomp and the proposedmethod at varying thresholds for comparison.Meanwhile,
the corresponding connection performance is also provided for referencing in Fig. 6c-d.
Several useful conclusions can be drawn from Fig. 6.
Firstly, the suitable parameters Th and Tl reduce the time consumption as well

as keep the preferable performance. From Fig. 6, it is obvious that a larger Th and
a smaller Tl will take more time for computation on the both datasets. Note that the
number of errors does not decrease when Th ≥ 0.34,Tl ≤ 0.01 for the mitochondria
dataset, and Th ≥ 0.2,Tl ≤ 0.07 for the synapse dataset, the suggested parameter inter-
val are Th ∈ (0.34, 0.4),Tl ∈ (0, 0.01) and Th ∈ (0.2, 0.3),Tl ∈ (0, 0.07), respectively.
For a detailed representation, the time consumption of the function bwconncomp and the
proposed method at several suggested parameters are provided in Table 2.
Secondly, the proposed method is more computationally efficient than the func-

tion bwconncomp. From Table 2, we can see that the proposed method only needs an
average of 300s to obtain the connection results while the function bwconncomp needs

a

c

b

d

Fig. 6 a and b the time consumption of the function bwconncomp and the proposed method at varying
thresholds; c and d the corresponding connection performance
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Table 2 The time consumption of the function bwconncomp and the proposed method at several
suggested parameters

Mitochondria dataset Synapse dataset

bwconncomp 398s bwconncomp 1815s

Th = 0.40, Tl = 0.01 419s Th = 0.26, Tl = 0.01 240s

Th = 0.38, Tl = 0.01 400s Th = 0.24, Tl = 0.01 231s

Th = 0.36, Tl = 0.01 382s Th = 0.22, Tl = 0.01 219s

Th = 0.34, Tl = 0.01 364s Th = 0.20, Tl = 0.01 214s

398s on the mitochondria dataset and 1815s on the synapse dataset. It is because the size
of synapse dataset is 6 times larger than that of mitochondria dataset and the function
bwconncomp obtains the connected components by handling with each pixel. However,
the proposed method uses the thresholds Tl and Th for coarse screening and only com-
putes the region of interest instead of the whole image, which reduces the computation
cost.

Memory comparison

In this subsection, we present the memory requirement of the function bwconncomp and
the proposed method in Table 3. It can be seen that the memory requirement of the pro-
posed method is less than 1/6 of the function bwconncomp on the mitochondria dataset
and approximately 1/10 of the function bwconncomp on the synapse dataset, respectively.
It is mainly because the input of function bwconncomp must be the total serial segmen-
tation results, i.e., the memory requirement is closely related to the data size. In contrast,
the proposed method only needs to read two images repeatedly for calculating the con-
nection matrices. The memory requirement is determined by these sparse connection
matrices, which is independent of the data size. It indicates that the proposed method
does not suffer from the common problem “Out of Memory” caused by large dataset.

Information sharing

All codes are written in Matlab Version R2016b (Math Works, Inc.). The mitochon-
dria experiments are performed on a personal computer with an i7-4790 MQ 3.60 GHz
Intel processor, 32 GB RAM and Windows operating system. Since the error “Out of
Memory” happens when the function bwconncomp is tested on the synapse dataset, the
synapse experiments are performed on a public server with an i7-4820MQ 2.00 GHz Intel
processor, 512 GB RAM andWindows operating system. The codes are available online3.

Discussion
This present research is primarily motivated by the need to accurately obtain the statistics
of mitochondria and synapses from serial EM images, which helps the neuroscientists to
quickly quantify these objects in healthy and diseased animals. Since previous researches
have achieved preferable performance on 2D segmentations [3, 15, 16, 18, 26], this paper
has proposed a fast and effective method to obtain the 3D connection relation. To validate

Table 3 The memory requirement of the function bwconncomp and the proposed method

Mitochondria dataset Synapse dataset

bwconncomp 20.85 GB 44.02 GB

Our method 3.35 GB 4.41 GB
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the effectiveness of the proposed method, we produce two ATUM-SEM datasets with the
annotated ground truth formitochondria and synapses, respectively. Experimental results
show the superiority of the proposed method on the connection performance, running
time and memory requirement over the function bwconncomp.
Because the proposed method only depends on the shapes and distribution of the

objects, it indicates that the proposed method can also achieve a robust 3D connec-
tion performance for other subcellular structures, such as the endoplasmic reticulum,
Golgi apparatus, and microtubules. Because all these structures are sparsely distributed
in the EM images, relatively smaller parameters Tl = 0.01,Th = 0.2 can be adopted for
reducing the time consumption. Meanwhile, the shapes of endoplasmic reticulum and
microtubules are narrow as the synapses, and the shapes of Golgi apparatus are ellip-
tical as the mitochondria. The suggested parameters can be λ = 2,Ts = 0.03 for the
endoplasmic reticulum andmicrotubules, and λ = 0.5,Ts = 0.02 for the Golgi apparatus.
Despite the promising results of the proposed method, several problems still deserve

further research. Themost important concern is that the connection performance usually
relies heavily on the segmentation results. However, previous segmentation algorithms
[3, 15, 16, 18, 26] almost focus on the lower pixel-wise prediction error (pixel error).
Unfortunately, pixel error considers only whether or not a given pixel is correctly classi-
fied as the object, without concern for the ultimate effect on the connection performance.
For example, expanding, shrinking or translating the object between two slices would
not cause splits or mergers, but incur a large pixel error. Further, while a gap of even a
single pixel in the object between two slices would cause a merge error, it might only
incur a very small pixel error [27]. Thus, further research on segmentation algorithms
should take other indicators such as the rand error [28], warping error [29] into consider-
ation. In addition, a good connection method is expected to be more robust to different
segmentation results. The generalization performance of the proposed method should
be further validated on the results obtained by state-of-the-art segmentation algorithms.
Future research will focus on using the 3D connection relation for optimizing the local
misleading segmentation. As another concern, the effectiveness of the proposed method
may owe to the characteristic that both the mitochondria and synapses are sparsely dis-
tributed in EM images. More future investigations along the present line will validate the
generalization performance of the proposed method on the dense neuron segmentations.
In addition, since it will yield more split errors and merge errors when the number of
segments is large, some normalized benchmarks like “rand index” will be added for the
split-merge error analysis.

Conclusion
To obtain the 3D connection relationship from serial mitochondria and synapse seg-
mentations, this paper proposes a fast forward 3D connection algorithm, which can be
deemed as a generalization of existing Matlab’s function bwconncomp. The proposed
method can achieve the connection performance that matches the ground truth closely.
Meanwhile, it can significantly reduce the computational burden and alleviate the mem-
ory requirements compared with the function bwconncomp. It means that our approach
can help neuroscientists to accurately and quickly obtain the meaningful statistics of
mitochondria and synapses, which will greatly facilitate the data analysis of neurobiology
research. To our knowledge, such method is the first work in this topic.
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Endnotes
1 http://95.163.198.142/MiRA/mitochondria31/
2 http://95.163.198.142/MiRA/synapse178/
3 https://github.com/WeifuLi/A-Fast-Forward-Connection-Algorithm
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