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Abstract
Background: In the nervous system, the neurons communicate through synapses.
The size, morphology, and connectivity of these synapses are significant in determining
the functional properties of the neural network. Therefore, they have always been a
major focus of neuroscience research. Two-photon laser scanning microscopy allows
the visualization of synaptic structures in vivo, leading to many important findings.
However, the identification and quantification of structural imaging data currently rely
heavily on manual annotation, a method that is both time-consuming and prone to
bias.

Results: We present an automated approach for the identification of synaptic
structures in two-photon images. Axon boutons and dendritic spines are structurally
distinct. They can be detected automatically using this image processing method.
Then, synapses can be identified by integrating information from adjacent axon
boutons and dendritic spines. In this study, we first detected the axonal boutons and
dendritic spines respectively, and then identified synapses based on these results.
Experimental results were validated manually, and the effectiveness of our proposed
method was demonstrated.

Conclusions: This approach will helpful for neuroscientists to automatically analyze
and quantify the formation, elimination and destabilization of the axonal boutons,
dendritic spines and synapses.
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Introduction
Synapses were first discovered in the 1890s, when Sir Sherrington, through his pioneering
work on motor reflexes, wrote that synapse is the way of neuronal communication in the
nervous system [1]. There are two major types of synapses: chemical and electrical. In
the mammalian central nervous system, the vast majority of the synapses are chemical.
Chemical synapses, especially excitatory synapses, typically consist of presynaptic axon
boutons and postsynaptic dendritic spines. The structural plasticity of boutons and spines
underlies functional synaptic plasticity, widely accepted as the neural basis of learning
and memory. Brain imaging can be used to characterize changes occurring in a brain
during very different time-scales [2]. The advent of boutons and spines can be imaged in
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live animals over days or even months, allowing observation of structural changes in vivo,
often in direct association with learning [3–11].
Manual validation is extremely time-consuming, and error prone. Meanwhile, different

criteria may lead to different results. Therefore, manual methods are not suitable for the
processing of large-scale data. The recent advances in biomedical imaging have allowed
the initial development of computer-aided semiautomatic or automatic approaches to
detect dendritic spines based on image analysis. In [12], Xie et al. proposed an algo-
rithm for automatic neuron reconstruction. The algorithm can handle complex structures
adaptively and optimize the localization of bifurcations. In [13], an automated scheme to
perform segmentation in a variational framework was proposed to trace neurons from
confocal microscopy images. The segmentation framework, referred to as “tubularity flow
field (TuFF)”, performs directional regional growing guided by the direction of tubular-
ity of the neurites. In [14], a robust automatic neuron segmentation and morphology
generation algorithm was proposed. The algorithm-Tree2Tree uses a local medial tree
generation strategy in combination with a global tree linking to build a maximum like-
lihood global tree. It is a reliable technique to compare various of neurons for tracing
evaluation and neuron retrieval. Gonzalez et al. presented an approach to fully auto-
mated delineation of tree structures in noisy 2D images and 3D image stacks. It is able
to eliminate noise while retaining the right tree structure [15]. Besides, in [16], Gonzalez
et al. showed that using steerable filters to create rotationally invariant features that
include higher-order derivatives, and training a classifier based on these features allows
us handle such irregular structures. Rodriguez et al. developed an open-source software
NeuronStudio to aid the neuroscientist in the task of reconstruction of neuronal struc-
tures from confocal and multi-photon images [17]. It is a self-contained software package
that is free, easy to use. The focus of previous work mentioned above varies, with some
focusing on neuronal tracking, segmentation and others on specific situations.
They inspired us to explore 3D tracking, segmentation and extraction of synapses both

in 2D and 3D based on the detection results of our automatic detection method. There-
fore, it is of interest to explore methods of automatic detection and quantification of
synapses, dendrites and axons.
In addition to examining boutons and spines separately by two-photon microscopy,

it is also possible to visualize synaptic connections with identified boutons and spines
that are in close proximity. Although the resolution of light microscopy is larger than
the size of the synaptic cleft, previous studies have showed that over 85% of putative
synapses identified in deconvoluted confocal images were true synapses confirmed using
electron microscopy [18]. Light microscopy can still provide useful information. Given
that boutons and spines originated from different brain regions or of different cell types
can be labeled using different fluorescent proteins, observation of synaptic connections
using two-photonmicroscopy provides a valuable method for researching long-range and
cell-type specific synaptic plasticity in vivo [19]. Therefore the automated detection of
synapses will be of tremendous help for this kind of data analysis.
In this paper, we focus on the detection of axonal boutons, dendritic spines and synapses

from the in vivo two-photon image stacks. As described above, a synapse typically con-
sists of one axonal bouton and one dendrite spine, with the exception of multi-bouton
and multi-spine synapses. A reasonable strategy to locate the synapses is to first detect
axonal boutons and dendritic spines, then to search for synaptic contacts composed of



Xie et al. BioDataMining  (2017) 10:40 Page 3 of 23

bouton and spine pairs. A robust Gaussian model was used in order to enhance the mor-
phology of axonal boutons and dendrites respectively, while effectively inhibiting noise.
Before the enhancement operation, we performed deconvolution on axon images as a pre-
processing method for noise reduction. And the regions with relatively higher values are
regarded as axonal boutons with great possibility. For the detection of dendritic spines,
we performed one-threshold segmentation to obtain the structure of the dendrites based
on the enhanced images of dendrites, which followed by an efficient thinning algorithm.
After we extracted the centerline of the dendrites, the dendritic spines were determined
by finding the bifurcation points and endpoints.

Material andmethod
Figure 1 illustrates the workflow of our proposed approach for detection of synapses. We
will give a detailed description of each procedure of the method after the introduction to
the image stack in this paper.

Materials

The image data used in this study was obtained from Institute of Neuroscience, State
key Laboratory of Neuroscience, Chinese Academy of Sciences, Center for Excellence
in Brain Science and Intelligence Technology. The transgenic mice (YFP-H line), both
male and female, were imaged using a two-photon microscope (Sutter), controlled by
Scanimage (Janelia). Auditory cortex of mice was exposed surgically and covered with
glass cranial window for repeated two-photon imaging in vivo. Surgical details refer to
Y. Yang [19]. Image stack was acquired from the cortical surface to 100–150μm depth
with 0.7μm intervals. A 25× objective with 1.05 numerical aperture was used (Olympus).
A Ti:sapphire laser (Spectra-Physics) was used as the light source, and tuned to 92 nm for
imaging. YFP (Yellow Fluorescent Protein) and GFP (Green Fluorescent Protein) signals
were collected using filters 495/40 and 535/50 (Chrome). The 535/50 filter (Channel 1)
collected both GFP and YFP signals, and the 495/40 filter (Channel 2) collected GFP-only
signals. By subtracting the GFP signals from Channel 1 signals, the YFP-only images were
obtained [19].

Fig. 1 Workflow of detecting synapses on in vivo two-photon images of mouse
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Fig. 2 Two-photon images of mouse

The dual-color images, as shown in Fig. 2, are the two-photon images, where the
red section and green section represent YFP (containing dendrites and axons) and GFP
images (contains long-range projecting axons only) respectively and the spine-bouton
pairs are thought to be synapse. The x-y resolution and the z resolution of the image data
are 137 nm/pixel and 700 nm/pixel respectively, and the image size (x-y) is 512-by-512.

Detection of axonal boutons

In this section, we provide algorithmic details for axonal bouton detection. The proposed
algorithm is divided into three parts. First, a 3D deconvolution operation is required
due to the noise in the original image stacks. Next, we enhanced the bright swellings in
the deconvolved images and segmented them. Finally, we identified true axonal boutons
based on a series of criteria. The whole workflow for detecting axonal boutons is shown
in Fig. 3.

Algorithm 1 Detection of axonal boutons
Input: In vivo two-photon images of axons {φ}.
for each image ∈ {φ} do

1 Deconvolution by the steps described in the [Appendix 3D deconvolution];
2 Enhance the bright swellings with Algorithm 2;
3 Locate the axonal boutons with Algorithm 3;

end for
Output: Set of coordinates of the points of axonal boutons �.

Fig. 3 Work of detecting axonal boutons. a Axon image stacks from the two-photon image stacks. b One
deconvolved axon image after 3D deconvolution. cMagnified bouton from the area indicated by the red
rectangle shown in panel (b). The image is shown in two different states with the deconvolved one on the
top and the original one on the bottom. d The enhanced image. e The final detected axonal boutons
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3D deconvolution

Although confocal microscopy images are known to be sharper than standard epifluores-
cence ones, they are still inevitably degraded by Poisson noise and residual out-of-focus
light due to photon-limited detection [20]. Thus, several deconvolution methods have
been proposed. In this study, we adopt the Deconvolution Approach for the Mapping of
Acoustic Sources (DAMAS), which decouples the array design and processing influence
from the noise being measured using a simple and robust algorithm [21]. The details of
3D deconvolution operation implemented in ImageJ [22] are shown in Appendix.
One deconvolved axon image is depicted in Fig. 3b. To demonstrate the performance of

the 3D deconvolution operation, we show an axonal bouton indicated by the red rectangle
in Fig. 3b. We then show two different states of this image in Fig. 3c, with the decon-
volved one on the top and the original one on the bottom. A significant difference can be
seen from the detailed comparison, showing that the 3D deconvolution operation helps
to identify the axonal boutons.

Enhancing bright swellings

The thresholding on a deconvolved image does not necessarily ensure perfect segmen-
tations, or even good ones. This is because the range of the intensity of different axonal
boutons can vary dramatically. A low threshold will reserve the bright axon shaft, but
a high threshold will eliminate weak axonal boutons. To avoid the loss of data, we first
enhanced the bright swellings.
By the statistics carried on the corresponding electron microscope data, the average

diameter of terminal boutons is 1.0μm. By setting the pixel size to 137 nm, we find the
average radius of an axonal bouton is about 4 pixels.We randomly select an axonal bouton
as shown in Fig. 4a and show the plot of its corresponding intensity image in Fig. 4b. Note
that the axonal bouton is a “rounded” profile. We can see that the image in Fig. 4b looks
very similar to the three-dimensional Gaussian surface plotted in Fig. 4c, suggesting it is
reasonable to model the intensity of axonal bouton using a three-dimensional Gaussian
surface,

R(x, y) = C exp
(

− (x − x0)2 + (y − y0)2

2δ2

)
, (1)

where C is a constant corresponding to the coordinate of the maximum magnitude point
(x0, y0), and δ is the variance of the Gaussian surface. A very small part of the axonal bou-
tons can be approximated by a ridge, we then construct a Hessian-based ridge detector.

Fig. 4 Axonal bouton intensity modeling. a A randomly selected axonal bouton. b The intensity image of the
bouton shown in (a). c The three-dimensional Gaussian surface with a variance of 4/

√
3
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Letm = (x − x0)2 + (y − y0)2. The intensity of enhanced image is set as additive inverse
of the eigenvalue with minimum absolute, i.e. [Appendix A],

λ(m) =

⎧⎪⎪⎨
⎪⎪⎩

− exp
(
− m

2δ2

) (
m − 2δ2 +

√(
m + 2δ2

)2 − 4δ4
)

/2δ5,m ≤ 2δ2

− exp
(
− m

2δ2

) (
m − 2δ2 −

√(
m + 2δ2

)2 − 4δ4
)

/2δ5,m > 2δ2.
(2)

Here we analyze in three cases:

1) :m = 0, λ(m) = 1/δ3;
2) :m = 2δ2, λ(m) = −√

3/(δ3 × e), where e is the Euler’s number;
3) :m → ∞, λ(m) = 0.

For the parabolic line profile, the magnitude of the second derivative of the extracted
position is always maximum at the line position [23]. We can conclude that the rela-
tionship between the variance δ and the radius r of the axonal bouton is δ = r/

√
3

[Appendix B]. Combined with the radius of axonal boutons, we set the variance as
δ = r/

√
3 in this study.

To allow visual interpretation, we plot the chosen eigenvalue of model (1) in Fig. 5,
from which we can see that the central region is enhanced while the surrounding region
weakens gradually. This provides the theoretical basis for image enhancement and seg-
mentation. Inspired by [23–25], we select the above variance. Figure 3 depicts the
enhanced image of one bright swelling, whose variation tendency consistently conforms
to that of Fig. 3 almost everywhere, supporting the correctness of our theoretical analysis.
Compared to the image in Fig. 3b, the enhanced image shown in Fig. 3d has an advan-
tage for weaker axonal boutons because of its more obvious profile. The following work
is based on the enhanced image in Fig. 6, and the detail is stated in Algorithm 2.

Algorithm 2 Enhancing bright swellings
Input: Deconvolved image φdec.

1 Compute the second partial derivatives Rxx,Rxy,Ryx,Ryy with Eq. (6);
2 Calculate the eigenvalues λa of Hessian matrix with Eq. (7);
3 Choose the value to be the pixel value of the enhanced image with Eq. (2);

Output: Enhanced image φenh.

Obtaining axonal boutons

As discussed in last section, the application of a relatively lower threshold will inevitably
generate false positives. Fortunately, the shapes of the axonal boutons are homogeneous
and each has a sole maximum point. Therefore, we first find local maximum points as
candidate points for axonal boutons, a simple but effective strategy. The detail is stated in
Algorithm 1.
We then evaluate whether each region in the resulting segmentation contains a local

maximum points and we delete the regions lacking local maximum points. On this basis,
we compute some statistical characteristics including the eccentricity, major axis, and
minor axis. Then we reserve the regions that exhibit statistical characteristics similar to
a disk. Finally, we record the location of the reserved regions and determine whether the



Xie et al. BioDataMining  (2017) 10:40 Page 7 of 23

Fig. 5 Eigenvalue of a matrix satisfying the distribution of model (1)

peak intensity of each region is more than three times brighter than its axon shaft in the
original image [19]. The final result of axonal boutons analysis is shown in Fig. 3e.

Detection of dendritic spines

In this section, we explicate the details of ourmethod for the detection of dendritic spines.
Dendritic spines are small with spine head volumes ranging from 0.01 μm3 to 0.8 μm3.
According to the shape, dendritic spines can be classified into following types: thin, mush-
room, and stubby, as shown in Fig. 7 [26]. The variable shape of these spines is related
to the strength and maturity of the synapses [27]. Thus, based on the forms, it is reason-
able to locate the dendritic spines by looking for the spur pixels that are connected to the
bifurcation points.
The proposed algorithm consists of three parts: enhancement of the line structure in the

images after pretreatment; segmentation of dendrites and extraction of their skeletons;

Fig. 6 The enhanced bright swelling
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Algorithm 3 Locating axonal boutons
Input: Original image φ, deconvolved image φdec and corresponding enhanced image
φenh.

Initialize �′ =[ ] ,� =[ ].

1 Binaryzation: Ba = φdec > Ta;
2 Add the brightest points {pm} in connected regions of Ba to �′;
3 Determine the axonal boutons;

– for each point pm ∈ �′ do
Focus on the connected region that contains pm in φdelta, represented as
Dpm, and the corresponding region in φ, represented as φpm;
if the Dpm is disk-like
& the peak intensity in φpm is over three times brighter than its axon
shaft then
Add pm into �;

end if
– end for

Output: Set of coordinates of candidate points in axonal boutons �.

and identification of the dendritic spines based on the dendritic skeletons. The workflow
is shown in Fig. 8 and Algorithm 4.

Enhancing line structure

Before performing other operations, we first normalize the images to reduce the impact
of noise by using the following formula:

I(x, y) = I(x, y) − Imin
Imax − Imin

, (3)

where I(x, y) is the intensity value in I at (x, y), Imax and Imin represent the maximum
intensity and minimum intensity value of the image respectively.
Next, we enhance the linear structure. As shown in Fig. 9, the intensity value of each

section of the dendritic linear structure can be modeled as a Gaussian curve [23], which
can be written as

Fig. 7 Common types of dendritic spines. a thin b stubby cmushroom
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Fig. 8 Workflow of detection of dendritic spines. (1) Normalized image of dendrite; (2) Region specified by
red rectangle in (1); (3) Corresponding enhanced image; (4) Segmentation result; (5) Skeletons of dendrite;
(6) Branch points on skeletons; (7) The finally detected result of dendritic spines; (8) Result of dendrite

Algorithm 4 Detection of dendritic spines
Input: In vivo two-photon images of dendrite {Img}.

Initialize �′ =[ ], � =[ ] .
for each image I in {Img} do

1 Normalize I using Eq. (3);
2 Enhance linear structures with Algorithm 5;
3 Extract skeletons of linear structures with Algorithm 6;
4 Look for branch points on the skeletons:

– Compute convolution of the skeleton figure and a 3-by-3 filter, and
denote by C the result;

– Take the points whose intensity value is equal or greater than 4 on C as
branch points, represent as Pb = {pb};

5 Find dendritic spines on the skeletons:

– Represent spur pixels on C as Ps = {ps};
– for each ps ∈ Ps do

Focus on the regions on C that centered on ps;
if ps ∈ Ps and arbitrary pb ∈ Pb are connected by skeleton then

Add ps to �′;
end if

– end for

6 Filtrate false positives on axons with Algorithm 7;
end for
Output: Set of coordinates of dendritic spines �.

I(x′) = Cden exp
(

− x′2

2σ 2

)
= Cden exp

(
− (x cos θ − y sin θ)2

2σ 2

)
, (4)

where x′ is the abscissa on Cartesian coordinate system X′-Y ′; x, y are the abscissa and
ordinate on Cartesian coordinate system X-Y, respectively; Cden is the maximum pixel
value of the cross section; σ is the variance of the Gaussian curve, and θ is the angle
between the cross section and the main direction of the linear structure, which is shown
in Fig. 9a. According to [23], we can obtain the relationship between the variance σ and
the radius of the lines structure w [Appendix C]: σ = w/

√
3.
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Fig. 9 Dendrites intensity modeling. (a) Part of a dendrite, a section of which is marked with red. The x-y
coordinates are marked with green and the Y axis in the Cartesian coordinate system marked with blue is the
principle direction of the line structure; (b) Intensity value of the dendrite section marked by red line in (a)
and the Gaussian curve with a variance of 2, marked with red and blue respectively

The average diameter of the dendritic spine of the part is less than 0.9 μm, while the x-y
resolution is 137 nm/pixel, so the average radius w is equal to 3 pixels.
As in previous part, we construct a Hessian-based ridge detector and take the additive

inverse of the eigenvalue with maximum absolute value as the intensity of the enhanced
image [Appendix D]:

Ienh(x, y) =
{

−σ 2λ(x, y), if λ(x, y) < 0
0, otherwise

(5)

The approach for enhancing line structure can be summarized as follows:

Algorithm 5 Enhancing Linear structures
Input: A normalized in vivo two-photon image of dendrite I, output from step 1 in
Algorithm 4.

1 Model the intensity values of I with Eq. (4);
2 Compute the Hessian matrix H with Eqs. (12, 13), and obtain the eigenvalues λd ;
3 Obtain pixel value of enhanced image with Eq. (5);

Output: Enhanced in vivo two-photon image of dendrite Ienh.

Extracting skeleton and finding branch points

We use the following Algorithm 6 to get the dendritic skeleton C (Fig. 8(5)) at the basis
of the binary image B (Fig. 8(4)), which is obtained by segmenting the enhanced image I
(Fig. 8(3)) using a suitable threshold [28]:

1. In the first sub-iteration, delete pixel p if and only if the condition (a), (b), (c) are all
satisfied.

2. In the second sub-iteration, delete pixel p if and only if the condition (a), (b), (d)
are all satisfied.
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• Condition (a): XH(p) = 1

where XH(p) =
4∑

i=1
bi, bi =

{
1, if x2i−1 = 0 and (x2i = 1 or x2i+1 = 1)

0, otherwise
x1, x2, . . ., x8 are the values of the eight neighbors of p, starting from the east
neighbor and numbered in counter-clockwise order.

• Condition (b): 2 ≤ min{n1(p), n2(p)} ≤ 3,

where n1(p) =
4∑

k=1
x2k−1 ∪ x2k , n2(p) =

4∑
k=1

x2k ∪ x2k+1.

• Condition (c): (x2 ∪ x3 ∪ x8) ∩ x1 = 0
• Condition (d): (x6 ∪ x7 ∪ x4) ∩ x5 = 0

The two sub-iterations together make up one iteration of the algorithm and the itera-
tions are repeated until the resulting image stops changing. The approach for extracting
skeletons can be summarized as follows:

Algorithm 6 Extracting dendritic skeleton
Input: Enhanced in vivo two-photon image of dendrite Ienh.

1 Binaryzation: B = Ienh > t;
2 Eliminate redundant points:

– for each pixel p ∈ B do
if condition (a) (b) (c) are satisfied then
delete p;

end if
– end for
– for each pixel p ∈ B do

if condition (a) (b) (d) are satisfied then
delete p;

end if
– end for

Output: Dendritic skeleton of image Iske.

In this study, the operation for finding branch points is a two-dimensional convolution
of the binary image of skeletons and a 3-by-3 filter, with an intensity value of 0 for 4
vertices and 1 for the rest positions. The points with an intensity value equal or greater
than 4 are considered as branch points. Figure 8(6) illustrates the branch point detection
results.

Locating dendritic spines

We locate the suspected dendritic spines as follows: 1〉 Remove spur pixels of the den-
dritic skeletons. The removed pixels are the putative locations of the dendritic spines. 2〉
In a bifurcation-centered and properly sized region of skeleton, if there is an alternative
point connected with the branch point, we consider the alternative point indicates the
position of dendritic spine. This process is illustrated in Fig. 10 and the detail is stated in
Algorithm 4.
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Fig. 10 Illustration of locating dendritic spines. From left to right: Skeleton, skeleton after removing spur
pixels, the overlapped image. The red point is the position of dendritic spine (within the red square) and the
structure marked by yellow is the overlapped section of the skeleton and skeleton after removing spur pixels

Filtering points on axons

The transgenic mouse used in this study is YFP-H line, in which a subset of layer 5 cortical
neurons express YFP. Therefore, YFP signals in these images contain both dendrites and
axons. When searching for dendritic spines, it is essential to determine whether these
points are on an axon. For each of the structures that centered on suspected spines with a
proper size, illustrated in Fig. 11, we take the ratio of its area to its perimeter and average
intensity as judging criteria.
As shown in Fig. 12, the positions marked with red circles are the results before

screening and the positions marked with green plus sign are results after screening. The
positions only marked with red circle are likely locations of axons, rather than spines. The
detail is presented in Algorithm 7.

Detection of synapses

Through the discussion in the previous two sections, we obtained the position of the
axonal boutons and dendritic spine in the two-photon image stacks. As mentioned in
above section, the presynaptic part is located on an axon and the postsynaptic part is
located on a dendrite in mostly synapses. Then, it is reasonable to get the locations of
the synapses on 2D by integrating the locations of the axon boutons and dendritic spines.

Fig. 11 Illustration of filtering spines on points. a binary image of dendrites (left) (b) structure centered on
suspected spine marked by red circle (right)
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Fig. 12 Comparison of results before and after screening on three different layers

Algorithm 7 Filtering false positives on axons
Input: The coordinates of dendritic spines �′.

• for each pair of coordinate ps ∈ �′ do
Bps is part of binary image B obtained by Algorithm 6, which is centered on the
spur pixel ps calculated by Algorithm 4;
if the ratio of area to perimeter about white pixels in binary image Bps &
average intensity value of normalized image I at the white pixels position in
binary image Bps are greater than predefined thresholds respectively then

Add ps into � (predefined by Algorithm 4);
end if

• end for

Output: Set of coordinates of filtrated dendritic spines �.

Specifically, we calculate the distance between the axon and dendritic spine to determine
whether the two are overlapping. Furthermore, we can count the synapses on 3D based
on the detection in continuous 2D images. As shown in Algorithm 8, for each synapse in
the 2D image, find its nearest synapse in the next layer. If this synapse is also the nearest
of the synapse in the next layer, and the distance between them is close enough, these two
synapses are the same synapse in the view of 3D.

Algorithm 8Object counting in 3D
Input: Continuous image stacks {S} and threshold ts

Initialize: N = 0
for section Si ∈ {S} do

for object c(i)j on Si do
• Find the the closest object in section Si+1, represented the object and the

distance as c(i+1)
k ,Di

j,k respectively;
• if cij is not the closest object to c(i+1)

k in section Si in turn or Di
j,k > ts then

N = N + 1;
• end if
end for

end for
Output: Number of the objects in 3D: N.
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Fig. 13 Illustration of true axonal boutons and detected axonal boutons. a, b True axonal boutons in Layer 1
and Layer 20, respectively. c, d Detected axonal boutons in Layer 1 and Layer 20, respectively

Experimental results
In order to demonstrate the effectiveness of the proposed algorithm, we show two axon
images corresponding to layer 1 and layer 20, with the axonal boutons indicated by red
circles marked by experienced neurobiologists in Fig. 13a and b. The corresponding
experimental results detected by our algorithm are shown in Fig. 13c and d. The ground
truth of synapses, axons and dendrites were redundantly marked by three students, and
disagreements are decided by another biologist.
The manual annotation process lasts about 2 days. The round-like structures and

the structures shown in Fig. 7 were labeled as axonal boutons and dendritic spines
respectively, while the spine-bouton pairs were marked as synapses.
We conducted some experiments on other layers and recorded the number of axonal

boutons in ground truth. By comparing the detected result with the corresponding
ground truth, we respectively determined the number of redundant and missing axonal
boutons in different layers as listed in Table 1.
To illustrate the effectiveness of the proposed algorithm, we show partial results of the

dendritic spines detection from Layer 1 to Layer 25 in Fig. 14.
As shown in Table 2, we recorded the number of dendritic spines in ground truth

and the number of false positive and missing dendritic spines, which were obtained by
comparing the detected result with the corresponding ground truth, for several layers.
In Fig. 15, we can see that one axonal bouton indicated by green rectangles arises in

layers 5-10 but is only marked in layer 5. Analogously, two axonal boutons are respec-
tively indicated by red rectangles and yellow rectangles are solely marked in layer 8. This
method can count the axonal boutons precisely in 3D because it considers the multi-layer
information. A specific example in Fig. 16 can account for it.

Table 1 The numerical analysis of experimental result on detected axonal boutons in each layer

Image Manual
Our method

Total False positive False negative

layer 1 29 33 4 0

layer 20 50 54 6 2

layer 40 58 62 5 1

layer 60 90 94 7 3

layer 80 86 89 5 2

layer 100 57 62 5 0

Average (/perception) 61.7 65.8 5.3 1.3
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Fig. 14 Partial results of dendritic spines detection in Layer 1 to Layer 26. The red arrows point to the location
of false positives and the the green arrows point to the location of false negatives

The partial results of synapse detection from Layer 1 to Layer 26 are shown in Fig. 17
and the experimental results of synapse detection are shown in Table 3. The green ellipses
mark the location of false negatives and the red arrows point to the location of false
positives.
We have integrated the proposed method of identifying axonal boutons, dendritic

spines and synapses with TrakEM, a plugin of ImageJ. This automates synapse analysis
process. The left subgraph in Fig. 18 shows the 2D synapse positions, in which synapses
are marked by yellow circles. It also provides interactive function, which makes it easy
to proofread the detection results. Furthermore, we marked the positions located by the
automatic method and by manual annotation with blue triangles and a yellow triangle
respectively. The right subgraph of Fig. 18, which was extracted from the left subgraph,
and shows the manually marked position (marked by a yellow triangle) with a value of -1.

Table 2 Results of detection dendritic spines on several layers

Image Manual
Our method

Total False positive False negative

layer 1 31 33 3 1

layer 6 23 24 3 2

layer 11 40 37 0 3

layer 16 35 39 7 0

layer 21 22 23 5 0

layer 26 18 23 5 0

Average (/perception) 34 29.8 3 0.8
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Fig. 15 Axonal boutons marked in 3D view. Three different axonal boutons indicated by the red, blue and
yellow rectangles with random indexes and colors in layers 5-10 and are solely marked by the blue arrows

Discussion
In vivo two-photon microscopy has been widely used to study structural plasticity
of axonal boutons and dendritic spines in live animals. Recently, Yang et al. [19]
simultaneously labeled and imaged long-range projecting axons and local dendrites, and
studied the turnover dynamics of boutons, spines, and synaptic contacts. This dual-color
two-photon imaging method allows in vivo examination of synaptic dynamics in specific
neural pathways. However, manual annotation of synaptic contacts is time-consuming
and prone to bias. The efficiency of synapse detection will be greatly improved by replac-
ing the manual method with automatic method. The automated method can also be used
for bouton and spine detection.
As can be seen from the original image in Fig. 1, the structures of axons and den-

drites are not significant enough to cause them to be confused with the ambient noise.
Therefore, it is necessary to carry out image enhancement to improve the accuracy of
detection.
There are 140 two-photon images in total, each of which is 512-by-512 in size with a

x-y-z resolution of 137× 137× 700 nm/pixel. The time spent on manually checking the
results of the automatic algorithm and manual annotation are shown in the following bar
graph in Fig. 19. We can notice that our approach is much more efficient than manual
annotation, especially advantageous if the data volume is larger.
Besides, we have tested our method to another data provided by Beijing Normal

University (refered to as Data B) and obtained satisfactory detection results. This dataset
provides two-photon image data from neurons in the tbasal ganglia of aeniopygia guttata.
The volume of the dataset is 53.3 μm × 53.3 μm × 5.6 μm and slice thickness is 0.2 μm.
The size of per image in 2D is 1024 pixels× 1024 pixels. Some of the detection results are
shown in Fig. 20, in which the green part are axons and the red part are dendrites. The

Fig. 16 The same axonal bouton appears in the image stack. The axonal boutons in the red rectangles with
random indexes and colors are the same bouton that appears in layer 12 to layer 17. It is omitted in layer 15
but is marked solely in layer 14
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Fig. 17 Partial results of synapse detection in Layer 1 to Layer 26. The red arrows point to the location of false
positives and green eclipse point to the location of false negatives

positions of the candidate synapses detected using our pipeline are denoted by blue cir-
cles, while the probable missing synapses are indicated by yellow arrows. We detected all
12 synapses in 3D precisely.
Applying our method to a new dataset requires determining the parameters of image

enhancement, ie. the radius of axonal bouton and the radius of lines structure of
dendrites.
In [29], Yi Zuo et al. found that, using in vivo two-photon imaging, experienced-

dependent elimination of postsynaptic dendritic spines in the cortex was accelerated
in ephrin-A2 knockout mice and ephrin-A2 regulates experience-dependent, N-methyl-
Daspartate (NMDA) receptor-mediated synaptic pruning through glial glutamate trans-
port during maturation of the mouse cortex. In [30], Ajmal Zemmar et al. tested the
effects of Nogo-A neutralization on synaptic plasticity in the motor cortex and on motor
learning in the uninjured mature Central nervous system (CNS). According to a series

Table 3 Results of detection synapse on several layers

Image Manual
Our method

Total False positive False negative

layer 1 8 2 3 1

layer 6 5 0 3 0

layer 11 2 0 0 0

layer 16 1 0 7 1

layer 21 5 0 5 1

layer 26 3 1 5 0

Average (/perception) 2.7 2.8 0.4 0.3
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Fig. 18 GUI presentation. left: The positions located by the automatic method (marked by blue triangles) and
manually marked position (marked by a yellow triangle); right: Corresponding enlarged view of the manually
marking position

of statistics, such as numbers of dendrites, spines and axons, they concluded that anti-
Nogo-A-mediated enhancement of structural and functional synaptic plasticity enlarges
the memory capacity per synapse, leading to improved motor learning in vivo. Data anal-
ysis in these studies can benefit from our proposed method. Our approach will greatly
facilitate data analysis related to dendrite, axon and synapse imaging.

Conclusion
We presented a novel strategy for identifying axon boutons, dendritic spines, and
synapses in in vivo two-photon images. For continuous sequence image stack, we can also
count the amount of them in 3D by analyzing the context cues of the detected synapses.
This approach will help neuroscientists automatically analyze and quantify the formation,
elimination and destabilization of the axonal boutons, dendritic spines and synapses. But

Fig. 19 The time spent on manually checking the results of the automatic algorithm and manual annotation
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Fig. 20 Synapses detection results on Data B

it is not yet possible to extract the morphology of synapses. One of our future directions
is to get synaptic shapes in 3D.

Appendix 3D deconvolution

The 3D deconvolution operation implemented in ImageJ [22] consists of the following
steps:

1. Download the software ImageJ. Then download the following files:
Diffraction_PSF_3D.class, Diffraction_PSF_3D.java,
Iterative_Deconvolve_3D.class, and Iterative_Deconvolve_3D.jave. Next, put files
in the plugins folder;

2. Run ImageJ and load the original axon image stacks;
3. Open the Diffraction PSF 3D plugin. Fill the form with the related parameters and

compute the point-spread function (PSF);
4. Open the Iterative Deconvolve 3D plugin. Select the generated PSF and original

axon image stacks, then input the iteration times and generate the deconvolved
axon image stacks.

Appendix A

Model the intensity of axonal bouton using a three-dimensional Gaussian surface:

R(x, y) = C exp
(

− (x − x0)2 + (y − y0)2

2δ2

)
.

The partial derivatives Rxx,Rxy,Ryx,Ryy can be computed as follows:

Rxx(x, y) = R(x, y)
(

(x−x0)2
δ4

− 1
δ2

)
Rxy(x, y) = Ryx(x, y) = R(x, y) (x−x0)(y−y0)

δ4

Ryy(x, y) = R(x, y)
(

(y−y0)2
δ4

− 1
δ2

)
.

(6)
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Then the eigenvalues λa(x, y) of the Hessian matrix are solved as follows:

λa(x, y) = R(x, y)
((

(x − x)2 + (y − y0)2 − 2δ2
)

±
√(

(x − x0)2 + (y − y0)2 + 2δ2
)2 − 4δ4

)
/2δ4,

(7)

Appendix B

For clarity of presentation, we choose the cross section of y = y0. The Gaussian curve
corresponding to the pixel value of cross section y = y0 is

R(x) = C exp
(

− (x − x0)2

2δ2

)
. (8)

And the edge point (x∗, y0) satisfies

(
x∗ − x0

)2 + (y0 − y0)2 = r2 (9)

Additionally by the definition in [23], the edge point (x∗, y0) in (8) also satisfies the
equation R′′′

(x∗, y0) = 0. After some lengthy calculations, we have

R
(
x∗) ((

x∗ − x0
)3 − 3δ2

(
x∗ − x0

)) = 0. (10)

A suitable solution is

x∗ = x0 + √
3δ. (11)

According to Eqs. (9) and (11), we conclude that δ = r/
√
3 is a good choice to identify the

axonal boutons.

Appendix C

According to [23], the magnitude of the second derivative of the extracted position is
always maximum at the line position. Then, for a fixed y = y0, the third derivative of
Formula(4)

I(x′) = Cdenexp
(

− x′2

2σ 2

)
= Cdenexp

(
− (x cos θ − y sin θ)2

2σ 2

)

can be written as:

− I (x0 cos θ − y0 sin θ)

σ 4 (x0 cos θ − y0 sin θ)
[
(x0 cos θ − y0 sin θ)2 − 3σ 2] = 0.

Then we can obtain

x0 cos θ − y0 sin θ = √
3σ .

With additional efforts, as illustrated in Fig. 9(a), we can obtain the relationship between
the variance σ and the radius of the linear structure w:

σ = w/
√
3.
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Fig. 21 Comparison of segmentation with and without image region enhancement

Appendix D

For I as shown in Formula(4), the partial derivatives Ixx, Ixy, Iyx, and Iyy can be computed
as follows:

Ixx(x, y) = I(x, y)
[
cos2θ
σ 4 (x cos θ − y sin θ)2 − cos2θ

σ 2

]

Iyy(x, y) = I(x, y)
[
sin2θ
σ 4 (x cos θ − y sin θ)2 − sin2θ

σ 2

] (12)

Ixy(x, y) = Iyx(x, y) = I(x, y)
[
sin θ cos θ

σ 2 + sin θ cos θ

σ 4 (x cos θ − y sin θ)2
]
. (13)

Then we can get the eigenvalues of H(x, y) =
(
Ixx(x, y) Ixy(x, y)
Iyx(x, y) Iyy(x, y)

)
:

λd(x, y) = − 1
σ 2 exp

(
− (x cos θ − y sin θ)2

2σ 2

)
(14)

Appendix E. Comparison of segmentation with andwithout image region enhancement

To justify the use of the image region enhancement on boutons, some useful experi-
ments are conducted. We use three different thresholds, 1000, 2000, 3000, for direct
segmentation. Above figures provide direct segmentation results without image region
enhancement on boutons. Below figures reserve the final segmentation regions contain-
ing local maximum value. From these figures, we conclude that a small threshold will

Fig. 22 Process of finding branch points. Left: kernel; Middle: skeleton of dendrite; Right: Convolution result
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reserve the bright axon shaft, whereas a big threshold will eliminate the weak axonal bou-
tons. For these reasons, we propose to use the image region enhancement method to
extract the disk-like structure. The original experiment results demonstrated the effective
of our proposed method.

Appendix F. Process of finding branch points

We show the process of finding branch points in the following figure. The kernel is a
3-by-3 filter with an intensity value of 0 for 4 vertices and 1 for the rest positions. And
the points on the convolution result, with an intensity value equal or greater than 4 are
considered as branch points.
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