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Abstract

Background: Refinement of candidate gene lists to select the most promising
candidates for further experimental verification remains an essential step between
high-throughput exploratory analysis and the discovery of specific causal genes. Given
the qualitative and semantic complexity of biological data, successfully addressing this
challenge requires development of flexible and interoperable solutions for making the
best possible use of the largest possible fraction of all available data.

Results: We have developed an easily accessible framework that links two established
network-based gene prioritization approaches with a supporting isolation forest-based
integrative ranking method. The defining feature of the method is that both topological
information of the biological networks and additional sources of evidence can
be considered at the same time. The implementation was realized as an app extension
for the Cytoscape graph analysis suite, and therefore can further benefit from the
synergy with other analysis methods available as part of this system.

Conclusions: We provide efficient reference implementations of two popular gene
prioritization algorithms – DIAMOnD and random walk with restart for the Cytoscape
system. An extension of those methods was also developed that allows outputs
of these algorithms to be combined with additional data. To demonstrate the
utility of our software, we present two example disease gene prioritization application
cases and show how our tool can be used to evaluate these different approaches.

Keywords: Gene prioritisation, Biological network analysis, Cytoscape, Random walk,
DIAMOnD

Background
Identification of genes associated with a disease is an essential first step in developing

novel treatments and gaining better insight into the underlying mechanisms of disease.

Many widely employed contemporary experimental approaches, like genome-wide

association studies (GWAS) or differential gene expression analysis, yield lists of genes

potentially enriched for promising candidates [1], which then need to be further

refined and verified experimentally. Network-based prioritization approaches are one

of promising strategies that can effectively combine and interpret large volumes of

prior knowledge about different types of interactions between biological entities. In

particular, two broad strategies of network-based prioritization have emerged – those
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that consider global network topology by employing some type of a diffusion or Mar-

kov process formalism [2, 3] and those that focus on local topology in specific network

neighborhoods [4]. Biological networks can also be further enriched by additional types

of data that can potentially be used to further increase performance of network top-

ology based methods.

Although a veritable variety of disease gene prioritization solutions are now available,

the efforts so far have chiefly focused on leveraging specific, pre-defined types of data.

In this respect it is possible to identify several types of typical approaches. The first

approach is to develop a specialized integrated knowledgebase resource to support gene

prioritization analysis. Some prominent examples in this category include PrixFixe [5],

ENDEAVOR [6], GeneMANIA [7], Gene Prospector [8] and DAPPLE [9]. The advan-

tages of such a setup is an ability to closely tailor the analysis method to make best use

of these data and being able to pre-compute some of the more time-consuming analysis

steps. However this comes at the cost of restricting the user’s choices and necessitates

continued maintenance of the underlying datasets to ensure they remain relevant.

Given the logistic constraints, access to such methods is usually delivered via web

page-based interfaces [6, 8, 9] or web services [5, 7], and therefore may not be suitable

for cases where confidentiality and data security is important. Approaches of the

second type offer some data acquisition functionality, such as calling external web

services to further enrich the input provided by the user. Tools following this strategy

include Genotator, which performs real-time integration of eleven clinical genetics

resources [10], GPEC, which can query different annotation databases to build up the

seed set of genes [11] and JEPETTO that can dynamically retrieve additional informa-

tion from pathway databases [12]. In this case, while the data can be easily kept up-to-

date, the analysis approach is usually built around those specific types of data. And

lastly, although some tools can work on user-provided datasets, they are only capable

of using some pre-defined types of information [13, 14]. Some notable examples of

such tools include NetworkPrioritizer [15] and iCTNet [16]. NetworkPrioritizer sup-

ports computation of multiple centrality measures and allows them to be combined

using several rank aggregation algorithms. iCTNet is an example of a database-based

approach, where a prioritization algorithm relies on a pre-integrated and developer-

maintained database. In contrast to these two methods, our approach is based on simi-

larity to a set of representative seeds and allows incorporation of both network-based

and other data in the form of node annotations. Due to the extent of previous effort in

disease gene prioritization tool development, only very brief summary of them could be

provided here and for a more comprehensive discussion of the subject we would like to

recommend the following reviews [1, 17–19].

Given potentially complex etiology of diseases and diverse types of data collected in

biomedical research, we believe in potential benefits of a more flexible approach, more

agnostic with respect to types of data. The benefits of such an approach would be to

give greater control to the users by allowing them to make the best possible use of their

own project-specific datasets as well as any publically available information. Our tool,

Arete, combines network analysis capabilities with integrative analysis and in doing so

allows users to further enrich these results with their own information of different

types. The network-based analysis component offers two modern prioritization

algorithms: random walk with restart [2] and DIAMOnD [4]. Our tool is
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implemented as an app plug-in for the popular Cytoscape [20] graph analysis suite

in order to make the best possible use of the synergies with data acquisition and

analysis capabilities of this system and its rich ecosystem of plug-ins. Our primary

goal for this tool is to facilitate interactive, visual exploration of the network

through means of filtering and graph annotation to direct users to sets of genes

enriched for promising candidates.

Implementation

Implementation of graph topology analysis methods

Arete offers two reference implementations of network-based gene prioritization

approaches – a random walk with restart (RWR) [2] and DIAMOnD [4], which is an

iterative, local neighborhood-based method. It was reported in [21] that diffusion-based

approaches, like RWR, appear to perform better when candidate genes are somewhat

dispersed throughout the network, whereas neighborhood-based approaches - when

genes are concentrated in tightly linked cliques. Therefore, by offering a robust algorithm

in each of these two categories Arete aims to accommodate both of these cases. In the

current version only unweighted and undirected versions of both algorithms are available.

In the RWR approach, the genes (nodes in a network) are prioritized in descending

order of probability of being visited by a random walker that starts from one of

the seed nodes (known disease genes). Unlike several other network-based gene

prioritization tools, our implementation does not use an approximate iterative solu-

tion, but rather an exact one described in [3]:

p∞ ¼ r I−W 1−rð Þð Þ−1p0
Where W is column-normalized adjacency matrix, r is the probability of restart

and p is the probability of a node to be visited by a random walker. As is evident

from the formula, this approach necessitates one slow calculation step - a matrix

inversion. To ensure optimal performance, we have considered eight different Java-based

libraries before settling on ojAlgo [22] as an optimal solution. To evaluate the scalability

of our implementation we tested it on several networks between 0.5 and 15 million edges

in size (Fig. 1). All of the test networks were constructed from human co-expression data

Fig. 1 Performance evaluation of multi-threaded implementation of random walk with restart gene prioritization
algorithm on systems with 16 and 54 CPU cores
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(Hsa2.v14-08) from COXPRESdb [23] by selecting edges with the highest absolute correl-

ation until a desired number of edges was reached. On a 16-core test machine, roughly

comparable to a modern high-end desktop PC, it took about 2 h to complete the calcula-

tion for the largest network. We have found that addition of extra cores offered substan-

tial improvements, reducing time needed to process the largest test network to under

30 min. To further alleviate this issue we added an option to save and re-use pre-

calculated inverted matrix from an external file. As this intermediate matrix is purely

network-specific, it can be re-used with different sets of seed genes.

The DIAMOnD algorithm starts by considering the immediate neighbors of the seed

nodes and selects a node with the smallest probability of having at least as many con-

nections to seed nodes according to the hypergeometric distribution. Once a node is

picked, it is added to the seed set and the process is repeated until the desired number

of candidates is picked. Candidate genes are ranked in ascending order based on the

iteration step at which they were picked. Both DIAMOnD and RWR network topology-

based methods can be run on their own or combined with other types of data, as

explained in detail in the following section. The parameter values for both of these

algorithms were set according to recommendations of their respective original authors.

From the analysis reported in both cases, we expect that these values are likely to

be near-optimal in vast majority of cases and will rarely, if ever need to be

adjusted by users.

Integrative prioritization approach

The integrative prioritization algorithm aims to assign a rank corresponding to how

likely an unlabeled data instance is to belong to a specified class (e.g. gene being associ-

ated with a specific disease). The examples of the class instances can be specified by a

user with a combination of an attribute and value that identifies a group of nodes in a

Cytoscape graph. The ranking of unlabeled nodes is done with the help of an isolation

random forest data structure (iRF) [24]. An isolation random forest is a collection of

decision trees where each tree is constructed on a subsample of all available data.

During tree construction, one attribute and one split point are selected at random at

every node and the process is continued until no more splits can be done (i.e. there is

only one data point left or all data points are equal). Analogous to the original method,

in our implementation the construction stage of the algorithm is class label agnostic

and only relies on the overall structure of the data. The scoring step is done by applying

the iRF to all of the instances in the dataset. The original work used the iRF for outlier

detection [24]. We found that it can also be effectively used for prioritization/ranking

by incorporating target class annotation at the scoring stage as follows:

score k; cð Þ ¼
X

t∈T

X

ni : k∈n

ni∩cj j
jnij

� �α

Here k is an instance to be scored, c is a set of seed instances of target class,T is a set of

all isolation trees (t) in the ensemble, and n is a set of instances selected at a node

of tree t. The scoring metric quantifies the co-occurrence of a particular instance

with instances of a target class at different nodes. The balancing parameter, α can

be adjusted to emphasize either highly specific similarity to (potentially smaller

number of ) seed instances (values between 0.0 and 1.0) or overall similarity to
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multiple seed instances (values above 1.0). The underlying rationale behind the

scoring approach is that similar instances are less likely to be randomly separated

and therefore will tend to co-occur at the nodes of the tree more frequently com-

pare to unrelated ones. The advantages of proposed method include capturing

effects of interacting attributes (which will generate more pure groups with higher

scores), the non-parametric nature of the algorithm and relatively few critical

options requiring input from the user.

The GUI interface offers three customization options: number of trees to gener-

ate, balancing parameter and a switch for controlling how to select a value for

splitting at tree nodes. As the algorithm is stochastic, selecting a larger number of

trees will tend to lead to more consistent results between different runs at the cost

of lower speed, though the underlying level of performance will only be adversely

affected if this option is set very low. By default, the split point can be any number

between the minimum and maximum values of an attribute in a set of instances

selected for particular node during construction stage. This default behavior can be

changed to make all splits equally likely, which is equivalent to rank-transforming

all data. The default values for all these parameters were chosen by performing

tests on gene sets for particular diseases and Gene Ontology biological process

categories between 10–100 genes in size. The sets of reference disease genes for

this task were taken from DisGeNET database [25] and were chosen to be distinct

from the ones used in the evaluation example described below. The aim was to set

all parameter values at levels where an adequate result will be generated in most

cases in order to create a reasonable starting point from which a user can experi-

ment further.

Cytoscape App user interface

We have implemented a graphical user interface for Arete and packaged it as an app

for the Cytoscape system (Fig. 2 – left panel). The interface consists of four tabs, one

each for DIAMOnD and RWR topology-based gene prioritization methods, integrative

Fig. 2 The main interface of the Arete Cytoscape app (left) and visualization of DIAMOnD gene ranking
generated using annotation and filtering functionality of the app (right)
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prioritization and exploration of results. When the app is loaded, an active graph in

Cytoscape is automatically scanned for applicable attributes and a connected compo-

nents analysis is performed to identify meaningful subsets. The attributes can be

selected for inclusion in the analysis by selecting them in the main panel. Individual

tabs for DIAMOnD and RWR are provided in order to simplify access to these

algorithms and only show options relevant to them, whereas the main Arete tab

allows more complex analysis runs to be configured. In particular, it allows config-

uring either evaluation or prioritization algorithm runs or performing integrative

analysis over multiple node attributes in combination with graph topology-based

methods.

During evaluation, each known “true positive” gene that is withheld from the seed set

for a given evaluation run is ranked in its own list of reference unlabeled genes. The

tool offers two options for providing such reference lists. The first (default) option is to

automatically construct these lists by drawing random non-seed genes from the

network. This option is the likely most common application scenario, where a user

does not have a pre-defined reference set of interest. The second option is for user to

provide their own reference lists. This is done by providing a separate tab-delimited file

where the first column is a relevant gene and the rest of the line is its reference list.

This option has been used in the first example use-case, where a reference list was

constructed using neighboring genes in the genome.

Lastly, the prioritized genes can be highlighted in the Cytoscape network view by

changing the color of respective nodes according to their ranks (Fig. 2 – right panel). A

filter can be applied to select highly ranked nodes and, optionally, their neighbors at a

particular level.

Example use-case 1: ranking candidate genes in a genomic region

For this use-case, we have applied our approach in a simulated scenario of analyzing

GWAS data by extending an example dataset that was used in original DIAMOnD

evaluation study [4]. This dataset integrated several high-confidence sources of gene

and protein interactions and a set of genes for 69 different diseases. To complement it,

we constructed a control set of unlabeled genes for each of the disease-associated seed

genes by taking 100 closest neighboring genes in the genome, which were also present

in the network and were not seeds themselves. This evaluation setup is analogous to

the one used in the original RWR paper [2]. To demonstrate how multiple types of data

can be incorporated into this analysis, we have compiled a list of five additional gene-

specific property metrics – four graph-theoretic properties and one relating to tissue

specific patterns of expression. These properties are described in Table 1. Multiple

previous studies [26–29] have reported that distributions of various graph centrality

measures can be significantly different between sets of disease-associated and unrelated

genes. It has also been shown to be true for specific patterns of gene expression, where

disease-related genes tend to be non-ubiquitously expressed across different tissues

[30]. To capture this aspect we downloaded tissue-specific expression patterns from the

Human Protein Atlas resource [31], which has profiled expression of 86% of all human

proteins across 83 different cell types. The tissue-specific expression property was

calculated as a proportion of all tissues where at least “low” level of expression was

reported in the Human Protein Atlas database.
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The comparative evaluation considered five different setups. First, the prioritization

was done separately using RWR, DIAMOnD and iRF based on the five metrics only.

Then, two more runs where performed where DIAMOnD or RWR scores were also

included as features in the iRF set. To explore the results we have computed

ROC-AUC statistic according to the method described in [2] using leave-one-out,

3-fold and 5-fold cross-validation schemes. Additionally, we have looked at fold-

enrichment for known disease genes in different quartiles of resulting ranked lists. To

provide a representative sample of likely performance of all methods in a “worst case”/

baseline scenario, all reported analyses were done with the chosen default options of our

application. Therefore, no attempt was made to specifically optimize setting for each of

the diseases in the example dataset. As associated gene sets are likely to be quite distinct-

ive, we expect that different parameters may be optimal in each individual case. In prac-

tice, an expected use-case will only usually involve a single disease or set of genes and a

user may choose to interactively optimize the settings to further improve results.

Example use-case 2: ranking candidate genes in a transcriptomic study

For the second example we illustrate how our software can be used in combination

with an example transcriptomic study. Here we have used data from a microarray

profiling experiment E-GEOD-15245, which investigated how gene transcription in the

blood changes in the period preceding multiple sclerosis (MS) relapse [32]. A complete,

processed dataset from this study was downloaded from the EBI’s ArrayExpress data-

base [33]. We have chosen samples taken less than a year prior to observed MS relapse

and where “definite MS” was confirmed. The reasoning behind this was that these

samples are most likely to capture disease-relevant responses and therefore will be

most useful for identification of disease-driving genes. These selected 24 expression

profiles were scaled and integrated with the network and a known set of MS genes.

Both the network and MS gene set were taken from the dataset used in the first use-

case. The combined dataset was again analyzed using all of the methods available in

Arete tool with all relevant parameters left at recommended default values. In this case

we have chosen to evaluate the performance by drawing 100 random reference genes

(per each known MS gene) from all unlabeled genes in the network, as not having a

pre-defined reference gene list is more consistent with an expected scenario for

transcriptomics-based application cases.

Results and discussion
At the time of writing, we were aware of three tools that offer different variants of the

random walk algorithm for the Cystoscope suite, however, all of these offered an

Table 1 Additional metrics used for integrative analysis example and informal descriptions of what
properties they capture

Metric name Property captured

Eccentricity Overall remoteness from all other nodes

Transitivity Density of interlinks among immediate neighbors

Betweenness Network “choke points” with high proportion of shortest paths going through them

Tissue-specific expression Ubiquitous versus tissue-specific expression

k-core number Location in a dense core versus network periphery
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approximate, iterative solution rather than an exact one. One of the advantages of the

exact solution is that it has been shown to be robust to restart probability parameter

[2] and therefore will produce a near-optimal result without the need for time-

consuming optimisation. At present, Arete is also the first tool to provide an imple-

mentation of DIAMOnD algorithm in Cytoscape. In terms of providing the evaluation

functionality, the only other tool also offering it is GPEC, but GPEC has somewhat

limited dataset customization functionality and is no longer available for Cytoscape 3.0

or later. As we outlined in the introduction, with respect to integrative analysis, the

diversity of data and integration methods being used is quite extensive. However, the

main focus of most efforts has so far been to optimally exploit particular public data-

sets, or to closely couple the analysis method with specific, pre-generated datasets. To

the contrary, our intention has been to develop an approach that is flexible and generic.

In combination with the easy-to-use data import and acquisition methods of Cytoscape

system our approach allows users to build and leverage their own resources. Additional

flexibility is achieved by: (1) offering performance evaluation capabilities that can be

used to explore and understand the impact of particular features and (2) interactive,

user-driven exploration of results in the graph interface.

The first evaluation example has shown that our proposed integration method can be suc-

cessfully used with network topology-based features to improve results (Fig. 3). In particular,

a

c d e

b

Fig. 3 Comparison of different gene prioritization approaches offered in Arete app. a Box plot of ROC AUC
scores of leave-one-out, 3-fold and 5-fold cross-validation for 69 different sets of disease-related genes.
b Percentages of genes associated with multiple diseases in our reference set. Bottom row shows
corresponding fold-enrichment statistics for the four quartiles of ranked gene lists profiled using 3-fold (c),
5-fold d and leave-one-out e cross-validation schemes
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when combined together, DIAMOnD and integrative prioritization (iRF) performed sub-

stantially better relative to when these approaches where used in isolation (Fig. 3a). It can

be seen in Fig. 3a that according to our evaluation, the RWR method performed best over-

all, however the picture becomes more complicated when ranking of individual diseases by

different methods is examined (Fig. 4c). As diseases are highly heterogeneous, it is to be ex-

pected that different network-based properties and expression patterns will not have the

same importance in all of the cases. Therefore, we have observed cases where either of the

two network-based methods has performed best (Fig. 4a and b). Similarly, when DIAMOnD

is compared with RWR without additional data, it did outperform RWR in 16 out of 69

cases, which is consistent with what was previously reported in [4]. These results highlight

potential benefits of having access to several distinctive network-based prioritization

approaches and alternative perspectives they offer.

In addition to ROC-AUC analysis, we have also looked at the fold-enrichment, which,

again, was explored using 3-fold, 5-fold and leave-one-out cross validation schemes

(Fig. 3c-d). For this analysis we have split the ranked lists into four quartiles and

compared the actual distribution of known disease genes with the one expected by

chance. For all of the methods, a substantially higher enrichment was predominantly

achieved in the first quartile, where between 1.6 and 2.4-fold more relevant genes

were recovered.

Disease-related genes can play a role in more than one disease and are often associated

with high network centrality, which is emphasized both by incorporation of network-

specific properties via iRF and by the RWR algorithm. Potentially, this can cause a positive

bias with respect to those genes, as inevitably there will be some overlap between sets of

genes for different diseases and high centrality genes are more likely to be in this overlap.

To explore this possibility, we have looked at the distribution of multi-disease genes in

our dataset (Fig. 3b) and investigated whether such effects had substantial influence on

performance (Additional file 1: Figure S1) As about 67% of all genes in our dataset were

only involved in one disease, we have split our data into a single-disease and multi-disease

subsets (2 or more associated diseases per gene) and re-calculated all of the performance

statistics for these subsets. Although the performance was slightly higher for multi-disease

genes according to both ROC- AUC and fold-enrichment metrics, this difference was too

small to indicate a definite and substantial bias in this case (Additional file 1: Figure S1).

a b c

Fig. 4 a and b show example ROC curves for two diseases – obstructive lung disease and psoriasis, respectively.
c Comparison of ROC-AUC scores for 69 individual diseases using DIAMOnD and RWR approaches. Scores of
canonical versions are shown in blue and scores where those methods were combined with additional data
using iRF approach are shown in red. Each point represents a set of genes for particular disease
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The example prioritization of MS-related genes using transcriptomics data has shown

that our method can be effectively used with such data to identify promising

disease-associated genes (Fig. 5a-b). In this case, the iRF used on transcriptomics

data has produced an overall highest fold-enrichment in the first quartile and the best

ROC-AUC. DIAMOnD algorithm has not performed well in this case (ROC-AUC of

0.562) and, in contrast to the overall trend from use-case 1, no benefit was observed from

combining it with transcriptomics data via iRF (ROC-AUC of 0.722), as the overall

performance was still lower than iRF alone (ROC-AUC of 0.796). Random walk with

restart performed substantially worse than iRF (ROC-AUC 0.678). In combination with

iRF it has produced a comparable ROC-AUC score (0.783) and therefore did not lead to a

substantial decline in performance relative to iRF, as was the case for iRF + DIAMOnD.

To conclude, as previously noted in [21], our results from use-case one also hint at

the possibility that at least some of predictive network-based properties may be particu-

larly effective only in specific cases and consequently heterogeneity likely exist between

such properties of genes associated with different diseases. The second use-case

illustrated how our approach can be used to identify most relevant disease-causing

genes from transcriptomics data. These results indicate that even without further

optimization, all of the methods provided in Arete can be suitable for identifying

approximately relevant gene sets from experimental data. Therefore, in combination

with interactive visualization capabilities of the Cytoscape system itself, Arete can

effectively support analysis of complex biological networks by facilitating identification

of smaller, meaningful gene sets for further manual exploration by the user.

Conclusion
Although large and diverse number of disease gene prioritization software are now

available, emphasis has been primarily on approaches that either work on a specific

pre-integrated knowledgebases or public web resources; or are only able to consider

particular types of biomedical data by design. At the same time, biomedical application

cases often rely on their own ‘omics datasets, data from different studies and experi-

ments and highly specialized expert knowledge. This creates a niche for a more

a b

Fig. 5 Performance evaluation of Arete methods on transcriptomics data, which profiled relapse during
multiple sclerosis progression. a ROC-AUC curves; b fold-enrichment for each quartile of a reference list
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generalized tool that can allow non-technical users to exploit project-specific integrated

datasets, identify promising combinations of predictive features and find likely

candidate genes, which are more directly supported by context-specific evidence. Our

proposed solution fills this niche by achieving a pivot between flexibility and ease-of-

use, while at the same time also delivering adequate levels of performance and evalu-

ation capabilities for comparing different setups. Using the example analysis presented

in this paper, we also demonstrated that our proposed multiple evidence integration

method can further enhance the performance achievable by network topology-based

methods alone.

Additional file

Additional file 1: Figure S1. Evaluation of performance for multi-disease and single-disease gene subsets.
(PDF 183 kb)
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