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Abstract

Background: With the development of high-throughput technology, the researchers
can acquire large number of expression data with different types from several public
databases. Because most of these data have small number of samples and hundreds or
thousands features, how to extract informative features from expression data effectively
and robustly using feature selection technique is challenging and crucial. So far, a mass
of many feature selection approaches have been proposed and applied to analyse
expression data of different types. However, most of these methods only are limited
to measure the performances on one single type of expression data by accuracy or
error rate of classification.

Results: In this article, we propose a hybrid feature selection method based on
Multiple Kernel Learning (MKL) and evaluate the performance on expression datasets
of different types. Firstly, the relevance between features and classifying samples is
measured by using the optimizing function of MKL. In this step, an iterative gradient
descent process is used to perform the optimization both on the parameters of
Support Vector Machine (SVM) and kernel confidence. Then, a set of relevant features
is selected by sorting the optimizing function of each feature. Furthermore, we apply
an embedded scheme of forward selection to detect the compact feature subsets
from the relevant feature set.

Conclusions: We not only compare the classification accuracy with other methods,
but also compare the stability, similarity and consistency of different algorithms. The
proposed method has a satisfactory capability of feature selection for analysing
expression datasets of different types using different performance measurements.

Background
With the development of transcriptomics research, especially the widely used high-

throughput microarray chip and RNA sequencing technology, a large number of tran-

scriptome data have been obtained by measuring the expressions of genes or miRNAs

simultaneously. Researchers can acquire these different expression data from several

public databases, such as Gene Expression Omnibus (GEO) [1], Stanford Microarray

Database (SMD) [2], ArrayExpress [3] and The Cancer Genome Atlas (TCGA) [4].

TCGA is the largest cancer genome sequencing project, which plan to sequence and

organize 10,000 cancer genomes, along with other matching omics data types, covering

25 cancer types [5]. Developing effective and robust methods to extract the subset of
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informative features from expression data remains a challenge and crucial problem.

Feature selection technology has been studied and applied proverbially in pattern recogni-

tion, statistics analysis, data mining and machine learning [6]. In the last decade, feature

selection technology has become an important tool for expression data analysis in the

field of bioinformatics, such as cancer classification, biological network inference, expres-

sion correlation analysis and disease biomarker identification [7]. The features (mRNAs

or miRNAs) of given expression data can be broadly categorized into three major types:

relevant features, redundant features and irrelevant features [8].

In general, most feature selection methods can be divided into three categories: filter

methods, wrapper methods, and embedded methods [7]. These categories depend on

the combination modality of feature selection search and the construction of the clas-

sification model. Filtering methods, which are independent of the classifier, select

relevant features only dependent the intrinsic properties of expression data. Glaab et

al. applied an ensemble filter method which combines several selection schemes to an

ensemble feature ranking [9]. Cai et al. proposed a feature weighting algorithm to es-

timate the feature weights through local approximation rather than global measure-

ment. Experimental results on both synthetic and real microarray datasets validated

that the algorithm was effective, when combining the proposed method with classic

classifiers [10]. Cao et al. proposed a filtering feature selection method for paired

microarray expression data analysis [11].

In wrapper approaches, the classification scores for features by a classifier are mea-

sured in the selection process and the step of feature selection depends on the classi-

fier. So far, many wrapper feature selection methods have been proposed and used for

expression data analysis. Mukhopadhyay et al. combined a multi-objective genetic algo-

rithm and SVM classifier as a wrapper for evaluating the chromosomes that encode

miRNA feature subsets [12]. Maulik et al. presented a fuzzy preference based rough set

method for feature selection from gene expression data of microarray. Compared with

signal-to-noise ratio and consistency based Feature Selection methods, experimental

results showed that the method was effective in extracting gene markers [13].

In embedded approaches, the step of selecting an optimal feature subset is built into

the classifier construction and the selecting can be seen the process combined space of

feature subsets and hypotheses. With the increase of available expression data sources,

several embedded feature selection methods have been presented to analyze expression

data. Chen et al. proposed a feature selection approach using the information provided

by the separating hyperplane and support vectors [14]. Mao et al. proposed a unified

feature selection framework based on a generalized sparse regularizer for measuring

the performance of multivariate [15]. Li et al. proposed a new feature selection algo-

rithm called feature weighting as regularized energy-based learning. The experiments

using microarray data demonstrated that the ensemble method, when using the L2

regularizer outperforms other algorithms in stability while providing comparable classi-

fication accuracy [16]. Kursa compared four state-of-the-art Random Forest-based fea-

ture selection methods in the gene selection context on microarray datasets, and found

when the number of consistently selected genes was considered, the Boruta algorithm

was the best one [17]. Yousef et al. developed a method for selecting significant genes,

which uses K-means to identify correlated gene clusters and applies the scores of those

gene clusters for the purpose of classification [18]. Tang et al. presented a two-stage
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Recursive Feature Extraction (RFE) algorithm, which can effectively eliminate most of the

irrelevant, redundant and noisy genes, and select informative genes in different stages [8].

Niijima et al. suggested a recursive feature elimination model based on Laplacian linear

discriminant analysis for feature selection [19]. However, these methods based on RFE

may obtain satisfactory performance on hundreds of features. Such a large number of fea-

tures (mRNAs or miRNAs) are difficult to apply to several fields, such as clinical diagnosis

of cancer or experiments of identifying cancer biomarkers.

In recent years, several hybrid feature selection approaches have been also pro-

posed for expression data analysis. Chuang et al. proposed a feature selection method,

which combines an improved particle swarm optimization with the K-nearest neighbor

method and support vector machine classifiers [20]. Mundra et al. developed a hybrid

feature selection method by combining the filter method of minimum-redundancy

maximum-relevancy (MRMR) and the wrapper method of support vector machine

recursive feature elimination (SVM-RFE) [21]. Du et al. proposed a multi-stage feature

selection method for microarray expression data analysis [22].

Though most of above methods can eliminate the irrelevant genes and rank informative

genes effectively, they are only suitable for expression data from one type of expression

profile. Most of the above methods construct the feature selection model based on one

type of expression data directly, but they rarely consider the effectiveness and stability on

expression data from different types of transcriptome. In this paper, we propose a novel

two-stage feature selection method which uses multiple kernel learning (MKL) [23, 24]

combines a forward feature selection procedure to select the relevant feature subset,

eliminate redundant features and select compact feature subsets. We simplify our

proposed method as Simple MKL-Feature Selection (SMKL-FS), which eliminates

irrelevant features and selects relevant features by the score of individual feature, and

eliminates redundant features by the forward selection procedure in two stages.

One objective of feature selection is to avoid overfitting and improve the performance

of classifier [7]. Overfitting is one of challenging problems on gene expression data

which have characteristic of high dimensional and small sample. So, we used following

processing to decrease the influence of overfitting on small samples. Firstly, we use the

SimpleMKL method, which solves the MKL problem through a primal formulation

involving a weighted l2-norm regularization. The regularization part adds a cost term

for bringing in more features with the objective function. Hence, regularization can

shrink the coefficients of many variables to zero and decrease the overfitting. Secondly,

we used a sequential forward selection (SFS) method which belonged to deterministic

methods and have lower overfitting risk than randomized methods [7]. In addition, we

used cross validation in performance measurement part to identify these methods,

which may have poor performance caused by overfitting training on several datasets.

In the following part, we outline the main steps of SMKL-FS. Firstly, we measure the

relevance between features and classify samples by using the optimizing function of

MKL. More specifically, we use an iterative gradient descent process to perform the

optimization both on the parameters of SVM and kernel confidence, and obtain the op-

timizing function of each feature. Then, we select the relevant features set by sorting

the optimizing function of each feature. Furthermore, we apply an embedded scheme

of forward selection to detect the compact feature subsets from the relevant features

set. Different from wrapper approaches, which convolve with a classifier and minimize
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the classification error of the dependent classifiers, we use optimizing function of MKL

instead of classification error to carry out the embedded process. The idea of this

process is similar as the minimum-redundancy process in mRMR [25]. Except for

evaluating the classification accuracy of the method, we measure the performances of

different feature selection algorithms through measuring the stability of feature space

on different samples in the same type of data, the similarity with other methods and

consistency between expression data of miRNA and mRNA.

The main characteristics of our proposed algorithm include: (i) a novel feature selection

method for identifying gene signatures based on multiple kernel learning focusing on

multiple types of expression data, such as mRNA microarray, mRNA sequencing and

miRNA sequencing; (ii) an evaluattion performance of different methods by using classifi-

cation accuracy, stability of feature space, similarity with other methods and consistency

between expression data of miRNA and mRNA. Experimental results show that the pro-

posed method has a satisfactory capability of feature selection for different expression

datasets analysis compared to other state of art feature selection approaches.

Results
For measuring the performance of embedded method, we use three kernel functions,

linear kernel K(xi, x) = (xi, x), radial basis function kernel K xi; xð Þ ¼ exp − xi−xk k2
2

� �
and

polynomial kernel K(xi, x) = [(xi, x) + 1]2. In a practical application, different kernels can

combined. The features are selected and evaluated using 10-fold Cross-Validation (CV)

on a variety of datasets through different feature selection methods including SVM-RFE

[26], SVM-RCE [18], mRMR [25], IMRelief [10], SlimPLS [27] and SMKL-FS. We

measure the performances of different feature selection algorithms through evaluating

the classification accuracy of feature combination, also measuring the stability of feature

space on different samples in the same type of data and the similarity with other methods.

Data sources and pre-processing

In this paper, three types of expression data are used to measure the performance of

feature selection methods. We only use the paired samples in expression datasets which

include tumor and adjacent non-tumor tissues. The datasets of mRNA microarray are

obtained from Gene Expression Omnibus (GEO) [1], the datasets of mRNA sequencing

and miRNA sequencing are downloaded from The Cancer Genome Atlas (TCGA) [4].

Eight types of cancer on microarray datasets are used in this article, and each type of

cancer contains several datasets (series in GEO). Table 1 gives the more detailed infor-

mation of the eight cancer types of mRNA microarray datasets from GEO and Table 2

shows the more detailed information of the eight cancer types from TCGA.

For using these expression data to measure the performance of different feature selec-

tion methods, the downloaded and reorganized data from GEO and TCGA have been

converted in our defined data format and preprocessed through the following processes.

Firstly, the missing values of each expression dataset are estimated. If the missing values

of one mRNA (or miRNA) are less than 20% of all samples, these missing values are

estimated using the local least squares imputation (LLSimpute) method [28]. Then,

the different probes of the same mRNA (or miRNA) are merged by the maximum ex-

pression value of these probes for each sample. After these processes, these datasets
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are normalized by median absolute deviation (MAD) method to make all the samples

have similar background [29]. The normalization of different microarrays is applied

by housekeeping gene as performed in previous article [30].

Performance measurement of feature space

The performance measurement of feature space is important for evaluating different

feature selection algorithms. Most of the state of art algorithms only validate their per-

formance through the classification accuracy [26] or classification error [31] on selected

feature set by a classifier C. The classification accuracy and classification error are

defined as follows respectively:

Accuracy ¼ TP þ TN
FN þ TP þ TN þ FP

Classification Error ¼ FN þ FP
FN þ TP þ TN þ FP

ð1Þ

where TP is the number of true positives, TN is the number of true negatives, FP is the

number of false positives, and FN is the number of false negatives. However, only

computing the classified ability of selected features could not reflect the performance

of feature selection algorithms roundly.

In this paper, we measure the performances of different feature selection algorithms

through evaluating the classification accuracy of single features and features combin-

ation, also measuring the stability of feature space on different samples in the same

type of data, the similarity with other methods and consistency between expression

Table 1 The detailed information of mRNA microarray datasets

Cancer Type Datasets ID Number of Samples

Liver GSE5364, GSE22058, GSE14520, GSE12941 132

Pancreatic GSE15471, GSE16515, GSE22780 63

Lung GSE5364, GSE19804, GSE22058, GSE10072, GSE7670, GSE2514 249

Colon GSE5364, GSE8671, GSE25070, GSE21510, GSE23878, GSE18105 70

Gastric GSE13911, GSE13195, GSE5081, GSE19826 93

Breast GSE5364, GSE15852, GSE10810, GSE16873, GSE5764, GSE14548 113

Thyroid GSE5364, GSE3678 23

Prostate GSE6919, GSE6956, GSE17951 88

Table 2 The detailed information of mRNA Sequencing and miRNA Sequencing datasets

Cancer Type Number of Samples

KIDNEY1 88

BRCA 71

LUNG2 47

HNSC 37

LIHC 46

PRAD 43

STAD 29

THCA 56

1: KIDNEY contains KIRC and KIRP
2: LUNG contains LUSC and LUAD
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data of miRNA and mRNA. We select and evaluated features using 10-fold Cross-

Validation (CV) on these datasets mentioned above through different feature selection

methods, SVM-RFE [26], SVM-RCE [18], mRMR [25], IMRelief [10], SlimPLS [27],

OSFS [32], FGM [33] and our method SMKL-FS. Firstly, for each testing dataset, we

randomly selected 90% as training dataset and other 10% as test dataset. Repeating the

selection process 10 times, we can obtain a collection of 10 groups contained training

and test samples. In order to ensure fairness, we select feature subset using each feature

selection method on training samples of the same 10 groups. Then, for the ten selected

features from different methods, we evaluate them according to the above criterions.

Classification accuracy of features combination

For two feature sets S1
n
and S2

n
, and the above classifier C, we consider the feature space

of S1
n
is more effective, if the classification accuracy on feature set S1

n
is higher than that

on S2
n
by using classifier C. If the method M1 generates a series of feature subsets in

S1
n
: S11⊂S

1
2⊂…S1n−1⊂S

1
n and the method M2 generates a series of feature subsets in S2

n
: S21

⊂S22⊂…S2n−1⊂S
2
n . For each k(1 ≤ k ≤ n), we compute the classification accuracy on Sk

1 and

Sk
2 as same as [8]. If the average of these classification accuracies on S1

n
is higher than

that on S2
n
, we consider the method M1 is better than M2 in mean effectiveness. If the

maximum of these classification accuracies on S1
n
is higher than that on S2

n
, we consider

the method M1 is better than M2 in max effectiveness.

In our verification, we set the n of feature set S1
n
as 10, and compare the effectiveness

of feature spaces from different methods using SVM classifier. For the feature subsets

in S1
10
: S11⊂S

1
2⊂…S19⊂S

1
10 generated by method M1, we compute the classification accur-

acy on Sk
1 for every k(1 ≤ k ≤ 10). Then the mean effectiveness and max effectiveness

of method M1 are measured by the average and maximum classification accuracies on

S1
10
. The results of mean effectiveness and max effectiveness on three types of data-

sets through different methods are shown in Tables 3, 4 & 5 and Additional file 1:

Table S1, respectively.

The mean effectiveness and max effectiveness of SMKL-FS are better than those

from other methods for most datasets of miRNA sequencing, mRNA microarray data

and little less than mRMR on mRNA sequencing data. The good performance of

mRMR [25] on gene expression data may attribute to the method designed specifically

Table 3 The results of mean effectiveness on mRNA microarray (top 10)

Methods SVM-RFE SVM-RCE mRMR IMRelief SlimPLS OSFS FGM SMKL-FS

Liver 0.913 0.860 0.965 0.825 0.831 0.750 0.867 0.963

Pancreatic 0.689 0.777 0.818 0.784 0.673 0.707 0.729 0.804

Lung 0.731 0.786 0.942 0.814 0.708 0.704 0.860 0.964

Gastric 0.614 0.724 0.688 0.566 0.636 0.533 0.640 0.760

Colon 0.736 0.888 0.941 0.803 0.794 0.682 0.812 0.951

Breast 0.745 0.776 0.832 0.545 0.693 0.728 0.769 0.854

Thyroid 0.835 0.897 0.838 0.633 0.743 0.517 0.802 0.922

Prostate 0.577 0.762 0.750 0.560 0.682 0.629 0.679 0.717

Mean 0.730 0.809 0.847 0.691 0.720 0.656 0.770 0.867
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for this type of data. We also see that FGM [33] is the best common method, which

has satisfactory performance on different type of gene expression data. The results of

accuracy of each S1
1, S2

1,…, S9
1, S10

1 on three types of datasets for different methods are

shown (See Additional file 2: Figure S1, Additional file 3: Figure S2 and Additional file 4:

Figure S3), respectively. In each subgraph, the X-axis represents different feature sets

S1
1, S2

1,…, S9
1, S10

1 , and the Y-axis represents accuracy of each set. For two given feature

selection methods M1 and M2, if the area under the curve of M1 is larger than that of

M2, M1 is better than M2.

For comparing the performances of the methods using multiple kernels with the

method using single kernel, the individual usage and different combination of three ker-

nels, linear kernel K(xi, x) = (xi, x), radial basis function kernel K xi; xð Þ ¼ exp − xi−xk k2
2

� �
and polynomial kernel K(xi, x) = [(xi, x) + 1]2 are conducted. The results of mean effective-

ness and max effectiveness on three types of datasets are shown (see Additional file 5:

Table S2). In Additional file 5: Table S2, the method using different individual kernels

affect the results weakly, and the method using multiple kernels has the best results

among the majority of the datasets.

In a practical application, the first step can be skipped. However, because of the existing

irrelevant features, when only using the second step, the results are not always better than

those after removing the irrelevant features, and meanwhile the process has high com-

putational complexity. Considering the computational complexity, we only test the

Table 4 The results of mean effectiveness on mRNA Sequencing (top 10)

Methods SVM-RFE SVM-RCE mRMR IMRelief SlimPLS OSFS FGM SMKL-FS

KIDNEY 0.912 0.952 0.965 0.949 0.898 0.914 0.951 0.957

BRCA 0.938 0.982 0.973 0.953 0.871 0.934 0.928 0.984

LUNG 0.957 0.977 0.993 0.932 0.942 0.867 0.931 0.997

HNSC 0.930 0.949 0.983 0.908 0.844 0.900 0.977 0.948

LIHC 0.893 0.937 0.962 0.919 0.900 0.798 0.952 0.958

PRAD 0.932 0.928 0.971 0.893 0.779 0.764 0.966 0.953

STAD 0.907 0.895 0.970 0.945 0.758 0.848 0.898 0.963

THCA 0.945 0.954 0.975 0.933 0.883 0.844 0.903 0.970

Mean 0.927 0.947 0.974 0.929 0.859 0.859 0.938 0.966

Table 5 The results of mean effectiveness on miRNA Sequencing (top 10)

Methods SVM-RFE SVM-RCE mRMR IMRelief SlimPLS OSFS FGM SMKL-FS

KIDNEY 0.922 0.832 0.987 0.901 0.896 0.893 0.916 0.994

BRCA 0.839 0.963 0.979 0.817 0.973 0.893 0.953 0.990

LUNG 0.891 0.946 0.979 0.953 0.831 0.945 0.946 0.980

HNSC 0.979 0.955 0.991 0.879 0.874 0.920 0.874 0.994

LIHC 0.906 0.836 0.911 0.813 0.871 0.789 0.925 0.917

PRAD 0.897 0.933 0.930 0.892 0.905 0.794 0.836 0.946

STAD 0.855 0.870 0.853 0.790 0.823 0.760 0.827 0.880

THCA 0.925 0.901 0.969 0.842 0.876 0.878 0.928 0.967

Mean 0.902 0.904 0.950 0.861 0.881 0.859 0.901 0.958
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performance by only using the second step on miRNA datasets. The results are shown

in Additional file 6: Table S3. From the table, we can see that the results of only using

the second step are not better than those filtering some features in the first step, and

meanwhile using all features the second step has high computational complexity.

Stability of feature space

The stability of feature space generated from a feature selection algorithm reflects the ro-

bustness of the method on different samples of the same type of data [34]. For a list of fea-

ture sets S11
n
; S12

n
;…; S

n
1k generated by method M1 on different samples Ω1,Ω2,…,Ωk(each

Ω is a subset of X) of dataset D and another list of feature sets S21
n
; S22

n
;…; S

n
2k generated

by method M2 on samples Ω1,Ω2,…,Ωk. Let I1 ¼ S11
n
∩S12

n
∩;…; ∩S

n
1k

n o
, U1

¼ S11
n
∪S12

n
∪;…; ∪S

n
1k

n o
and I2 ¼ S21

n
∩S22

n
∩;…; ∩S

n
2k

n o
, U2 ¼ S21

n
∪S22

n
∪;…; ∪S

n
2k

n o
. If

I1j j�
U1j j is larger than

I2j j�
U2j j , we consider the method M1 is better than M2 in union stability

of feature space. For every two samples Ωi,Ωj ∈ {Ω1,Ω2,…,Ωk}, let R
1
ij ¼ S

n
1i∩S

n
1j

�� ��=
S

n
1i∪S

n
1j

�� �� and R
2
ij ¼ S

n
2i∩S

n
2j

�� ��= S
n
2i∪S

n
2j

�� ��, if the average of R
1
ij is larger than the average of

R
2
ij , the method M1 is better thanM2 in independent stability of feature space.

In our verification, we set the n of feature sets S11
n
; S12

n
;…; S

n
1k and feature sets S21

n
;

S22
n
;…; S

n
2k to 100 and use 10-fold cross validation to measure the stability of the fea-

ture lists generated by different feature selection methods. Firstly, we randomly

choose 90% of the paired samples from each dataset and iterate this process 10 times

to obtain 10 different sets for each dataset. Then different feature selection methods

are used to select these feature lists. Furthermore, we compute the union stability

and independent stability according to the process mentioned above.

The results of union stability on three types of datasets through different methods

are shown (See Additional file 7: Table S4). From Additional file 7: Table S4, the union

stability of SMKL-FS is better than those from other methods on most datasets. The

results of independent stability on three types of datasets through different methods

are shown in Figs. 1, 2 and 3, respectively. In Figs. 1, 2, 3, the X-axis represents different

datasets, and the Y-axis represents independent stability. The independent stability

results of SMKL-FS are better than those from other methods on most datasets.

Similarity with other methods

The similarity between the feature space generated from one feature selection algo-

rithm and the feature lists generated by other methods can be used to estimate the

availability of the algorithm. For the feature set S1
n
generated by method M1 of dataset

D and other feature sets S2
n
;…; Sk

n
generated by methods M2,M3,…,Mk of the same

dataset D. Let I1 ¼ S1
n
∩S2

n

�� �� , I2 ¼ S1
n
∩S3

n

n o��� ���,…, Ik−1 ¼ S1
n
∩Sk

n

�� �� , and Imean ¼ 1
k−1

X
j¼1k−1

I j .

If the Imean of one method is larger than other methods, the method is better than

other methods in Similarity.

In our verification, we set n of feature set S1
n
to 100. Firstly, we select the feature sets

S1
n
;…; S6

n
on each dataset by SVM-RFE, SVM-RCE, mRMR, IMRelief, SlimPLS and
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SMKL-FS, respectively. Then, for each feature set generated by every method on one

dataset, the value Imean is calculated according to the process mentioned above. The

results of similarity on three types of datasets through different methods are shown

in Tables 6, 7 and 8. The similarity results of SMKL-FS are better than those from

other methods on most datasets.
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Fig. 1 The results of independent stability on different mRNA microarray datasets
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Fig. 2 The results of independent stability on different mRNA Sequencing datasets
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Methods
Brief review of SVM

Several supervised learning methods, such as Support Vector Machines (SVMs) can be

used to analyze data and recognize patterns by classification and regression analysis.

The standard SVM algorithm was proposed by Cortes and Vapnik in 1995 [35]. Given

a sample set of data points G ¼ x!i; ; yi
� �� 	n

i¼1 , x!i∈Rm and yi ∈ {+1, − 1}, the decision

rule is:

SVM xð Þ ¼ sign
XN
i¼1

αiyiK xi; xð Þ þ b

 !
ð2Þ

where yi is the class label of the sample xi and the summation is taken over all the training

samples. αi is the Lagrange multipliers involved in maximizing the margin of separation of

the classes. K(xi, x) is a kernel which can map the feature space to a high dimensional
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Fig. 3 The results of independent stability on different miRNA Sequencing datasets

Table 6 The results of similarity on mRNA microarray

Methods SVM-RFE SVM-RCE mRMR IMRelief SlimPLS SMKL-FS

Liver 6.33 1.17 15.83 1.33 1 15.17

Pancreatic 4.67 0.83 11.17 1.83 3 16.83

Lung 3.83 21.83 20.67 0.17 2.17 23

Colon 7.17 0.67 19.17 0.67 2.67 22.67

Gastric 3.83 0.83 16.00 0.50 3.50 20.50

Breast 9.83 32.83 31.83 0 1.67 33.83

Thyroid 10.83 29.00 20.17 0 1.67 29.33

Prostate 5.50 27.50 20.00 0.50 1.17 29.17

Mean 6.50 14.33 19.35 0.63 2.10 23.81
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space. There are several popular kernels, such as linear kernel K(xi, x) = (xi, x), radial basis

function kernels K xi; xð Þ ¼ exp − xi−xk k2
σ

� �
, homogeneous kernels K(xi, x) = (xi, x)

d and

inhomogeneous polynomial kernels K(xi, x) = [(xi, x) + 1]d. After obtaining the α, we can

predict the label of a new data point by the following formula [36]:

f zð Þ ¼
Xn
i¼1

αiyiK xi; zð Þ þ b ð3Þ

and the bias b is defined:

b ¼ −
1
2

max
ijyi¼−1f g

Xn
j¼1

αjyjK xi; xj
� � !

þ min
ijyi¼þ1f g

Xn
j¼1

αjyjK xi; xj
� � !" #

ð4Þ

Multiple kernel learning (MKL)

In recent years, several multiple kernel learning (MKL) methods have been proposed

to enhance the interpretability of the decision function and improve performances

[23, 24]. A convenient approach of MKL is to construct the kernel K(xi, x) as a convex

combination of basis kernels [23]:

K xi; xð Þ ¼
XM
m¼1

dmKm xi; xð Þ; with dm≥0;
XM
m¼1

dm ¼ 1 ð5Þ

where M is the number of multiple kernels. The kernel Km may be the popular kernels

Table 7 The results of similarity on mRNA Sequencing

Methods SVM-RFE SVM-RCE mRMR IMRelief SlimPLS SMKL-FS

KIDNEY 1.33 8.00 11.00 2.83 1.67 12.00

BRCA 5.67 16.83 14.83 3.67 0.83 17.83

LUNG 6.50 23.17 11.50 2.83 0.67 26.67

HNSC 1.17 24.17 11.67 2.50 1.17 23.00

LIHC 9.50 26.67 17.50 1.33 2.33 29.33

PRAD 9.83 26.67 19.17 3.33 0.83 30.00

STAD 7.83 29.67 15.17 16.67 0.33 29.50

THCA 5.17 14.33 12.50 4.83 0.50 16.00

Mean 5.88 21.19 14.17 4.75 1.04 23.04

Table 8 The results of similarity on miRNA Sequencing

Methods SVM-RFE SVM-RCE mRMR IMRelief SlimPLS SMKL-FS

KIDNEY 43.00 33.00 48.50 29.17 28.00 51.00

BRCA 39.67 39.33 50.83 25.83 33.00 52.33

LUNG 41.50 38.83 50.17 29.50 21.67 53.33

HNSC 42.17 38.83 50.50 32.50 22.50 53.67

LIHC 42.33 35.50 46.50 24.67 25.17 47.67

PRAD 42.33 40.33 53.17 27.00 30.83 54.33

STAD 43.50 35.33 48.83 28.67 20.67 53.33

THCA 37.33 37.50 47.50 26.50 25.50 50.83

Mean 41.48 37.33 49.50 27.98 25.92 52.06
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mentioned above with different parameters. Each single kernel Km can either use the

full set of training samples or subsets of these samples from different data sources.

Then, the problem of the model is transferred to the choice of the weights dm.

Actually, the standard primal MKL formulation, which just learns from objective con-

sisting of a simple summation of base kernels subjected to mix-norm regularization, is

expressed in a functional form as:

min
f ;b;ξ

1
2

X
m

f mk kHm

 !2

þ C
X
i

ξ i s:t: yi
X
m

f m xið Þ þ b

 !
≥1−ξ i; ∀i ξ i≥0 ∀i ð6Þ

where fm is a function that belongs to corresponding Hilbert space Hm, and each Hil-

bert space Hm endowed an inner product 〈⋅, ⋅ 〉m has a unique kernel Km.

However, f mk kHm
is not differentiable. When fm = 0, it leads to original objective

function, which is not smooth. In this article, we apply SimpleMKL [23] that uses a

weighted l2 norm regularization to calculate the upper bound of the problem through

Cauchy-Schwartz inequality. The primal formulation can be replaced as:

min
f ;b;ξ;d

1
2

X
m

1
dm

f mk k2Hm

þ C
X
i

ξ is:t: yi
X
m

f m xið Þ þ b

 !
≥1−ξ i; ∀iξ i≥0 ∀i

X
m

dm ¼ 1; dm≥0; ∀m ð7Þ

And the corresponding dual problem is given as follows

max
α

X
i

αi‐
1
2

X
i;j

αiαjyiyj
X
m

dmKm xi; xj
� �

s:t:
X
i

αiyi ¼ 0 0≤αi≤C; ∀i ð8Þ

where α and C are Lagrange multipliers of the constrains which related to each data

point and their tolerable errors separately.

Note that our new dual objective function is convex and differentiable with respect

to α. At each iteration, firstly the coefficients keep unchanged, and the value of object-

ive function is optimized. Then, the coefficients are recovered and updated with above

dual variables, and this process repeats until convergence.

Feature selection algorithm

Similar to other methods [18, 31], our algorithm also tries to construct an efficient

process to select a compact set of features. Combined with the multiple kernel learning

(MKL) method mentioned in the above section, we present a two-stage feature selection

method. For expression data of a set of features, there are four major feature categories:

relevant features, redundant features, irrelevant features and noisy features. For two types

of expression data, the relevant features are only a very small part. Most of features

are irrelevant features, which will be removed firstly by many feature selection

methods for expression data analysis. So, in the first stage of our method, the relevant

features are identified by measuring score of each feature using the optimizing

process of MKL. If the computational complexity is considered, a small set of relevant

features in the first step can be selected. In the second stage, an embedded selection

scheme, i.e. the forward selection, is applied to search the subset of compact features

from the candidate feature sets obtained in the first stage.
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Selecting the relevant feature set

Firstly, we apply MKL to select the relevant feature set. To implement MKL approach, we

select the SimpleMKL method in [23] to obtain the coefficient dm of the kernel combin-

ation . SimpleMKL used an iterative gradient descent process to perform an optimization

both on the parameters of the SVM (αi) and the kernel coefficients (dm). There are several

kernels can be used, such as linear kernel K(xi, x) = (xi, x), radial basis (RBF) function

kernel K xi; xð Þ ¼ exp − xi−xk k2
2σ2

� �
and polynomial kernels K(xi, x) = [(xi, x) + c]d.

Then the optimal objective function is defined as follows:

J ¼ min
dm

max
α

W α; dmð Þ such that
XM
m¼1

dm ¼ 1 ; dm≥0 ð9Þ

Using SimpleMKL, we can obtain the J value for each feature from the total feature

set S in the process of optimizing W(α, dm) via mindm maxα W α; dmð Þ . To select the

relevant feature set, the J list for features list is computed to measure the relevance

between features and samples. Finally, we sort the J list in ascend and obtain the

ranked features list Sr. Then, the top n* features are selected and the feature set Sn� is

obtained. The process of selecting the relevant feature set is defined (See Additional

file 8: Table S5).

Selecting compact feature subsets

An embedded scheme of the sequential forward selection is utilized to search the

compact feature subsets from the relevant feature set Sn� . In general, the wrapper

approaches convolve with a classifier (e.g., SVM) and the goals are to minimize the

classification error of the dependent classifiers. These wrapper approaches can usually

obtain low classification error for their dependent classifiers. However, they have high

computational complexity and the selected features are less generalization to classi-

fiers [31]. We use the following formula instead of classification error to carry out the

embedded process.

JZ ¼ min
dm

max
α

Xn
i¼1

αi−
1
2

X
i;j

αiαjyiyj
XM
m

dmKm xZ
i
; xZj

� � !
ð10Þ

where Z is the set containing the selected features, such as Z = {f1, f2,…, fn}. In this article,

the JZ is calculated by using SimpleMKL method [23], which solves the MKL problem

through a primitive formulation involving a weighted l2-norm regularization [23].

Then, a forward process is used to to select the subset with r features from Sn� by the

incremental manner. And initially, the score of J0 is set to +∞ and the subset Z is set

to empty. We search each feature in the feature subset, such as f1, f2,…, fn, and compute

the objective functions J f 1 ; J f 2 ;…; J f n using SimpleMKL. The feature fi which generates

the largest ΔJ ¼ J0−J f i reduction is appended to Z. Then, the algorithm selects the fea-

ture fj which generates the largest ΔJ reduction from the set Sn�−Zf g to Z. The process

of incremental selection will repeat until ΔJ ≤ 0 or the given iterations. The process of

selecting compact feature subsets is defined (See Additional file 8: Table S6).
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Discussion and conclusions
With the development of high-throughput microarray chip and RNA sequencing

technology, we can obtain a large number of expression data with different types.

The researchers can acquire these data from several public databases, such as GEO,

SMD, ArrayExpress and TCGA. However, because the transcriptomics experiments

have high cost, most of these data have samples with small size and tens thousands

genes or hundreds miRNAs. How to extract informative features from expression

data effectively and robustly is a challenging and crucial problem for expression data

analysis. Feature selection technique had been widely applied to select a subset of

relevant features and eliminate redundant, irrelevant and noisy features.

In general, most feature selection methods can be divided into three categories: filter,

wrapper and embedded. Filter methods independent of the classifier, select relevant

features only relying on the intrinsic properties of expression data. Filter methods

contain two subclasses: univariate and multivariate. Univariate methods are processed

by filtering single feature and multivariate methods are used to select features by consider-

ing combination of features. The advantages of univariate methods are fast, scalable and

independent of the classifier, and the disadvantages of these methods are thoughtlessness

of feature dependencies and ignoring the interaction with the classifier. The advantages of

multivariate methods contain: feature dependencies, independent of the classifier and

better computational complexity than wrapper methods. But the multivariate methods

are slower and less scalable than univariate methods. Wrapper approaches, which can

be divided into deterministic and randomized types, generate the scores for features

and select them based on the classifier. The deterministic methods, which are simple,

have less computational complexity and more risk of over fitting than randomized

methods. But they are more prone to get a result of local optimum than randomized

methods. Embedded approaches, which have lower computational complexity than

wrapper methods, select optimal feature subset based on classifier construction in the

combined space of feature subsets and hypotheses.

Most of above methods construct the feature selection model on individual expres-

sion data simply, and they rarely consider the effectiveness and stability on expression

data from different type of expression data. In order to overcome the disadvantages of

above methods, a hybrid feature selection method based on multiple kernel learning is

proposed. We evaluate performance of method on expression dataset of different types.

Except for comparing the classification accuracy with other methods, we also compare

the performances of different algorithms through measuring the stability, similarity and

consistency. The experimental results show that the proposed method has a satisfactory

capability of feature selection for different expression datasets analysis.

The kernel methods and other machine learning methods always have the problem of

overfitting, especially in small sample size. And, one of characteristics of gene expres-

sion data is high dimensional and small sample size. There are commonly used meth-

odologies to avoid overfitting on machine learning: Regularization, Cross-Validation,

Early Stopping and Pruning. The regularization part adds a cost term for bringing in

more features with the objective function. Hence, regularization can make the coeffi-

cients for many variables to zero and hence avoid the overfitting. Cross validation can

identify the methods, which may have poor performance generating by overfitting

training on several datasets. The methods of early stopping try to prevent overfitting by
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controlling the number of iterations on iterative method. Pruning methods, which re-

move the nodes with little predictive power, are used for several methods based on tree.

In this article, we used regularization and sequential forward selection method to decrease

the influence of overfitting on small sample size. With the lower price of Mircoarray and

RNA sequencing, the samples are more and more obtained from individual experiment,

such as the new experiment of RNA sequencing on single-cell, which can handle more

than 4000 samples [37]. So, in the future, the influence of overfitting on expression data

analysis will be getting smaller and smaller, and machine learning methods and kernel

methods will be better used with these data.
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