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Abstract

Background: Measuring how gene expression changes in the course of an
experiment assesses how an organism responds on a molecular level. Sequencing of
RNA molecules, and their subsequent quantification, aims to assess global gene
expression changes on the RNA level (transcriptome). While advances in high-throughput
RNA-sequencing (RNA-seq) technologies allow for inexpensive data generation, accurate
post-processing and normalization across samples is required to eliminate any systematic
noise introduced by the biochemical and/or technical processes. Existing methods
thus either normalize on selected known reference genes that are invariant in
expression across the experiment, assume that the majority of genes are invariant,
or that the effects of up- and down-regulated genes cancel each other out during
the normalization.

Results: Here, we present a novel method, moose?, which predicts invariant genes in
silico through a dynamic programming (DP) scheme and applies a quadratic
normalization based on this subset. The method allows for specifying a set of known or
experimentally validated invariant genes, which guides the DP. We experimentally
verified the predictions of this method in the bacterium Escherichia coli, and show how
moose’ is able to (i) estimate the expression value distances between RNA-seq samples,
(i) reduce the variation of expression values across all samples, and (i) to subsequently
reveal new functional groups of genes during the late stages of DNA damage. We
further applied the method to three eukaryotic data sets, on which its performance
compares favourably to other methods. The software is implemented in C++ and is
publicly available from http://grabherr.github.io/moose2/.

Conclusions: The proposed RNA-seq normalization method, moose?, is a valuable
alternative to existing methods, with two major advantages: (i) in silico prediction of
invariant genes provides a list of potential reference genes for downstream analyses,
and (ii) non-linear artefacts in RNA-seq data are handled adequately to minimize

variations between replicates.
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Background

RNA-sequencing (RNA-seq) has revolutionized transcriptomics by means of sensitivity,
accuracy, and resolution. Additionally, RNA-seq does not rely on prior knowledge of
whether any particular RNA is present, and therefore represents a powerful tool for the
identification of unknown RNAs. In a typical RNA-seq experiment, total RNA or a par-
ticular RNA fraction is isolated from samples that either represent different biological
conditions, or replicates from the same condition. After validation of RNA quality, the
RNA is subjected to cDNA synthesis via primers that specifically match adapter se-
quences, or through random priming. If random priming is used, adapter sequences
are introduced during subsequent steps. The cDNA is finally amplified by PCR to yield
ready-to-use libraries that can be sequenced using different technologies. RNA-seq in-
directly measures the abundance of transcripts by the number of reads or fragments
generated from a particular transcript. Since the total amount of RNA present in a cell
or sample is unknown, data for each sample are either normalized individually by the
total read counts per sample and transcript length into RPKM or FPKM values [1], or
over all samples by methods such as Upper Quartile (UQ) normalization [2], DESeq2
[3], or Trimmed-Mean of M-values (TMM) normalization [4] (for a review, see ref.
[5]). Assumptions underlying the latter methods are that: (i) the mean expression of
genes, on which the normalization is computed, does not change across experiments;
and (ii) that a single global scaling factor is valid over the entire dynamic range of ex-
pression. Importantly, normalization methods may perform poorly if the assumptions
do not match the biological experiment [6]. As an alternative to global scaling factors,
the use of reference genes, i.e. genes that are invariable in expression regardless of con-
dition or sample, has been suggested [7, 8]. Here, we present a novel method, moose”

(Fig. 1), which uses known reference genes if available, and additionally predicts
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Fig. 1 Workflow of moose. Input data is presented either as FPKM- or RPKM-normalized values or raw read
(or pair) counts, which is specified with the data. If available, a set of known reference genes is provided,
which serve as waypoints for the dynamic programming (DP) step. The data is then normalized through a
polynomial fit and stored. Limma is applied to estimate Benjamini-Hochberg (BH)-corrected p-values and
the resulting pairwise cross-condition statistics can then be used for expression analyses
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reference genes in silico by a dynamic programming (DP) scheme. Application of a
polynomial model then allows for normalizing of the entire data set in a non-linear
fashion depending on transcript abundance. Hence, our approach specifically aims at
satisfying the assumptions that: (i) there is a small, identifiable subset of genes that is
not differentially expressed in the given experiment; and (ii) that a quadratic function
approximates any non-linear characteristics of expression measurements across the
dynamic range.

To validate this method, we examined the bacterial response (in E. coli) to the che-
motherapeutic drug mitomycin C (MMC), which we investigated at early and late time-
points by RNA-seq. MMC is a potent DNA crosslinker that will ultimately generate
double-stranded breaks (DSB) in DNA and thereby activate the so-called SOS response.
The SOS response is initiated whenever DNA damage occurs. This generates single-
stranded DNA (ssDNA) which is bound by the RecA protein. RecA-nucleofilaments
subsequently trigger autocleavage of the LexA repressor that controls a regulon of >50
genes in E. coli, many of which have functions in DNA repair [9-12]. The response to
DNA damage has been intensively studied by microarray analysis of E. coli cells that
have been treated with UV light, MMC, or quinolone antibiotics [13—17]. However,
none of these studies followed the response to high levels of DNA damage over an ex-
tended period of time, nor did they capture possible, more subtle changes in gene ex-
pression. Here, relative changes in transcript levels were calculated from an RNA-seq
study of E. coli cells treated with a high dose of MMC for up to 90 min. Moose’-
performed better than the other tested normalization methods in terms of (i) the
Euclidean distances, which are lower in within-replicate comparisons than in cross-
condition comparisons, as is to be expected; and (ii) minimizing the variation of ex-
pression values across samples. Thus, the moose” results could be used to predict the
expression profiles of functional groups, such as the LexA regulon, which gave exciting
new insights into the bacterial response after prolonged DNA damage. In addition to
this bacterial system, we also applied the approach to three eukaryotic data sets and
compared the results to other methods.

Methods

Cultivation of bacteria and sampling

Escherichia coli MG1655 cells, obtained from CGSC (Coli Genetic Stock Center) at
Yale University (http://cgsc.biology.yale.edu) were grown aerobically in Luria broth (LB) at
37 °C. Triplicate overnight cultures were diluted 1:100 into fresh LB and grown for 2 h to
reach an ODgyy of ~0.35. Mitomycin C (MMC) was added at a final concentration of
2.5 pg/ml to induce DNA damage. Samples were withdrawn at 0, 30, and 90 min, and im-
mediately mixed with 0.25 vol of RNA stop solution (95% ethanol, 5% phenol) on ice.
Cells were pelleted by centrifugation and frozen in liquid nitrogen. Pellets were thawed on
ice and immediately processed for RNA extraction.

RNA extraction and quality control

Total RNA was prepared by the hot acid-phenol method [18]. Cells were resuspended
in lysis buffer (100 mM Tris pH 7.5, 40 mM EDTA, 200 mM NaCl, 0.5% SDS) and in-
cubated at 65 °C for 5 min. After adding acidic phenol (pH 4.0) to the cell lysate,
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extraction mixtures were incubated at 65 °C for 3 min, frozen in liquid nitrogen, and
centrifuged for phase separation. RNA was precipitated from supernatants using iso-
propanol and pelleted by centrifugation. RNA was washed in 75% ethanol and resus-
pended in RNase-free water. Samples were treated with DNase I (Thermo Scientific) and
extracted with phenol/chloroform, followed by precipitation with isopropanol as before.
PCR using primers BB1 (GCT TTA CAG GGG AGA CAA) and BB2 (AAC CCG CAC
GCT AAA TAT) was applied to test for DNA contamination. Absorbance ratios of A260/
A280 and A260/A230 were determined using a NanoDrop ND-1000 spectrophotometer
to assure purity of RNA. RNA integrity was assessed on 1% agarose gels containing
25 mM guanidinium thiocyanate and by analysis with an Agilent 2100 Bioanalyzer
(Agilent Technologies) using the Agilent RNA 6000 Pico Kit for total prokaryotic RNA.

Library preparation, RNA-sequencing and read mapping

Preparation of cDNA libraries

Sequencing libraries were prepared with the Encore Complete Prokaryotic RNA-Seq DR
Multiplex System (NuGEN) using 200 ng total RNA as input. After cDNA synthesis,
cDNA was fragmented by ultra-sonication using the Covaris S-Series System according to
the recommendations of the Encore protocol. Adapters containing unique barcode se-
quences and target sites for Illumina sequencing primers were ligated to cDNA fragments.
After strand selection and adapter cleavage, cDNA was amplified to yield strand-specific
ready-to-use sequencing libraries. Length distribution of amplified cDNA fragments was
validated by Agilent 2100 Bioanalyzer (Agilent Technologies) using the Agilent High
Sensitivity DNA Kit. Ultra-sonication and length distribution analysis were performed by
the SNP&SEQ Technology Platform in Uppsala, Sweden (www.sequencing.se).

Quality control of sequencing libraries

The quality of the libraries was evaluated using the Advanced Analytical Technologies
Fragment Analyzer and a DNA-kit (DNF910). The adapter-ligated fragments were
quantified by qPCR using the Library quantification kit for Illumina (KAPA Biosystems)
on a StepOnePlus instrument (Applied Biosystems/Life Technologies) prior to cluster

generation and sequencing.

Cluster generation and sequencing

An 11 pM solution of sequencing library was subjected to cluster generation and paired-
end sequencing with 100 bp read length on the HiSeq 2500 system (Illumina Inc.) using
v3 chemistry according to the manufacturer’s protocols. Base calling was done by RTA
1.17.21.3 and the resulting.bcl files were demultiplexed and converted to fastq format with
tools provided by CASAVA 1.8.4 (Illumina Inc.), allowing for one mismatch in the index
sequence. Additional statistics on sequence quality were compiled with an in-house script
from the fastq-files, RTA and CASAVA output files. Sequencing was performed by the
SNP&SEQ Technology Platform in Uppsala, Sweden (www.sequencing.se).

Read mapping

Reads were mapped against the E. coli K-12 MG1655 genome sequence using Papaya
(http://sourceforge.net/projects/satsuma/) from the Satsuma [19] package, and counted
against the NCBI GenBank annotations (NC_000913), requiring a minimum alignment
length of 60 nt and identity >0.98.
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qRT-PCR

RNA concentrations were determined with a Qubit 2.0 Fluorometer (Invitrogen) using
the Qubit RNA HS Assay Kit (Molecular Probes). Primers for qRT-PCR were optimized
using primer design software (Additional file 1). The Brilliant III Ultra-Fast SYBR Green
QRT-PCR Master Mix (Agilent Technologies) was applied to perform an ultra-fast one-
step protocol on a StepOnePlus Real-Time PCR System (Applied Biosystems/Life Tech-
nologies) using the following settings for amplification: 50 °C - 10 min, 95 °C - 3 min, 45x
(95 °C -5, 60 °C - 10 s). Initial RNA concentrations were set to 1 ng/pl, except for ssrA
and rrsA (set to 10 pg/ul). Melting curves were recorded to monitor amplification specifi-
city. All samples were measured as technical triplicates. Cycle threshold (Ct) values were
automatically determined in the linear amplification phase as implemented in the
StepOne Software v2.3. Relative fold changes of gene expression were calculated accord-

2—AACt

ing to the method [20]. The average Ct values of the six reference genes cysG, idnT,

hcaT, ihfB, ssrA, and rrsA were used for normalization.

Normalization methods

Identifying putative invariant genes

In order to increase the number of invariant reference genes, we developed a numerical
method to identify such genes in silico. The identification can be regarded as an
optimization problem, or more specifically a particular type of linear programming
called minimum cost network flow problem [21]. Particularly, the idea is to find the
cheapest path in a directed, acyclic ns-dimensional graph (n; denotes the total number
of samples), from the most lowly, non-zero expressed gene (source) to the most highly
expressed gene (target), given a number of constraints. Any edge (i) that connects two
nodes (genes) in the graph points in the direction from the lower ranked gene to the
higher ranked gene, where the ranking, i = I,...,n, is determined by sorting the values of
the gene expression averaged over all samples. The genes with identically zero expres-
sion are omitted from the analysis. Note that in the graph, each gene is connected to
every other gene. The linear program may be written in the form (to indicate the direc-
tion in the graph, the first index denotes the lower ranked gene which it is always
smaller than the second index, denoting the higher ranked gene)

n-1 n
minimize z = E E CijXij,
i=1 j=i+1

n

subject to ley =1,i=1,

=2
n i-1
E xi,-— E xﬁ = bi,i = 2, ceey 1’1—1, (1)
j=i+1 j=1

n-1
E Xji = l,i=mn,
j=1

where x;; € {0, 1} is the indicator variable that signals whether the edge between the two

genes i and j belongs to the cheapest path (x;;=1) or not (x;=0), c; is the cost
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associated with the path connecting gene i and j, b; denotes the source or sink at node
i, while # denotes the number of nodes. The cost c;; is given by

Ctj = d,‘j —+ (]—l—l)m + kl'jh, ] > i, (2)

where d;; is the normalised Euclidean distance between gene i and j, m = 4.0 is a flat
score introduced as a penalty for taking a path between two genes which are not imme-
diately adjacent in ranking, and k;# (h = 5.0 is constant) denotes the penalty given to
those edges for which a number of k; samples of the higher ranked gene j have a lower
expression (RPKM) than the corresponding samples of the lower ranked gene i. Finally,
the sources and sinks of the interior nodes i = 2,...,.n — 1 are given by.

b -r, i =ranking of known reference gene
S ) otherwise.

In order to speed up the computation, the linear program in Eq. (1) is solved by ap-

plying a dynamic programming algorithm. Also, in this way, the costs c;;, given by the

iy
expression in Eq. (2), do not have to be pre-computed. The specific values of the re-
ward sinks b;= —r= —800 (r> 1 in order to ensure that known reference genes are in-
cluded in the path), which is roughly the number of genes divided by the number of
reference genes. The penalties 7 = 4.0 and / = 5.0, which control the number of identi-
fied in silico reference genes, are chosen to produce about 30 reference genes that are
roughly evenly spaced in log(expression) space (for parameter choice, see Additional
file 2 and the moose® manual on the web site at http://grabherr.github.io/moose2/. In
case no reference genes are provided, the algorithm selects the statistically best esti-

mate from the experimental data.

Non-linear (polynomial) correction

For each individual sample, we fit a linear model of second order (i.e., a parabola), such that
yi:ﬁ0+ﬁ1xi+ﬁ2x1’2+8iv i=1,..mn, (3)

based on the # in silico invariant genes (including any pre-defined house-keeping
genes). In (3), x; denotes the logarithm of the RPKM-value of invariant gene i for the
specific sample in question, while y; denotes the mean of the log(RPKM) of gene i, taken
over all samples, and ¢; denotes the error term.In matrix notation, (3) may be written as
Y = XB + £ and the ordinary least-squares (OLS) estimates, f = (/3’07 B, /3’2)T, of the model
parameters are then simply given by = (X"X)'XTY, where the sum of squared
residuals

Q= 27:1 (J’i—(ﬁo + B +ﬁ2xl-2))2

have been minimized s.t. 9Q/9f5y = 9Q/9f1 = 0Q/9f3; = 0. This fit is then used to assign a
corrected log-RPKM value,

5’k = /;)0 + /;’ka + /;)lezw

to each gene k, based on the gene’s observed log-RPKM value (x;) for the sample in
question. Note that the estimates = ([30, /;’1, /)’2) " will be different for each sample.
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Implementation
The algorithms are implemented in C++ and are publicly available from https://github.
com/grabherr/moose2 under the General Public License (GPL).

Linear (global) normalization

For linear normalization we used four different algorithms: RPKM [1], UQ [2], DESeq2 [3],
and TMM [4]. DEseq2 and TMM normalization were performed using the R statistical lan-
guage (http://www.r-project.org/) and Bioconductor (http://www.bioconductor.org/) pack-
ages ‘DESeq2’ [3] and ‘edgeR’ [22]. In the ‘DESeq2’ package, functions estimateSizeFactors
and sizeFactors were called to receive sample-specific normalization factors. In the ‘edgeR’
package, function calcNormFactors was called to output scaling factors together with the
original library size. The product of the original library size and the scaling factor, the so-
called effective library size, was used as a sample-specific normalization factor. All fold-

changes were calculated as direct log, ratios from the normalized read counts.

Estimating p-values

For identification of differentially expressed genes the moose’-corrected counts were
first transformed using the voom function then subjected to the actual gene expression
analysis using Limma [23]. In short, voom estimates mean-variance relationships of
log-counts for the samples and Limma identifies differentially expressed genes in a lin-
ear modelling framework using an empirical Bayesian method to moderate standard
errors and estimate fold changes between conditions. From these values, moderated
t-statistic and the corresponding p-values are estimated. Finally, Benjamini-Hochberg
correction of p-values was used to control the false discovery rate.

Cluster analyses

Hierarchical cluster analysis of RNA-Seq samples was performed using the R statistical
language (http://www.r-project.org/). Function dist (method = euclidean) was called to
generate distance matrices based on log,-transformed read counts (with a pseudocount
of 1). Alternatively, the ‘DESeq2’ package provides log-transformation schemes that are
based on per-gene dispersion estimates. Expression data, normalized by DESeq’s size-
Factors, were applied to the regularized log transformation (function rlog) and variance
stabilizing transformation (VST; function varianceStabilizingTransformation), using
dispersion estimates calculated with function estimateDispersions. Distance matrices
were subsequently generated. All distance matrices were used as input for function
hclust (method = ward.D2) to generate cluster trees.

Expression cluster analysis of time-series data based on fuzzy c-means was performed
using the R statistical language (http://www.r-project.org/) and Bioconductor (http://
www.bioconductor.org/) package ‘Mfuzz’ [24]. For soft clustering of the Top-1000 list
(see main text), the fuzzification parameter was set to m = 2 and the number of clusters
to ¢ = 6. Results are displayed in Additional file 3.

Functional annotation clustering of genes was performed using the DAVID bioinfor-
matics database [25] (http://david.abcc.ncifcrf.gov/home.jsp). Medium classification
stringency with default settings was used to generate clusters of gene ontology (GO)
terms based on biological process (BP), cellular component (CC), and molecular func-
tion (MF). Pathway clustering was performed in a similar way using the KEGG (http://
www.genome.jp/kegg/) pathway option. Results are displayed in Additional file 4.
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RNA-seq data

The original RNA-seq datasets for E. coli are distributed with moose” (https://github.com/
grabherr/moose2). Moose’-normalized data including significance analysis can be found
as Additional file 5.

Results

Distortion of RNA-seq read counts depends on transcript abundance

We performed an experiment in which we exposed E. coli cells (strain MG1655) to
high doses of MMC and measured gene expression at 0 (control), 30, and 90 min in
three biological replicates each by Illumina sequencing (Fig. 2a). Earlier microarray-
based studies on the SOS response, using UV light or MMC, showed a global change
in gene expression, but might have missed effects after prolonged time of severe DNA
damage [13, 14]. To establish a set of reference genes, we monitored mRNA levels of
the widely used housekeeping genes ikfB, ssrA, and rrsA, as well as expression of re-
cently suggested reference genes cysG, idnT, and hcaT [26] by qRT-PCR. Figure 2b indi-
cates that the reference genes were expressed at stable levels and not subject to
systematic bias (Additional file 6). However, calculating the pairwise correlations of the
six reference genes over all non-normalized RNA-seq samples suggested that even
though the moderately expressed cysG, hcaT, and idnT levels were positively correlated
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Fig. 2 Experimental design and evaluation of moose”. a Triplicate E. coli MG1655 cultures were treated with
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established reference genes as measured by qRT-PCR. Ct, cycle threshold. ¢ Correlation between six established
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¢ysG, idnT, and hcaT are positively correlated (shown in yellow), but negatively correlated with the more
abundant ihfB and rrsA. The colour scale bar reflects Pearson’s rho. d Log,-ratio distribution in cross-condition
comparisons, shown for RPKM, Upper Quartile (UQ), Trimmed-Mean of M-values (TMM), DESeq2, and moose’.
e Hierarchical clustering based on the Euclidean distance between RNA-seq samples. Matched conditions
indicated as blue (0 min), black (30 min), and red (90 min)



https://github.com/grabherr/moose2
https://github.com/grabherr/moose2

Berghoff et al. BioData Mining (2017) 10:30 Page 9 of 20

(Pearson’s rho >0.98), the estimated correlation with the highly expressed rrsA and ihfB was
negative (Pearson’s rho < -0.05, Fig. 2c). Thus, the presence of a systematic bias likely dis-
torts the expression measurements by RNA-seq in dependence of transcript abundance.

In silico reference genes allow for non-linear transformation of expression values

We first applied the RPKM, UQ, TMM and DESeq2 normalization methods, and plot-
ted the log,-ratio distributions comparing the combined replicates across time-points
(Fig. 2d). We next computed a distance matrix based on the respective Euclidean dis-
tances of all genes (as log,-transformed expression values) across samples, and per-
formed hierarchical clustering (Fig. 2e). Notably, none of the normalization schemes
correctly grouped all samples by experiment, indicating that the distances are not con-
sistently lower in within-replicate comparisons. Moreover, reducing the variance be-
tween samples by using per-gene dispersion estimates for the log-transformation (e.g.,
rlog and VST in the ‘DESeq2’ package) did not reproduce the correct grouping of bio-
logical replicates (Additional file 7). Processing the data with moose®, guided by the six
established reference genes (Fig. 2b), predicted 27 additional in silico reference genes
(Table 1. For a more detailed analysis on how selecting in silico genes depends on the
choice of conditions, see Additional file 8). While TMM, DESeq2 and moose® estimate
the peaks of the cross-experiment comparisons around the same position (Fig. 2d),
moose’ reduces the tails on both sides in the 90-to-0-min distribution. Moreover,
Euclidean distances based on moose’~-normalized expression values correctly resolve the
grouping of biological replicates (Fig. 2e). Notably, the coefficients for the quadratic cor-
rection term, ranging from -0.044 to 0.029, were weakly inversely correlated (Pearson’s
rho = -0.72, p < 0.018) with the total number of raw reads of each sample, possibly indi-
cating that nonlinearity could have been introduced during library construction, e.g. dur-
ing random priming, or in the sequencing process. Finally, accurate data normalization is
expected to reduce the variation of expression values across all samples. Relative log ex-
pression (RLE) boxplots represent the distribution of log, ratios for all genes between one
particular sample and the median across all samples. The RLE boxplots should be ideally
centered on zero and exhibit a similar dispersion. In contrast to RPKM and UQ
normalization, TMM and DESeq2 shifted the mean values close to zero, but without
major effect on the variation, while 700se” clearly reduced the variation (Fig. 3).

We next investigated the individual contributions stemming from (a) predicted in
silico reference genes; (b) the quadratic correction term; and (c) guiding the in silico
prediction by established reference genes. We thus eliminated each feature individually,
and found that the sample grouping was only correct when including both in silico pre-
diction and non-linear correction based on the quadratic term (Additional file 9). To
verify, we normalized the data with DESeq2 based on (a) the six established reference
genes, and (b) the 33 predicted invariant genes, confirming that a non-linear correction
term is required for correct sample grouping (Additional file 10).

To assess the role of accurate reference genes, we ran moose” with (a) six genes that
were randomly selected over the expression range; and (b) the six most differentially
expressed genes (Additional file 9). Interestingly, the resulting sample groupings are
correct even in the second case, due to moose” rejecting five out of the six genes as too
costly to use in the dynamic programming step, reverting to a different set of
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Table 1 Expression-invariant genes in E. coli during DNA damage as identified by the DP scheme
and used for moose’

Gene

Product

Process/Function

cysG
dnaG
dtpB
ftsX
ftsy
glyy
agyrB
hcal®
idnT?
ihfg?
Ihr
mutM
mutY
ndk
nfuA
pnp
rbbA
rhsB
rpsU
rrsA?
rrsE
rrsG
secB
spoT
ssrA®
tfaR
thrv
valS
yed)
ynak
yphG
ZntA

zupT

uroporphyrin Il C-methyltransferase
DNA primase

dipeptide/tripeptide:H* symporter DtpB
Cell division protein ftsX

Cell division protein ftsY

tRNAyy

DNA gyrase, subunit B

putative transport protein, major facilitator superfamily (MFS)

L-idonate / 5-ketogluconate / gluconate transporter IdnT
integration host factor (IHF), beta subunit

member of ATP-dependent helicase superfamily I
formamidopyrimidine DNA glycosylase

A/G-specific adenine glycosylase

nucleoside diphosphate kinase

iron-sulfur cluster scaffold protein

polynucleotide phosphorylase monomer
ribosome-associated ATPase

RhsB protein in rhs element

30S ribosomal subunit protein S21

16S ribosomal RNA (rrsA)

16S ribosomal RNA (rrsE)

16S ribosomal RNA (rrsG)

SecB chaperone

Guanosine-3"5"bis(diphosphate) 3-pyrophosphohydrolase
tmRNA

Rac prophage; predicted tail fiber assembly protein
RNAgw

Valyl-tRNA synthetase

predicted phosphohydrolase

Rac prophage; cold shock protein, function unknown
conserved protein

zinc, cadmium and lead efflux system

heavy metal divalent cation transporter ZupT

Other

DNA replication
Transport

Cell division
Cell division
Translation
DNA replication
Transport
Transport
Transcription
DNA replication
DNA repair
DNA repair
Other

Other

RNA processing
Translation
Other
Translation
Translation
Translation
Translation
Protein localization
Other
Trans-translation
Prophage
Translation
Translation
Other
Prophage
Unknown
Transport

Transport

2Established reference genes in E. coli (see main text and Fig. 2b) were used as an input for moose?

predictions. In either experiment, however, the RLE boxplots are not as closely centered

on zero and/or the variance is larger than when incorporating the six established refer-

ence genes used in the full analysis (Additional file 11).

In-silico predicted expression-invariant transcripts contain housekeeping genes

Genes with stable expression patterns across a variety of conditions often serve house-

keeping functions, such as transcription, translation, or replication. The DP scheme in

the moose” pipeline predicted 27 expression-invariant genes, many of which have
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indeed housekeeping functions (Table 1). The most dominant group comprises genes
with a function in translation, including ribosomal RNAs, one ribosomal protein, trans-
fer RNAs, and one aminoacyl tRNA synthetase. Furthermore, the predicted invariant
genes were enriched for functions in DNA replication and repair. These findings sup-
port the accuracy of the DP scheme for the identification of reference genes.

We tested the 33 reference genes (six established and 27 predicted) for their correlation
to each other across all RNA-seq samples. Since normalization is expected to reduce sys-
tematic errors in read counts, such as library size effects, one would expect more unstruc-
tured correlation patterns for expression-invariant genes after normalization. While
global normalization (e.g. by DESeq2; Additional file 12) produced a structured correl-
ation pattern with many estimated coefficients (Pearson’s Rho) clearly divergent from
zero, moose” produced a less structured pattern, which would be expected, and more coef-
ficients close to zero (Additional file 13). This analysis suggested that systematic biases
are efficiently reduced by moose”.

Accurate prediction of expression changes reveals new features of the bacterial response
to DNA damage

For further validation, we selected 19 E. coli genes, eight being members of the SOS re-
sponse, for qRT-PCR, widely accepted as the gold-standard for assessing gene expres-
sion changes [2, 27]. While the Pearson correlation coefficients between qRT-PCR and
moose® were comparable to the TMM and DESeq2 methods (Additional file 14), linear
regression showed that the constant term, describing the global shift of the data, was
closest to zero for moose’ (-0.072 and —0.021 respectively), compared to TMM (0.264
and -0.381) and DESeq2 (0.204 and -0.413). Even though expression ratios predicted
by moose’ might be slightly underestimated in some cases (Additional file 14), the over-

all qRT-PCR results were reliably reproduced by moose®.
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We subsequently used moose’ to globally predict changes in gene expression. From
microarray analyses, it is known that ~30 LexA-dependent genes are induced upon UV
irradiation [14], and in total more than 1000 genes might be affected by DNA damage
[13]. We sorted our expression data according to p-values computed by Limma to
visualize coverage of LexA-dependent genes. According to the RegulonDB database
[28], 58 genes might be LexA-dependent. A p-value cutoff of p < 9.563*10™* generated
a list of 1000 genes (Top-1000), representing ~24% of the whole data set, including 31
LexA-dependent genes (Additional file 15). We therefore considered the Top-1000 list
as a reliable resource for functionally relevant features and examined the directions in
which expression changes between time-points, starting with LexA-dependent genes.
Several genes were clearly up-regulated upon MMC treatment as exemplified by recN,
sulA, and tisB (Fig. 4a). There were however genes (e.g. insK) that responded to MMC
only after 90 min, which motivated us to calculate expression changes for the 90-to-30-
min comparison. Interestingly, most LexA-dependent genes exhibited reduced tran-
script levels in this comparison, as observed for recN and sulA. By contrast, only two
LexA-dependent genes were found in the same comparison to be clearly increased at
the transcript level (log, ratio > 1). This applied to the toxin gene tisB and the putative
transposase gene, insK (Fig. 4a). Most LexA-dependent genes are preceded by a LexA-
box sequence. The heterology index (HI) defines the similarity of a particular LexA-box
to the consensus of all LexA-box sequences [10]. Low HI values represent high similar-
ity to the consensus. We compared the log, ratios of 30 genes to their corresponding
HI values [14], and found an inverse correlation for the 30-to-0-min and 90-to-0-min
comparisons as expected (Pearson’s Rho of —-0.48 and -0.49 respectively; Fig. 4b). In
contrast, there was no correlation between log, ratios and HI values for the 90-to-30-
min comparison (Pearson’s Rho of 0.06), suggesting that changes on transcript level be-
tween 30 and 90 min of MMC treatment do not depend on LexA.

The Top-1000 list was applied to soft clustering to generate six expression clusters
(Fig. 5a and Additional file 3). LexA-dependent genes were mainly found in expression
clusters that exhibited induction at time-point 30 min (clusters 1, 2, and 6). Functional
annotation clustering of gene ontology (GO) terms was applied to identify cellular
functions that are enriched in distinct expression clusters (Additional file 4), with a
focus on the 90-to-30-min comparison (Fig. 5b). Genes with a function in the cell enve-
lope, as e.g. cell wall biosynthesis [mltB (murein transglycosylase B) and oppB (subunit
of murein tripeptide ABC transporter)] or sugar import [ptsG (glucose PTS permease)
and manY (mannose PTS permease)], were decreased in expression after prolonged
MMC treatment. The same applied to several genes encoding ribosomal proteins,
tRNAs, and aminoacyl tRNA synthetases (Fig. 5b). By contrast, genes with a function
intrinsic to the inner membrane or in nitrogen compound biosynthetic processes were
only induced at time-point 90 min, as already observed for e.g. insK. Among those, sev-
eral genes encode transporters, and pathway analysis further highlighted genes with a
role in purine, amino acid, and sulfur metabolism (Additional file 4).

Moose? can be applied to complex eukaryotic samples
We next explored whether moose’ outperforms other methods, such as TMM and
DESeq2, on data sets beyond cultured bacteria, by applying it to three eukaryotic data
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sets. On expression data generated to investigate the glucose- and acetate-regulated tran-
scripts in human glioblastoma cells [29], moose” groups all samples correctly, whereas
DESeq2 and TMM incorrectly place one sample each (Fig. 6a). On data examining the
TGFpB-induced program in human primary airway epithelial cells [30], all three methods
result in the same sample grouping, with one sample, Mes_TNF_1hr_rep3, placed outside
its clade (Fig. 6b). However, comparing scatter plots between two replicate pairs indicate
that sample Mes_TNF_lhr_rep3 is an outlier with a higher variance in expression (data
not shown), and that this sample is likely not suitable for a completely accurate analysis.
Lastly, on data from nine dog tissues [31] with two sample replicates, moose” and DESeq2
correctly group the subset of single-exon, non-coding transcripts, which have been re-
ported to exhibit sample-specific expression patterns, by replicates and related tissues
(heart, muscle), with the exception of liver, which appears related to kidney in the expres-

sion of protein-coding genes [31] (Fig. 6¢).

Discussion

Adequate normalization of RNA-seq data is an essential step required to reliably pre-
dict differentially expressed genes [2]. The correct choice of a normalization method
depends on the assumptions that are valid for the particular biological system under in-
vestigation. For example, the RPKM method (normalization by library size) assumes
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that the RNA amount per cell is not changed between conditions, an assumption that
is easily violated by differential expression of highly expressed genes [2, 5]. Methods
such as DESeq2 and TMM assume that the number of up- and down-regulated genes
are balanced between conditions, i.e. expression changes are symmetric. These methods
might, therefore, perform poorly when the symmetry of expression changes is skewed
towards one direction [6]. The genomes of bacteria comprise relatively few genes (e.g.
E. coli: ~4500) compared to other organisms, thus any response to outside stimuli
might involve a large fraction of genes. This can be exemplified by bacteria exposed to
extreme stresses [13, 32] or environments such as macrophages [33, 34], where hun-
dreds of genes are differentially expressed, representing up to one fourth of the whole
genome. Even though expression changes are not necessarily asymmetric, many experi-
ments show a clear trend towards either side of regulation. As an alternative to the
aforementioned methods, expression data can be normalized by applying control genes,
which are either external controls (spike-ins) [7, 35, 36], or invariant genes [2, 37]. The
underlying assumption for the latter is that at least a small number of genes exist that
are not subject to changes in expression in the given experiment. Here, we applied a
new method, moose’, which first identifies such a small subset of invariant genes in
silico, and further applies different normalization factors based on the expression
strength of each individual gene. In an experiment exposing E. coli to high doses of the
DNA damaging agent MMC for an extended period of time, global changes in gene ex-
pression can be expected [13, 15], and were validated here (Additional file 16). Import-
antly, gene expression changes might not be symmetric, since the log, ratio
distributions (Fig. 2d) are skewed towards up- and down-regulation for the 30-to-0-
min and 90-to-0-min comparisons, respectively. The assumption of symmetric gene ex-
pression changes is therefore unjustified, thus necessitating an approach that relies on a
different assumption, as the existence of invariant genes. The dynamic programming
step in the moose’ pipeline, guided by six established reference genes, predicted 27
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all three methods result in the same sample grouping, with one outlier sample. ¢ On data from nine dog
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additional genes to be expressed at stable levels across experiments. The majority of
these invariant genes are known to perform housekeeping functions. We do note, how-
ever, that the term “invariant” only applies to genes that do not change expression in
any given experiment, so that the selection of these genes depends on the conditions.
While the prediction of in silico genes appears stable in the experiments presented
here, we caution that there are cases in which this scheme might perform poorly, not-
ably when analyzing large numbers of conditions, or expression across species. Further-
more, in case invariant genes do not exist, the main assumption of moosé’ is violated
and alternative methods are preferable. For example, global changes in gene expression,
where most of the genes are up-regulated, have been observed in tumor cells and
termed transcriptional amplification [38]. In this special case, invariant genes do not
exist and external controls (spike-ins) are needed for adequate normalization of RNA-
seq data: in the study of Lovén et al. [35] cyclic loess normalization on the spike-ins
was successfully applied. Hence, there are limitations to the usage of moose’, even
though it is expected to perform well for most experimental settings. However, the ex-
perimentalist should in every case carefully check the justification of the assumptions
before deciding on a normalization method.

Reduction of in-between replicate variation by non-linear correction schemes has
already been suggested for microarray experiments [39—-41], and our data indicate the
general strength of such methods in removing technical bias in expression data as well.
Interestingly, for our E. coli data set, we found that the quadratic correction term used
in the moose” pipeline performs best, when based on in silico prediction of invariant
genes (Additional file 9). The in silico prediction step is clearly a reasonable basis for a

Page 15 of 20
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non-linear transformation. The accuracy of subsequently calculated log, ratios was ex-
perimentally verified through qRT-PCR for selected genes (Additional file 14). Moose?,
therefore, allows for precisely identifying differentially expressed genes, e.g. using
Limma [23], or other methods that are continuously being developed and refined in
parallel to advances in RNA-seq technologies [42].

The costs for high-throughput sequencing have rapidly decreased over the years, and
sequencing of any prokaryotic or eukaryotic organism has become achievable. However,
for many organisms, well-annotated reference genomes are unavailable. De novo tran-
scriptome assembly represents an attractive strategy to assess non-sequenced organ-
isms, despite being a bigger informatics challenge than reference-based transcriptome
assembly [43, 44]. Furthermore, for downstream analyses such as qRT-PCR, robust ref-
erence genes are often needed, but generally not known for non-sequenced organisms.
Identification of invariant genes by moose” might help to establish reference genes for
accurate normalization of qRT-PCR [45]. Different methods have been described for
data-driven identification of reference genes [37], and ideally, these methods should be
combined with moose” to define a reliable set of reference genes. We predict that apply-
ing de novo transcriptome assembler together with reference gene identification will
benefit the establishment of new model organisms.

As a showcase, we used the moose’ approach to investigate the response of E. coli to
prolonged DNA damage caused by MMC. Since there are many treatments that can
evoke DNA damage, like ionizing radiation, UV light, DNA gyrase inhibitors, and DNA
crosslinkers, the gene expression changes presented here are considered as the MMC-
specific response to DNA damage. Also, in a comparative study, aiming to define a glo-
bal network scheme based on compilations of microarrays, it was found that the SOS
response is the only transcriptional response that is consistently triggered upon DNA
damage regardless of the toxic agent [16]. As expected and observed here, the degree
of induction of several SOS response genes relies on the HI value of the corresponding
LexA-box: the lower the HI value, the higher the induction (Fig. 4b). The 90-to-30-min
comparison however revealed that most LexA-dependent genes clearly decrease in ex-
pression level at the late time-point, which cannot be attributed to their HI values.
Since most of the LexA-dependent genes solely depend on LexA and Sigma70 for tran-
scription [28], it is likely that transcript stability and other post-transcriptional mecha-
nisms are pivotal. The strong expression increase of the toxin gene tisB (Fig. 4a) is of
particular interest, since TisB targets the inner membrane to impair the proton motive
force, which then contributes to persister cell formation under DNA-damaging condi-
tions [46—49]. Persisters are transiently drug-tolerant cells that are arrested in their
growth due to the action of toxins. The TisB-dependent growth arrest might be accom-
panied by downstream expression changes, relevant to the persister phenomenon. Gene
expression at an early time-point of DNA damage (here 30 min) generally represents
the effort to counteract the stressful condition, i.e. inhibiting cell division and repairing
DNA damages. The situation changes at late stages (here 90 min), when a fraction of cells
has experienced a high level of DNA damage and consequently died, while the surviving
subpopulation (i.e. persisters) have only faced moderate DNA damage [50]. So, the SOS
response is expected to decline, and this is exactly what we observe (Fig. 4a). Since our
RNA-seq data are based on bulk experiments, conclusions have to be drawn cautiously,
and some of the gene expression changes at 90 min may reflect the surviving
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subpopulation. The clear up-regulation of transporters and enzymes involved in purine
and amino acid metabolism (Fig. 5b) might factor into long-term survival strategies of the
bacteria. Interestingly, the same GO terms have been found to be under-represented dur-
ing short periods of DNA damage [16], and might therefore be highly specific to late
adaptation processes.

Conclusions

In summary, we present a novel method, moose’, and show that it corrects for system-
atic bias in RNA-seq expression data from a bacterial data set by normalizing expres-
sion values against a set of genes that were predicted as invariant in silico. Moreover,
when applied to more complex eukaryotic data sets, the method performs consistently
as well as, or better than, other RNA-seq normalization methods, indicating that its al-
gorithm is also applicable to a wider set of organisms. The software is modular and can
easily be integrated with other methods that require a set of invariant genes for
normalization. Moose” is written in C++ and freely available as source code under the
General Public License from http://grabherr.github.io/moose2/.

Additional files

Additional file 1: Primers used for gRT-PCR. (PDF 18 kb)

Additional file 2: Number of in silico invariant genes depending on the choice of parameters. The number of genes
depends on h and m, with several settings resulting in the same set of 33 genes used in this analysis. (DOCX 8 kb)

Additional file 3: Expression cluster analysis of time-series data. The data sheet contains the results for the expression
cluster analysis of time-series data of the Top-1000 list. Bioconductor package ‘Mfuzz' was applied for soft clustering.
(XLSX 47 kb)

Additional file 4: Functional annotation cluster analysis. Expression clusters as determined by soft clustering were
applied to functional annotation clustering using the DAVID bioinformatics database. The data sheet contains the
results for gene ontology (GO) terms (BP: biological process; CC: cellular component; MF: molecular function) and
pathway analyses (KEGG). (XLSX 288 kb)

Additional file 5: Moose’-normalized RNA-seq data. The data sheet contains the RNA-seq read counts after
moose’ normalization and p-values for cross-condition comparisons. (XLSX 723 kb)

Additional file 6: Box plots of reference genes broken down by condition. While there are minor differences in
expression levels, there is no systematic trend in either direction. (TIFF 238 kb)

Additional file 7: Per-gene dispersion estimates for the log-transformation. Using rlog and VST in the ‘DESeq2’
package did not reproduce the correct grouping of biological replicates. (TIFF 694 kb)

Additional file 8: In silico reference genes predicted on including two conditions. To examine how the choice of
in silico invariant genes depends on the choice of conditions, we applied moose” to subsets consisting of two
conditions each. While the number of predictions increases when including only two conditions (0/30, 0/90, and
30/90), there are a number of predicted genes shared among the data sets. Grey shading in the table indicates the
six established reference genes. The Venn diagram visualizes overlaps between predictions. (PDF 78 kb)

Additional file 9: Contribution of in silico predictions and quadratic correction. Shown are the sample groupings for
default parameters, as used in our experiment (a); grouping using a linear fit (b); and no predictions and quadratic fit
(c). Out of these, only the combination of predictions and quadratic fit achieve the correct grouping. Also shown are
the results when supplying a list of six differently expressed (DE) genes as reference genes (d), in which case five genes
are rejected; six randomly selected genes also resolve the grouping correctly (e). (TIFF 1271 kb)

Additional file 10: DESeq?2 analyses in different modes. Supplying DESeq2 with the moose” predictions does not
accurately resolve the sample grouping. (TIFF 392 kb)

Additional file 11: Relative log expression (RLE) boxplots for moose-normalized data. Centering on zero and/or
variance are improved when in silico predictions are based on a set of established reference genes. (TIFF 494 kb)

Additional file 12: Correlation plots for invariant genes. Genes, that were predicted by moose’ to be expression-
invariant, were correlated with each other according to their transcript counts across all RNA-seq samples. (A) Raw read
counts (no normalization) and (B) DESeg2-normalized read counts. The scale bar depicts Pearson’s Rho. (TIFF 6253 kb)

Additional file 13: Correlation plots for invariant genes. Genes, that were predicted by moose’ to be expression-
invariant, were correlated with each other according to their transcript counts across all RNA-seq samples. (A) Raw read
counts (no normalization) and (B) moose’-normalized read counts. The scale bar depicts Pearson’s Rho. (TIFF 6341 kb)
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Additional file 14: Correlations of gene expression changes for 19 selected genes. Log, ratios derived from five
normalization methods (RPKM, UQ, TMM, DESeq2, and moose?) are compared to qRT-PCR measurements for 30-to-0-
min (upper panel) and 90-to-0-min comparisons (lower panel). R, Pearson’s rho. (TIFF 655 kb)

Additional file 15: Coverage curve for LexA-dependent genes. E. coli MG1655 genes were sorted according to
their p-values, starting with the lowest value. The Top-1000 list (grey box, p-value cutoff: p < 9.563*10™% includes
31 out of 58 LexA-dependent genes. (TIFF 426 kb)

Additional file 16: MA-plots for moose’-normalized RNA-seq data. The average of expression values (logo-transformed
read counts) is plotted on the x-axis, and the y-axis shows log, ratios between conditions. Every dot represents one gene.
Differentially expressed genes (DEGs) were determined using Limma (p < 9563*107 and are shown in red. (TIFF 688 kb)
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