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Abstract
Background: Survival analysis is a statistical technique widely used in many fields of
science, in particular in the medical area, and which studies the time until an event of
interest occurs. Outlier detection in this context has gained great importance due to the
fact that the identification of long or short-term survivors may lead to the detection of
new prognostic factors. However, the results obtained using different outlier detection
methods and residuals are seldom the same and are strongly dependent of the specific
Cox proportional hazards model selected. In particular, when the inherent data have a
high number of covariates, dimensionality reduction becomes a key challenge, usually
addressed through regularized optimization, e.g. using Lasso, Ridge or Elastic Net
regression. In the case of transcriptomics studies, this is an ubiquitous problem, since
each observation has a very high number of associated covariates (genes).

Results: In order to solve this issue, we propose to use the Rank Product test, a
non-parametric technique, as amethod to identify discrepant observations independently
of the selection method and deviance considered. An example based on the The
Cancer Genome Atlas (TCGA) ovarian cancer dataset is presented, where the covariates
are patients’ gene expressions. Three sub-models were considered, and, for each one,
different outliers were obtained. Additionally, a resampling strategy was conducted to
demonstrate the methods’ consistency and robustness. The Rank Product worked as a
consensus method to identify observations that can be influential under survival
models, thus potential outliers in the high-dimensional space.
Conclusions: The proposed technique allows us to combine the different results
obtained by each sub-model and find which observations are systematically ranked as
putative outliers to be explored further from a clinical point of view.

Keywords: Survival analysis, Data dimensionality reduction, Rank product test, Gene
expression

Background
One of the statistical techniques most used in the medical field is survival analy-
sis, whose goal is to study the time until an event of interest and its associated
covariates. The event may be death, the relapse of a tumour, or the development
of a disease. The response variable is the time until that event, called survival or
event time, which can be censored, i.e. not observed on all individuals present in
the study.
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In this context, the Cox proportional hazards regression model [1] is the classical
approach to deal with this type of censored data. It is based on a semi-parametric
likelihood since the baseline hazard function, h0(t), is not specified, which contributes
to its flexibility. Although the Cox regression model is a widely used method due to its
simplicity, the corresponding estimator has a breakdown point of 1/n [2], which means
that the presence of outlying observations may have extreme influence on the estimation
of the model parameters. In order to handle this problem, a robust version of the Cox
regression model has also been proposed [3].
The robust version of the Cox regression model [3] is based on doubly weighting the

partial likelihood function of the Cox regression model. The robust Cox is an alternative
method to the Cox regression model estimation, as a framework that allows to infer the
parameters in a more robust way when outlying observations are present, i.e., individuals
that lived too long or died too early when compared to others with the same clinical
conditions. Furthermore, the weights obtained with this method can give information
about which observations aremore influential and therefore can be considered as putative
outliers [4].
The detection of outliers in survival data has gained great importance due to the fact

that the identification of individuals with survival time too high or too short can lead in
the medical field to the detection of new prognostic factors [5]. The first attempts to ana-
lyze and to identify outliers were based on residuals. In this context, graphical methods
based on the analysis of martingale, score and deviance residuals were proposed [6], and
also other contributions including the log-odds and normal deviate residuals [5].
One of the challenges arising when dealing with patient’ omics data is the high-

dimensionality problem. In this type of data, the number of covariates (p) is often much
larger than the number of observations (n), i.e., p � n. In this context, the usual statisti-
cal techniques for the estimation of the parameters cannot be applied, due to the inherent
ill-posed inverse problem [7].
When dealing with thousands of covariates, as is the case for omics data, dimensionality

reduction is a crucial initial step, leading to distinct models depending on the variable
selection method used.
In this context, regularized optimization techniques are widely applied, which include

the least absolute shrinkage and selection operator (Lasso) [8], Ridge and Elastic Net reg-
ularization [9]. The Lasso, uses an l1-norm regularizer, and the Elastic Net uses a linear
combination of l1 and l2 penalties. In contrast with the Elastic net, in the presence of
highly correlated variables, the Lasso tends to arbitrarily select one of them.
In this sense, depending on the methodology used to reduce the dimensionality of

the data, different models are obtained and, consequently, distinct outliers are iden-
tified. The aim of this work is, therefore, given a high-dimensional dataset, to find
outliers (or influential observations) from different sub-models, which are obtained
from distinct techniques for variable selection. The method proposed is based on the
Rank Product (RP) test, a non-parametric method, to identify the outliers that are
consistently highly ranked in each of the sub-models. The ovarian cancer dataset,
with gene expressions as covariates, was chosen to illustrate the applicability of the
proposed method. Three gene expression sub-models are presented, and the RP test
is applied as a consensus or ensemble test that combines the results obtained by
each model, often distinct and sometimes contradictory. Notice that each sub-model
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has different baselines, since for this particular dataset there is no groundtruth to
start from.
Although the rank product and the deviancesmeasures for survival models were already

proposed previously in different contexts, the combination of RP-based statistical tests as
a means of conferring robustness to outlier detection tasks represents the main novelty of
this work.
The outline of this work is as follows. In “Methods” section, themartingale residual used

to detect outliers in survival analysis and the Rank Product test are explained in detail.
In “Results” section the results concerning an application example are presented. Finally,
Conclusions are addressed in “Conclusions” section.

Methods
Themethod proposed to obtain potential outliers considering different sub-models, is the
Rank Product (RP) test. Before explaining this technique in detail, we need to select the
measure used to obtain outliers in survival analysis.
There are in the literature a vast number of ways to identify abnormal (outlying) obser-

vations in survival analysis. The most common technique is based on the residuals, as
referred before. More recent studies proposed other algorithms based on quantile regres-
sion [10] and the concordance c-index [11]. In the present work the focus will be given
to the martingale residual but it is worth mentioning that the proposed method can be
applied to any other deviance measures, as long as a final outlyingness ranking can be
obtained.
The Martingale residuals arise from a linear transform of the Cox-Snell residuals [6]

and are very useful for outlier detection for censored data.
Let all the covariates be fixed, the martingale residual for the ith individual is given by

r̂Mi = δi − Ĥ0(ti) exp
(
β̂
T
xi

)
, (1)

where β = (β1, . . . ,βp) are the unknown regression coefficients, which represent the
covariate effect in the survival, Ĥ0(ti) represents the estimate of the cumulative baseline
hazard, xi = (xi1, . . . , xip) is the covariate vector associated with the ith individual and δi
is the censored function. These residuals are asymmetric and take values in (−∞, 1).
The martingale residuals are the difference between the observed number of the events

for the ith individual in (0, ti) and the corresponding expected number, obtained by the
adjusted model. The observed number of ‘deaths’ is one if ti is not censored, i.e., is equal
to δi. On the other hand, ri is the estimate ofH(ti), which can be interpret as the expected
number of ‘deaths’ in (0, ti), since it is only considered an individual.
This residuals will reveal the individuals that are not well adjusted to the model. i.e.,

those that lived too long (large negative values) or died too soon (values near one), when
compared to other individuals with the same covariate pattern.

Rank product (RP)

When dealing with high dimensional datasets, dimensionality reduction is warranted.
Regularization methods are an example on how to overcome this challenge, as referred to
before. However, different technique result in different estimated sub-models, which will
significantly influence the obtained results regarding the identification of outlying cases.
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In order to address this challenge, we propose a method that can combine all the results
obtained for each one of the different sub-models. The rationale is that, if a given observa-
tion is systematically classified as an outlier, independently of the chosen sub-model, then
our trust on the accuracy of that particular classification should increase. To accomplish
this goal, the RP test is used.
From the theoretical point of view, the RP test is a non-parametric statistical technique

which gained great importance in detecting deferentially regulated genes in replicated
microarray experiments [12] and allowing the meta-analysis of independent studies [13].
The required input is a list of all the observations ranked by their level of outlying-

ness, based on one of the described methods for outlier detection. The backbone of this
method is to allow the statistical assessment of a consensus rankings obtained in distinct
sub-models, thus providing a combined identification of observations consistently ranked
higher.
From the conceptual point of view, let n be the number of observations and k the num-

ber of different sub-models where the outlier detection method was performed. Consider
that Zij is a measure of the deviance (or outlyingness) of the ith observation in the jth sub-
model, with 1 ≤ i ≤ n and 1 ≤ j ≤ k. The deviance rank for each Zij considering method
j is defined by

Rij = rank(Zij), 1 ≤ Rij ≤ n. (2)

For each sub-model, the lowest ranks imply that the observation is more outlier that the
others. After obtaining the ranks for each sub-model, the rank product is performed,

RPi =
k∏

j=1
Rij. (3)

Several methods were proposed in order to estimate the statistical significance of RPi
under the null hypothesis of random (uniform) rankings. In [12] the distribution of RPi
was based on a permutation approach. An alternative formulation that is less computa-
tional intensive was described more recently, based on an approximation of the logarithm
of those values using the gamma distribution with parameters (k, 1) [14]. In [15] the exact
probability distribution for the rank product was derived. The one chosen in the present
study is based on the geometric mean of upper and lower bounds, defined recursively
[16], since the algorithm provides accurate approximate p-values for the rank product
when compared to the exact ones and is substantially faster in terms of computational
execution.
Another key issue when performing these tests is related with the multiple testing

problem. In fact, since many observations are tested, type-I errors (false positives) will
increase. Several correction methods exist that usually adjust α so that the probability
of observing at least one significant result due to chance remains below a desired sig-
nificance level. The Bonferroni correction is one classical choice, with less conservative
options also available, such as the False Discovery Rate (FDR) [17].
The FDR, which is the expected proportion of false positives among all tests that are

significant, sorts in an ascendant order the p-values and divides them by their percentile
rank. The measure used to determine the FDR is the q-value. For the p-value: 0.05 implies
that 5% of all tests will result in false positives, instead, for the q-value: 0.05 implies that
5% of significant tests will result in false positives. The q-value is therefore able to control



Carrasquinha et al. BioDataMining  (2018) 11:1 Page 5 of 14

the number of false discoveries in those tests. For this reason it has the ability of finding
truly significant results.
In this context, the RP is used as a consensus technique for all different results obtained

by each sub-model. In order to illustrate this approach, the RP technique is applied
to three sub-models, where the goal is to obtain outlying observations based on the
martingale residuals, independently of the estimated sub-model. In order to evaluate
the dependency of the results to the particular choice of the sub-models, a resampling
strategy was also conducted.

Results
To evaluate the proposed consensus outlier detection method, the described proce-
dure was applied to a high-dimensional dataset constituted by ovarian cancer patients
microarray expression data.
This dataset was obtained from The Cancer Genome Atlas (TCGA) (http://

cancergenome.nih.gov/) and is constituted by 517 observations (patients) over 12,042
covariates, comprising follow-up times, survival status and microarray gene expressions
of all the patients (https://gdc-portal.nci.nih.gov/).
For the analysis, this dataset was aggregated by the TCGA consortium allowing for the

analysis to be reproducible with the original dataset. The clinical data was cleaned using
“Days to last follow-up” and “Days to death” attributes to detect inconsistencies between
them. Only the cases where the number of days matched were included in the analysis.
The same process was performed for the attributes “Days to death” and “Vital status”,
where some cases had as status “deceased”, but a missing “Days to death”.
This dataset was analyzed in three different ways. In the first analysis the following

regularization methods were performed [18]: 1) Lasso, 2) Lasso and elastic net, lead-
ing to two different sets of selected genes. The union of these sets was then considered,
allowing to reduce the dimensionality from 12,042 to 109 covariates (genes). After this,
a stepwise algorithm using the AIC (Akaike information criterion) was applied and 63
covariates were thus obtained. In the second analysis, 18 genes were considered, based
on those selected in a previous study [19]. Finally, a third approach is presented where
22 genes were selected based on their reported association with ovarian cancer, as in the
Genetics Home Reference https://ghr.nlm.nih.gov/condition/ovarian-cancer#genes. The
list included also gene RAD51D which is not present in the original TCGA data and was
therefore discarded from the analysis. Notice that for the three analysis considered there
is no overlap of the covariates selected.
It is noteworthy that, although we have pursued these three analyses, we can indeed

include many others, for example, using different feature selection methods or prior
clinical information.
To overcome the fact that the results obtained for each of the analysis are model-based,

a sampling strategy was also implemented in order to determine whether resampling the
data using a sub-model of covariates (genes) would recognize the outliers previously iden-
tified. The resampling algorithm randomly picked 1000 genes (without replacement) from
the ovarian cancer dataset. The Cox regression model with elastic-net regularization was
then fitted (using glmnet), resulting in a reduced set of selected genes. In order to calcu-
late the corresponding martingale residuals, a Cox regression is then performed on this
reduced gene set (using coxph). The resulting residuals allow to sort the observations

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
https://gdc-portal.nci.nih.gov/
https://ghr.nlm.nih.gov/condition/ovarian-cancer#genes
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accordingly to their outlyingness level. This procedure is repeated 100 times, resulting in
100 models to feed the RP test.
All the analysis were performed in R [20] and are fully documented in the “Rmd

File” as R Mardown files to allow full reproducibility. The libraries used for the analysis
were: survival, for the Cox regression model to obtain the martingale residuals, and
qvalue, to determine the q-values. The two robust versions of the Cox regression model
were the coxrobust, and an improvement of this method available in [4]. The algo-
rithm implementation to obtain the p-values for the rank product, based on the geometric
mean, is provided by Heskes and colleagues [16].
The proportional hazard assumption [21] for the Cox’s regressionmodel was tested, and

the results showed that this hypothesis was never violated. The p-values for each of the
sub-model presented are the following: 0.1932 (63 genes), 0.3795 (18 genes) and 0.3868
(22 genes).
The majority of gene expression do not have a normal distribution (see Supplementary

files for the Shapiro tests conducted) although this fact does not affect the resulting Cox
models’ validity.
In the next sections the results for the martingale residual, for each one of the models,

and the RP that combine all the ranks, for each sub-model considered, is presented.

Outlier detection results for each sub-model

TCGA ovarian cancer - 63 genes

For this particular model, the dataset can be represented as a matrix of size 517× 63. The
Cox’s regression and the Cox’s robust regression models were performed. The follow-
ing 21 genes were significant for a 5% level of significance in all the methods considered:
HPCA, RPS6KA2, GRB7, ABCD2, WDR76, NDUFA3, PI3, BNC1, D4S234E, CSNK1G1,
SSTR1, PSG3, GAS1, POPDC2, DAP, SRY, HOXD11, HSPA1L, PPP3CA, MPZ and LBP.
Also 11 genes for the Cox proportional hazard and 13 genes for the Cox robust, were not
significant, for a 5% level of significance. Those differences are regarding genes: SDF2L1,
PRR16, ALG8 and ELA3A. Genes SDF2L1, PRR16 and ALG8 were not significant in the
Cox robust and significant in the Cox regression model and gene ELA3A was signifi-
cant in the robust case ([4], proposal) and not significant for the classical Cox. For more
details, see Table 1. Figure 1 shows that observations 39 and 350 are identified as influen-
tial observations in the sense that they have the lowest weights. The results regarding the
residuals are shown in Fig. 2. Again observations 39 and 350 in the martingale residuals
appears to have the lowest values when compared to all the others.

TCGA ovarian cancer - 18 genes

The features selected were based on the work of [19] where the authors considered as
covariates of the Cox model the expression of 18 genes. The dataset is a matrix of size
517×18, and, in this case, the only genes statistically significant were:CRYAB and SPARC,
for Cox’s and Cox’s robust (see Table 2).
The CRYAB gene codes for the crystallin alpha B chain, a protein that acts as a molec-

ular chaperone. Its function is to bind misfolded proteins and, interestingly, some defects
associated to this protein and gene have already been associated with cancer, among
other diseases. In particular, a recent study [22] analyzed which molecular factors could
affect ovarian cancer cell apoptosis and the authors found out that there was a statistical
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Table 1 Results for the Cox’s regression model and Cox’s robust (both proposals) for the TCGA data
with 63 genes

Cox CoxRobust ([3]) CoxRobust ([4])

Genes coef se(coef) p-value coef se(coef) p-value estimate SE p-value

HPCA -1.1893 0.3560 0.0008 -1.1803 0.5877 0.0446 -1.1662 0.3387 0.0006
UBE2J1 -0.2160 0.1475 0.1431 -0.2221 0.2676 0.4064 -0.2220 0.1364 0.1035
RPS6KA2 0.2972 0.1124 0.0082 0.3892 0.1408 0.0057 0.3980 0.1201 0.0009
SDF2L1 -0.2025 0.1024 0.0480 -0.2003 0.1203 0.0959 -0.1979 0.1017 0.0516
GRB7 0.3360 0.0965 0.0005 0.3268 0.1115 0.0034 0.3272 0.0873 0.0002
PTGFR 1.1771 0.4891 0.0161 1.0255 0.6001 0.0875 1.0131 0.4899 0.0386
ABCD2 2.1329 0.7532 0.0046 2.3397 1.1928 0.0498 2.3564 0.7860 0.0027
FLJ20323 0.2936 0.1322 0.0264 0.2696 0.1480 0.0685 0.2654 0.1251 0.0338
WDR76 1.1471 0.3040 0.0002 1.1701 0.5071 0.0210 1.1695 0.3387 0.0006
NDUFA3 0.3454 0.1352 0.0106 0.4128 0.1633 0.0115 0.4130 0.1289 0.0014
FJX1 -0.1945 0.0987 0.0488 -0.2867 0.1616 0.0760 -0.2934 0.1023 0.0041
GAPDHS 0.8798 0.5092 0.0840 0.9733 0.6198 0.1163 0.9929 0.5517 0.0719
RAB40B -0.1852 0.0833 0.0263 -0.2219 0.1404 0.1140 -0.2232 0.0838 0.0077
PRR16 -0.4071 0.1887 0.0310 -0.3362 0.2740 0.2198 -0.3367 0.1863 0.0707
CLTCL1 0.3730 0.2601 0.1515 0.4470 0.3452 0.1953 0.4354 0.2817 0.1223
PPM2C 0.3999 0.1005 0.0001 0.4173 0.2192 0.0569 0.4160 0.1027 0.0001
FOXE3 -0.8118 0.5080 0.1100 -0.5162 0.6139 0.4005 -0.5129 0.4706 0.2757
CHIT1 -0.9427 0.2741 0.0006 -0.9042 0.4674 0.0531 -0.9102 0.3584 0.0111
PI3 0.2450 0.0466 0.0000 0.2305 0.1083 0.0333 0.2310 0.0443 0.0000
BNC1 0.1648 0.0693 0.0174 0.1830 0.0847 0.0307 0.1837 0.0731 0.0120
D4S234E -0.1471 0.0606 0.0153 -0.1645 0.0767 0.0319 -0.1664 0.0636 0.0089
SAPS2 0.8055 0.2158 0.0002 0.8342 0.6100 0.1714 0.8345 0.2133 0.0001
CSNK1G1 0.8805 0.3858 0.0225 1.0782 0.4489 0.0163 1.0874 0.3901 0.0053
MLL2 1.0106 0.4972 0.0421 1.3137 0.8978 0.1434 1.3255 0.5169 0.0103
HSPB7 0.6657 0.3540 0.0600 0.5092 0.4368 0.2437 0.5004 0.3526 0.1559
SLC37A4 -0.2538 0.1635 0.1205 -0.3065 0.2269 0.1768 -0.3142 0.1653 0.0573
WTAP 0.5562 0.1590 0.0005 0.5607 0.3265 0.0860 0.5599 0.1563 0.0003
SSTR1 -1.7443 0.6359 0.0061 -1.7979 0.7908 0.0230 -1.8039 0.6710 0.0072
IDUA 1.4248 0.4480 0.0015 1.4354 0.8810 0.1032 1.4447 0.4714 0.0022
PSG3 -2.1008 0.7371 0.0044 -2.3029 0.8579 0.0073 -2.2998 0.7673 0.0027
SLC9A2 0.3374 0.1267 0.0077 0.3185 0.1677 0.0575 0.3179 0.1311 0.0153
PAPOLG 1.8006 0.4837 0.0002 1.7430 0.9548 0.0679 1.7445 0.4623 0.0002
GAS1 0.2589 0.0861 0.0027 0.2756 0.1380 0.0458 0.2785 0.0854 0.0011
ELA3A -0.4516 0.2360 0.0557 -0.4692 1.1530 0.6840 -0.4715 0.2266 0.0375
KIF26B 0.9000 0.2329 0.0001 0.8508 0.4996 0.0886 0.8502 0.2299 0.0002
GBP2 -0.3527 0.0935 0.0002 -0.3718 0.1924 0.0532 -0.3749 0.0959 0.0001
POPDC2 -3.0285 0.4894 0.0000 -2.7792 1.2267 0.0235 -2.7675 0.5214 0.0000
OPN1SW 2.3693 0.5099 0.0000 2.1049 1.0821 0.0518 2.1140 0.5087 0.0000
DAP -0.7017 0.1333 0.0000 -0.6959 0.2120 0.0010 -0.6957 0.1307 0.0000
SRY -2.3810 0.7835 0.0024 -2.4342 1.0015 0.0151 -2.4382 0.7497 0.0011
UTP20 0.3955 0.1553 0.0109 0.4170 0.2133 0.0506 0.4185 0.1589 0.0084
HOXD11 0.8313 0.2268 0.0003 0.7056 0.2897 0.0149 0.7047 0.2147 0.0010
HSPA1L 0.3765 0.1828 0.0395 0.4634 0.2344 0.0480 0.4645 0.2207 0.0353
PPP3CA 0.3213 0.1113 0.0039 0.3294 0.1262 0.0091 0.3316 0.1019 0.0011
PAX2 -0.2296 0.0899 0.0106 -0.2373 0.2193 0.2792 -0.2375 0.0869 0.0063
FZD10 -0.0994 0.0553 0.0720 -0.0801 0.0748 0.2841 -0.0807 0.0563 0.1518
TREML2 -0.6339 0.4228 0.1339 -0.6043 0.5415 0.2644 -0.6143 0.4665 0.1879
CCR7 -0.6175 0.2637 0.0192 -0.5713 0.4291 0.1830 -0.5692 0.2349 0.0154
MPZ 0.8243 0.2329 0.0004 0.7611 0.3173 0.0164 0.7626 0.2097 0.0003
MGAT4C 1.1627 0.6331 0.0663 1.0216 0.6915 0.1396 1.0177 0.5374 0.0583
EHMT1 1.8125 0.4705 0.0001 1.5360 1.0943 0.1604 1.5220 0.4978 0.0022
ALG8 -0.2209 0.1067 0.0385 -0.1276 0.1482 0.3894 -0.1188 0.1135 0.2950
KCNN2 -1.1298 0.3040 0.0002 -1.1903 1.0630 0.2628 -1.1909 0.2916 0.0000
ESR2 -2.6987 1.0408 0.0095 -2.4160 1.7091 0.1575 -2.4447 1.1388 0.0318
TGM2 -0.2265 0.1370 0.0982 -0.1904 0.2393 0.4262 -0.1907 0.1667 0.2526
LBP 1.0330 0.2216 0.0000 0.9934 0.2712 0.0002 0.9919 0.2492 0.0001
SRPK3 -0.7770 0.2074 0.0002 -0.8033 0.4268 0.0599 -0.8068 0.1927 0.0000
FBXO40 1.4431 0.5331 0.0068 1.3587 0.7145 0.0572 1.3517 0.5519 0.0143
ANGPT2 -0.3112 0.1571 0.0477 -0.3140 0.1849 0.0894 -0.3151 0.1393 0.0237
IRF5 -0.8805 0.3143 0.0051 -0.8175 0.5146 0.1121 -0.8176 0.3097 0.0083

ANXA4 0.2854 0.1191 0.0166 0.2839 0.1674 0.0900 0.2852 0.1350 0.0346

DENND2D -0.2540 0.1053 0.0159 -0.2419 0.1388 0.0813 -0.2416 0.0957 0.0116

SGEF -1.4599 0.6064 0.0161 -1.4272 0.8081 0.0774 -1.4264 0.6434 0.0266
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a b

c

Fig. 1 Plot of robust estimates with log-transformed exponential weight vs. case number for the TCGA
ovarian cancer data for each one of the sub-models. a 63 genes expression, b 18 genes expression, c 22
genes expression

significant association between the expression of crystallin B (CCRYAB) with survival.
This protein has, indeed, a negative regulation of tumor necrosis, whichmay explain these
results.
The SPARC gene codes for Secreted protein acidic and rich in cysteine, a protein that

appears to be a regulator of cell growth, by interaction with cytokines, the extracellu-
lar matrix and also binding calcium, copper, and several others biochemical compounds.
This protein is overexpressed in ovarian cancer tissues [23], playing a central role in
growth, apoptosis and metastasis. It also has been identified as a candidate therapeutic
target [24].
Figure 1 shows that observations 113 and 219 are identified as influential observations

(lowest weights). However, for this example, the weights are not so distinct in the sample.
The results regarding the residuals are shown in Fig. 2. Observation 219 in the martingale
residuals has the lowest value when compared to the all the others.

TCGA ovarian cancer - 22 genes

The dataset considered is a matrix of size 517 × 22, where the number of columns corre-
sponds to the genes that are most associated with the ovarian cancer. Interestingly, only
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a b

c

Fig. 2 Plot of the martingale residuals for the TCGA ovarian cancer data for each one of the sub-models. a 63
genes expression, b 18 genes expression, c 22 genes expression

two genes in this dataset are statistically significant: BRCA2 in the Coxmodel, and PALB2
when considering both Cox model and its Heritier’s robust version [4] (see Table 3).
Both BRCA2 and PALB2 genes encodes a protein that may function in tumor sup-

pression (for more details see https://ghr.nlm.nih.gov/gene/. In the BRCA2 this protein
is to help repair damaged DNA ensuring the stability of the cell’s genetic material. If the
BRCA2 gene is mutated/changed the DNA could be corrupted developing genetic alter-
ations that can lead to cancer. In [25] is conducted a study where BRCA1 and BRCA2
genes mutations account for the majority of hereditary ovarian carcinomas. On the other
hand the PALB2 is related to breast cancer. Recent studies [26] showed that women who
carry mutations in the PALB2 gene are at similar breast cancer risks as those who carry
mutations in BRCA2.
When using the weights of the robust version, 114 is identified as an influential obser-

vation (Fig. 1). Figure 2 shows the results concerning the residuals. Observations 114 and
211 in the martingale residuals have the lowest values when compared to all the others.
To overcome the fact that, for each sub-model, different outliers are obtained, the RP

test was performed. The results are presented in the next section.

https://ghr.nlm.nih.gov/gene/
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Table 2 Results for the Cox’s regression model and Cox’s robust (both proposals) for the TCGA data
with 18 genes

Cox CoxRobust ([3]) CoxRobust ([4])

Genes coef se(coef) p-value coef se(coef) p-value estimate SE p-value

LPL 0.1263 0.0751 0.0924 0.1011 0.0856 0.2375 0.1011 0.0717 0.1584

IGF1 0.0210 0.0600 0.7266 0.0341 0.0705 0.6289 0.0340 0.0670 0.6114

EDNRA 0.0224 0.1227 0.8549 0.0619 0.2119 0.7704 0.0621 0.1482 0.6752

MFAP5 0.0165 0.0482 0.7327 0.0089 0.0622 0.8865 0.0089 0.0516 0.8630

LOX 0.1918 0.1251 0.1254 0.1688 0.1499 0.2604 0.1690 0.1281 0.1872

INHBA -0.1432 0.1786 0.4227 -0.1556 0.1895 0.4118 -0.1556 0.1841 0.3978

THBS2 0.0639 0.0902 0.4787 0.0863 0.1072 0.4205 0.0862 0.0908 0.3422

ADIPOQ -0.1256 0.0910 0.1676 -0.0727 0.1047 0.4875 -0.0728 0.1001 0.4667

NPY 0.0552 0.0496 0.2655 0.0625 0.0710 0.3785 0.0625 0.0553 0.2590

CCL11 -0.1296 0.0960 0.1771 -0.1578 0.1212 0.1927 -0.1576 0.1013 0.1197

VCAN 0.0578 0.1009 0.5664 0.0286 0.1419 0.8404 0.0286 0.0956 0.7651

DCN 0.0729 0.0892 0.4133 0.0791 0.0993 0.4257 0.0791 0.0976 0.4176

TIMP3 0.0719 0.0835 0.3891 0.0775 0.0906 0.3925 0.0775 0.0881 0.3789

CRYAB 0.1092 0.0424 0.0100 0.1179 0.0544 0.0302 0.1180 0.0437 0.0069

CXCL12 0.0204 0.0818 0.8030 0.0129 0.0962 0.8932 0.0130 0.0879 0.8826

SPARC -0.3811 0.1402 0.0066 -0.3978 0.2020 0.0489 -0.3975 0.1332 0.0029

CNN1 0.0863 0.1141 0.4493 0.1313 0.1395 0.3468 0.1313 0.1341 0.3275

FBN1 0.1135 0.1690 0.5018 0.1122 0.2234 0.6154 0.1116 0.1806 0.5365

Highlighted in bold are statistically significant genes, in this case CRYAB and SPARC

Table 3 Results for the Cox’s regression model and Cox’s robust (both proposals) for the TCGA data
with 22 genes

Cox CoxRobust ([3]) CoxRobust ([4])

Genes coef se(coef) p-value coef se(coef) p-value estimate SE p-value

AKT1 -0.1991 0.1028 0.0526 -0.1793 0.1714 0.2954 -0.1794 0.1054 0.0888

BARD1 -0.0363 0.1145 0.7512 -0.0471 0.1227 0.7010 -0.0473 0.1118 0.6724

BRCA1 0.0984 0.1595 0.5375 0.1467 0.2017 0.4669 0.1462 0.1657 0.3776

BRCA2 0.4940 0.2114 0.0194 0.4092 0.2403 0.0886 0.4093 0.2195 0.0623

BRIP1 -0.2211 0.2395 0.3558 -0.1447 0.2869 0.6141 -0.1446 0.2541 0.5694

CDH1 0.0377 0.1422 0.7908 -0.0133 0.1903 0.9441 -0.0135 0.1790 0.9400

CHEK2 -0.1278 0.1007 0.2045 -0.0877 0.1118 0.4325 -0.0875 0.1043 0.4012

CTNNB1 0.1986 0.1702 0.2433 0.1555 0.2419 0.5204 0.1554 0.1673 0.3530

MLH1 0.0662 0.1443 0.6464 0.0004 0.1541 0.9981 0.0004 0.1530 0.9977

MRE11A -0.1625 0.2097 0.4385 -0.2578 0.3052 0.3983 -0.2577 0.2133 0.2270

MSH2 0.0412 0.1340 0.7588 0.1081 0.2364 0.6475 0.1083 0.1331 0.4159

MSH6 0.0441 0.2101 0.8339 -0.0298 0.3432 0.9309 -0.0298 0.1953 0.8789

NBN 0.1908 0.1149 0.0967 0.1790 0.1530 0.2420 0.1790 0.1256 0.1542

OPCML 0.3367 0.3194 0.2919 0.3620 0.3162 0.2522 0.3616 0.2366 0.1264

PALB2 -0.4238 0.1385 0.0022 -0.3886 0.2140 0.0694 -0.3884 0.1522 0.0107

PARK2 0.7468 0.5007 0.1358 0.6960 0.6044 0.2495 0.6957 0.5059 0.1690

PIK3CA 0.0086 0.1012 0.9326 0.0426 0.1171 0.7157 0.0427 0.1067 0.6893

PMS2 0.1267 0.1210 0.2951 0.1077 0.1561 0.4901 0.1078 0.1265 0.3940

RAD50 0.1426 0.1317 0.2789 0.1794 0.1527 0.2402 0.1792 0.1439 0.2129

RAD51C -0.0955 0.1163 0.4114 -0.0844 0.1383 0.5418 -0.0844 0.1210 0.4857

STK11 0.0616 0.3449 0.8582 0.1420 0.3867 0.7134 0.1422 0.3641 0.6960

TP53 -0.0485 0.0624 0.4371 -0.0521 0.0908 0.5659 -0.0520 0.0665 0.4339

Highlighted in bold are statistically significant genes, in this case BRCA2 and PALB2
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Rank Product results

The ranks of the martingale residuals for each sub-model were determined. The product
of the ranks was obtained, and, finally, the p-values and corresponding q-values were
calculated, as shown in Table 4. Based on those results, and considering a 5% level of
significance, the observations that are considered outliers based on the three different
sub-models are: 55, 114, 211, 219 and 455.
Notice that three of the observations considered as outliers in the RP test had low

values for the martingale residual. Observation 219 for the model with 18 genes, and
observations 114 and 211 for the model that considered 22 genes.
The overall values of the survival time are between 8 to 5481 days, with the first, second

and third quantile: 376, 923 and 1483, respectively. Only approximately 3% of the obser-
vations had a survival time higher than 2500 days. Regarding observations 114, 211 and
219 the survival time is, respectively, 2780, 3953 and 3525 (maximum was 5481 days), all
censored, see Table 4. In this way the observations identified are long-term survivors.
To illustrate the robustness of the RP test, a resampling technique was performed as

described above. The results displayed in Table 5 show that the observations considered
outliers for the three different sub-models are also outlying observations for the 100 dif-
ferent models obtained. This includes all the observations considered outliers in Table 4.
Indeed, there are individuals that consistently appear with larger residuals, irrespectively
of the model. It is noteworthy that, although the genes selected in each model are differ-
ent, there is a set of patients that always exhibit discrepant values for their survivals, as
would be predicted by their covariates. This illustrates the robustness of the method to a
particular choice of the model.
These results show that the proposedmethod was able to combine in a statistically solid

way the results of different estimated models. In particular, the application of the RP test
allowed to identify a consensual list of putative outliers in the dataset in a semi-automatic
way, paving the way for the analysis of other datasets where discrepant observations are a
critical issue in clinical applications.

Table 4 Ranks for outlier detection using the martingale residual sorted by q-value, for each
sub-model

ID Time Status Rank Martingale Rank Martingale Rank Martingale p-value q-value

18 genes 22 genes 63 genes

114 2780 0 11 1 25 4.31E-05 0.0223

55 2967 0 8 3 29 1.39E-04 0.0324

211 3953 0 5 2 90 1.88E-04 0.0324

219 3525 0 1 32 54 3.96E-04 0.0496

455 3532 0 2 13 79 4.79E-04 0.0496

115 2259 0 14 21 14 1.02E-03 0.0752

279 2688 1 21 9 19 8.80E-04 0.0752

377 2078 0 38 10 15 1.43E-03 0.0824

452 5481 0 7 7 113 1.39E-03 0.0824

155 2982 0 9 4 232 2.13E-03 0.0916

221 2788 0 3 16 188 2.30E-03 0.0916

372 3096 0 6 8 155 1.89E-03 0.0916

516 3825 0 10 6 147 2.25E-03 0.0916

26 3622 1 35 5 58 2.59E-03 0.0958

69 2490 1 73 29 6 3.25E-03 0.1120
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Conclusions
The aim of this work was to propose a combined method based on the RP test. The pro-
posed technique allows to combine the different results obtained by each sub-model and
find which observations are systematically ranked as putative outliers. By the applica-
tion examples tested, it can be seen that the results regarding outlier detection are highly
dependent on the specific method used. In fact for a certain dataset the choice of the
covariates used significantly changes the outliers identified, which may hamper a definite
answer in this respect. Therefore, the results regarding the influential observations in a
given dataset are highly depended on the specific model adjusted. The proposed appli-
cation of the RP test nevertheless illustrates that it is possible to combine the different
results and to obtain a consensus list of putative outliers to be explored further from a
clinical point of view.
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