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Abstract

Background: Protein relative solvent accessibility provides insight into understanding
protein structure and function. Prediction of protein relative solvent accessibility is often
the first stage of predicting other protein properties. Recent predictors of relative
solvent accessibility discriminate against exposed regions as compared with buried
regions, resulting in higher prediction accuracy associated with buried regions relative
to exposed regions.

Methods: Here, we propose a more accurate and balanced predictor of protein relative
solvent accessibility. First, we collected known proteins in three subsets according to
sequence length and constructed a balanced dataset after reducing redundancy within
each subset. Next, we measured the performance associated with different variables
and variable combinations to determine the best variable combination. Finally, a
predictor called BMRSA was constructed for modelling and prediction, which used the
balanced set as the training set, the position- specific scoring matrix, predicted
secondary structure, buried-exposed profile, and length of a query sequence as
variables, and the conditional random field as the machine-learning method.

Results: BMRSA performance on test sets confirmed that our approach improved
prediction accuracy relative to state-of-the-art approaches and was balanced in its
comparison of buried and exposed regions. Our method is valuable when higher levels
of accuracy in predicting exposed-residue states are required. The BMRSA is available at:
http://cheminfo.tongji.edu.cn:8080/BMRSA/.
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Background
Since the concept of protein solvent accessibility was introduced in protein

structures [1], solvent accessibility has been considered as an important measure

of spatial arrangement during the process of protein folding. Given that the

solvent accessibility of an amino acid in a protein defines its surrounding solvent

environment and hydration properties, this characteristic has been widely used to

analyze protein structure and function. Prediction of relative solvent accessibility

(RSA) is often the first predictive stage of determining protein structure and

function. Predicted RSA assists in predicting protein secondary structure [2–4],

domain boundary [5], disorder [6–8] and hot spot [9], as well as protein-protein
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interaction prediction [10] and fold recognition [11]. Recently a number of new

methods were developed to predict RSA [12–15].

Traditionally, RSA prediction is treated as a multi-class classification problem. How-

ever, it is often transformed into a binary classification according to a defined threshold

of RSA values. Threshold definitions vary, however, in most cases for comparing with

other methods the threshold is defined as 25% of RSA value, resulting in a residue

being classified as buried (defined as the RSA value is less than 25%) or exposed.

Machine learning-based methods are the most successful methods for RSA pre-

diction from amino acid sequences. However, Network–based regression methods

[16], fuzzy k-nearest neighbor [17], support vector machine [18] and random forest

[19] etc. approaches have been explored for RSA prediction.

With continual advances in technology, RSA prediction accuracy has increased over

80%. Recently, outstanding RSA predictors, capable of providing large-scale RSA

prediction, have been implemented and perform better than other approaches [20–22].

However, we find that these methods discriminate against potential exposed state resi-

dues. Prediction accuracy of buried state residues is often higher relative to the exposed

state. This is unfortunate, when given that properties associated with solvent exposed

regions are considered more important than buried regions. For example, analysis of

protein-protein interaction hot spots indicates that they are frequently located on the

protein surface. One potential problem associated with this defect in existing prediction

methods may be unbalanced training sets. Prediction requires large non-redundant

training sets, which are frequently obtained using CD-HIT [23] or PISCES [24].

However, these tools reserve the longest sequences to represent a clustered group,

while shorter sequences are removed from the training sets. Differing from other one-

dimensional structural characteristics, residue RSA value is impacted not only by its

own orientation and that of its neighbors, but also by other residues located elsewhere

in the protein structure. Due to spatial contacts, a residue within a longer sequence is

more easily buried relative to one found in a shorter sequence. Thus, a training set that

lacks shorter sequences that may represent exposed protein regions is unlikely to

accurately predict exposed sites.

Although the position-specific scoring matrix (PSSM) and predicted secondary

structure are considered appropriate variables for RSA prediction, it is believed that

more effective variables should be explored to improve RSA prediction accuracy.

Here, we present a novel balanced model for RSA prediction from the amino acid

sequence. We constructed a balanced training set according to the lengths of known

sequences and proposed a new ‘buried-exposed profile’ variable, which is obtained via

sequence-based structure similarity. Using the balanced training set and the optimized

variable combination, we built a balanced model for RSA prediction. Results indicate

that our method is a more accurate predictor of and a more balanced model for RSA

prediction relative to state-of-the-art approaches.

Materials and methods
The accessible surface area of a residue in a protein chain is firstly calculated by

DSSP [25] and then divided by the maximum solvent accessibility according to

Chothia’s work [26] which uses Gly-X-Gly extended tripeptides, so that the RSA
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value of a residue could be obtained. In units Å2, these are 210 (Phe), 175 (Ile),

170 (Leu), 155 (Val), 145 (Pro), 115 (Ala), 75 (Gly), 185 (Met), 135 (Cys), 255

(Trp), 230 (Tyr), 140 (Thr), 115 (Ser), 180 (Gln), 160 (Asn), 190 (Glu), 150

(Asp), 195 (His), 200 (Lys), and 225 (Arg).

Data sets

A template library was constructed, wherein the sequences and buried-exposed

states were obtained from the Protein Data Bank (PDB) [25]. Sequences up to

December 31, 2013 (89,135 entries), longer than 40 amino acids were collected.

Sequences from the template library were obtained using PISCES [24] with a

sequence identity threshold of 99%, resolution <2.5 Å, and an R-value <0.2. The

RSA value was calculated by using DSSP [27]. This returned 28,155 entries with

sequences and the buried-exposed elements were saved as a single file using

FASTA format.

A training set should contain abundant and diverse buried and exposed para-

digms. After collecting the template library, the sequences were divided into three

subsets according to sequence length, with length thresholds set to 40, 150 and

300 residues to assure we had enough buried and exposed paradigms. The similar-

ity between pairwise sequences limited to 25% sequence identity using PISCES [24]

for three subsets. There are 3274, 2792, and 2230 sequences remaining in the

short-, medium-, and long-length subset, respectively. We merged the remaining

entries from three subsets into a training set containing 8296 protein chains

(DB8296). The PDB IDs of DB8296 are listed in the Additional file 1: S1. In

DB8296, there are 1,798,501 residues, with 877,347 residues (48.8%) residing in

buried regions. Due to the redundancy reduction was undertaken for each subset,

there remained some short homologous sequences in DB8296. However, these

sequences contain rich exposed paradigms that must be contained in the training

set (see next section).

The selection process of test set (DB101) was similar to that used for DB8296.

Sequences in the PDB [26] deposited between January 1, 2014 and June 2, 2015,

and having lengths ≥40 amino acids were selected (11,900 entries). Similarity of

pairwise sequences was cutoff at 25% sequence identity, with resolution <2.5 Å and

an R-value <0.2. Remaining entries were combined with the template library and

redundancy was further reduced using a 25% sequence-identity threshold. After

further analysis, a remaining sequence having <25% sequence identity with each

sequence in the template library was selected to construct the independent test set,

resulting in 101 non-redundant protein chains. Thus the DB101 is independent

with the training set and the template library. The PDB IDs of DB101 are listed in

the Additional file 1: S2.

Balanced training set

Our observations indicated a relationship between the ratios of buried residues

present within sequences of length (40–500 residues, Fig. 1) and increases in the

average value of ratios of buried residues and sequence length. The percentage of

buried residues is <40% when the length is shorter than 150 residues and >50%
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when the length is longer than 300 residues. Therefore we divided all sequences

in the template library into three subsets according to length thresholds (150 and

300 residues). Analysis of the number of buried and exposed residues in three

subsets revealed that the ratios of buried to exposed residues differ (Fig. 2). In

the short-length subset, the number of exposed residues is larger than that

observed for buried residues. However, in the long-length subset, the number of

exposed residues is smaller than that observed in for buried residues. This result

may explain why existent predictors discriminate against exposed states. In these

predictors, the training sequences were constructed by using reducing redundancy.

However, the methods reserved the longest sequences and removed all shorter

homologous sequences. Thus, the results from using those training sets predicted

larger numbers of buried residues relative to exposed residues. In comparison

with other structural characteristics, such as secondary structure, RSA defines

both local and global structure. The RSA value of a residue is affected by its own

structure, that of its neighbors, and those of distant residues. Due to spatial

Fig. 1 The relationship between the buried ratios and the sequence lengths

Fig. 2 The ratios of buried and exposed residues in short-, medium- and long-length subsets
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contacts, a similar residue in a longer sequence is more likely to be buried follow-

ing protein folding than that found in a shorter sequence.

For example, in our training set there is a short chain (PDB ID: 1A6S-A, 87

residues), in which a fragment has high sequence identity (Score = 32.7 bits (73),

Expect = 0.023, Method: Composition-based stats. Identities = 22/53 (41%), Positives = 29/

53 (54%), Gaps = 3/53 (5%)) with a fragment in a long chain (PDB ID: 2ZZV-A, 361

residues).

In these fragments here are 22 matched residues. However, their buried-exposed

states are quite different.

For 1A6S-A the number of the buried residues is 9 and the number of the exposed

residues is 20. On the contrary, for 2ZZV-A, the number of the buried residues is 20

and the number of the exposed residues is 9. Therefore we think the short chain and

Fig. 3 The flowchart of BMRSA
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the long chain should all be reserved in the training set for buried and exposed

paradigms.

After the redundancy reduction (described above) we have attempted various

methods at constructing more appropriate training sets. For example, when we used

the long-length set as a training set, the buried-residue prediction accuracy was much

higher relative to the exposed-residue prediction accuracy, especially for short-length

test sequences. When we used the short-length subset as a training set, the exposed-

residue prediction accuracy was >90% for short-length test sequences, however, the

buried-residue prediction accuracy was <60%. For the long-length test set, the exposed-

residue accuracy was >85%, however, the buried-residue prediction accuracy was very

low, indicating a discrimination against buried-residue states. We recognized that a

balanced training set was necessary for a balanced model of RSA prediction. We

merged short-length, medium-length, and long-length sequences as our balanced

training set, resulting in a number of buried residues approximately equal to the

number of exposed residues.

The buried-exposed profile

The program of accurate and balanced RSA prediction must explore valuable variables.

We have assessed five types of variables and their combinations. Here, we propose a

new variable referred to a buried-exposed profile (BE-profile). The BE-profile comprises

structural evolution information obtained via sequence-based structure similarity.

A query sequence was aligned against the template library using PSI-BLAST [28]

with an e-value of 1e-5, the number of iterations set to three, and the remaining

parameters set as default values. Homologous sequences selected according to e-value

were obtained in ascending order, with the top S (the default is ten) of these sorted

sequences considered to contain rich homologous information and reserved (if the

number of the selected sequences is less than S, all selected sequences will be retained).

If an amino acid in the query has been matched with residues from the homologous

sequences, a BE-profile vector with two elements of the amino acid can be calculated in

the form of probabilities of the buried and the exposed states. The BE-profile is defined as:

BE−profile p; tð Þ ¼
X

S
AS p; tð Þ=

X
t

X
S
AS p; tð Þ ð1Þ

where p represents the position of the amino acid in the query sequence and t

represents either the buried or exposed state. The variable s represents the number of

matched sequences. AS(p,t) represents the state of an amino acid in s homologous

sequence that matched with the amino acid in the query sequence constitutes a binary

value. When the state is t, AS(p,t) is 1, otherwise it is 0. In the denominator, the

summation is carried out for these two states.

The BE-profile constitutes a template-based variable that is obtained via sequence-

based structure similarity and describes the probabilities of the buried and exposed

states of a residue in an evolutionary procedure. The variable also contains conserved

and evolutionary information and avoids conflicts between different buried and exposed

states for the same residue in different matched sequences. A BE-profile is a dynamic

statistical analysis of the properties of a residue. Thus, two identical residues in two dif-

ferent sequences, even within the same sequence, may have different BE-profile values.
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Performance evaluation

To measure the performance of RSA prediction with binary classification, the buried

state is defined as positive and the exposed state as negative. Thus, sensitivity (defined

as TP/(TP + FP)) can be considered as buried accuracy, and specificity (TN/(TN + FN))

as exposed accuracy, where TP represents the number of predicted true buried

residues, FP represents the number of predicted false buried residues, TN represents

the number of predicted true exposed residues, and FN represents the number of

predicted false exposed residues. The total accuracy and MCC (Matthew’s correlation

coefficient) are calculated as follows:

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð2Þ

MCC ¼ TPTN−FPFNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TN þ FNð Þ TP þ FNð Þ TN þ FPð Þ TP þ FPð Þp ð3Þ

The balanced model

Our balanced model, BMRSA, is based on the balanced training set and the optimized

variables. The flowchart is shown in Fig. 3.

A query sequence is sent to four modules for RSA modelling and prediction. The PSI-

BLAST module generates a PSSM vector with 20 elements for each residue in the

query. The PSI-BLAST [28] parameters are set as defaults. The SPSSM8 module

predicts eight-state secondary structure for a residue in the query. It is a one-

element variable. The length of the sequence module measures the length of the

query and generates an alphabet variable (S, M, L). The BE-profile module pro-

duces a BE-profile vector with two elements of a residue in the query. There are

24 variable elements in total.

When the queries are training sequences, a conditional random field (CRF) [29, 30]

modelling routine is carried out to construct a model. When the queries consist of

testing sequences, we use a prediction routine to predict the RSA based on the

obtained model. CRFs are powerful probabilistic frameworks used to label and segment

sequential data. CRFs are computationally fast and do not need sliding windows. In our

approach, CRF++0.51 is used.

The keys to our balanced model are the balanced training set and the optimized

variable combination, wherein the BE-profile and the length variable are important.

Results and discussion
Variable validation

In order to improve the performance of our predictor, we validated five types of

variables using DB8296 as the training set and an independent test set (DB101).

A PSSM variable is a vector having 20 elements obtained via alignment using PSI-

BLAST [25] (with all parameters set to default) against a non-redundant database. In

agreement with previous studies, PSSM is an effective variable (Table 1), achieving

77.9% accuracy. The accuracy of exposed-residue prediction is 83.6%, higher than the

72.9% obtained for buried-residue prediction. This demonstrates that our training set

has altered previous discrimination in favor of the exposed-residue state.
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Sequence metrics (reference A-score) [31] include five elements for each amino

acid. A-score reflects basic residue properties and has been used to predict protein

structure, including disordered regions [32]. Here, A-score was used as a variable for

RSA prediction. Prediction accuracy improved slightly by using a combination of

PSSM and A-score variables.

A predicted secondary structure (SS) variable is widely used in RSA prediction. We

use SPSSM8 [33] to predict eight-state secondary structure from a sequence and use it in

combination with PSSM as variables. The results indicate that the secondary structure

variable contributed minimally to prediction accuracy, however, in more variable combi-

nations, eight-state secondary structure still contributes.

Similar to secondary structure, a residue-shape string is also a representation of pro-

tein one-dimensional structure. The shape-string variable improves the accuracy of

protein turn prediction [34]. We use a shape string predictor [35] to predict eight-state

shape string of residues in the query. The shape-string variable combined with PSSM

continuously improved prediction accuracy.

The BE-profile variable proposed in this study significantly improved prediction

accuracy when coupled with PSSM as a variable. In two-variable combinations, the

highest accuracy (84.9%) is achieved. The BE-profile is a distinctive variable when there

exist sequence similarities between query sequences and the template library.

In three-variable combinations, secondary structure and the shape-string variable

were combined with PSSM and BE-profile. The results indicate that the prediction

accuracy was similar to previous methods.

A length variable was frequently used for RSA prediction. We also used it to assess

whether CRF would utilize the short- or long-length training samples according to the

length of a query sequence. As expected, the prediction accuracy achieved 86.3% and an

MCC of 0.725 when the four-variable combination is used. Additionally, the sensitivity

was 85.9% and the specificity was 86.7%. Thus, after optimization, PSSM, BE-profile, sec-

ondary structure, and length are determined as the optimal variables for our approach

and constitute an accurate and balanced method for RSA prediction.

Performance on DB101 and CASP11 targets

In order to compare our approach with other methods, we selected three RSA predic-

tors considered to perform better than previous approaches and currently publically

available. Table 2 shows the performances of different methods on DB101.

Table 1 Performance of different variables and their combinations

Variables Sensitivity Specificity Accuracy MCC

PSSM 0.729 0.836 0.779 0.565

PSSM + A-score 0.777 0.801 0.788 0.576

PSSM + SS 0.741 0.833 0.784 0.574

PSSM + ShapeString 0.782 0.806 0.793 0.586

PSSM + BE-profile 0.835 0.864 0.849 0.698

PSSM + BE-profile + SS 0.834 0.865 0.848 0.697

PSSM + BE-profile + ShapeString 0.836 0.863 0.849 0.698

PSSM + BE-profile + SS + L 0.859 0.867 0.863 0.723
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NetSurfP [36] uses artificial neural networks to predict real and relative solvent accessi-

bility of an amino acid. The training set used was relatively small (1764 entries) and old

(sequences deposited before July 2007). NetSurfP RSA prediction accuracy using DB101

was 79.6%. Although the buried-residue prediction accuracy was higher than the exposed-

residue prediction accuracy, the gap was 4.6% and constitutes an acceptable difference.

PaleAle is a series of 4-class (4, 25, and 50% thresholds) RSA predictors and PaleAle

4.0 [21] is a new version capable of using increasing training set sizes that result from

the continued growth of the PDB. The training set used (7522 entries) was larger than

previous sets [37], and the prediction accuracy using DB101 was 81.3%. However, the

imbalance between buried- and exposed-residue prediction was >13%. Given that

Porter 4.0 (secondary structure prediction) and PaleAle 4.0 shared the same training

set, it was likely that differences between secondary structure and RSA prediction were

ignored. The secondary structure associated with a residue in a protein is a local struc-

tural characteristic and is seldom affected by other long distance residues. However, the

RSA of a residue is sometimes altered by other residues, even those separated by long

distances. Therefore, Porter 4.0 is an unbalance model for RSA prediction.

ACCpro5 [22] is a new version of a series web server [38]. Similar to PaleAle,

ACCpro also used the same training set for secondary structure prediction, however, it

directly replaced previous predictions with known buried- and exposed-residue states

in regions where similar sequences could be found in the PDB. Thus, the abundant

exposed-residue information included in the known short-length sequences was uti-

lized. The prediction accuracy of ACCpro5 was 84.3% and the specificity was 80.4%,

which was higher than previously tested methods, but with a >7% gap.

RaptorX [13] is a new version of ACCpro and employed a powerful in-house deep

learning model DeepCNF (Deep Convolutional Neural Fields) to improve the perform-

ance of RSA prediction. However, RaptorX is a three-state RSA predictor (buried (B) with

RSA from 0 to 10%, intermediate (I) with RSA from 10 to 40% and exposed (E) with RSA

from 40 to 100%), and could not directly be compared with our approach. In general, a

two-class prediction is easier and outstanding than a three-state prediction. So we only

take two classes performances of RaptorX for reference. The results are showed in Table 2.

An interesting thing is it is also unbalance, but its specificity is higher than its sensitivity,

which is contrary to other approaches. It reveals that we may have another way to im-

prove unbalance between buried and exposed. To regulate two boundaries in 3-state RSA

regions, we may construct a balance model for both buried and exposed. However, the

performance of a 3-state predictor must be improved. In this example, the intermediate

set has 8634 residues and is about 30% of all residues. But only 4534 residues were

correctly predicted (the rate is 52.5%) by RaptorX. If it accounted into the performance,

the measurements of RaptorX would be much worse than expectation.

Table 2 Comparison of RSA predictors on DB101

Method Sensitivity Specificity |Se-Sp| Accuracy MCC

NetSurfP 0.818 0.772 0.046 0.796 0.59

PaleAle 4.0 0.875 0.743 0.132 0.813 0.626

ACCpro5 0.877 0.804 0.073 0.843 0.684

RaptorX 0.754 (<0.1) 0.841 (>0.4) 0.087 0.807 0.595

BMRSA 0.859 0.867 0.008 0.863 0.725
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Comparison with these methods mentioned above we use a larger training set (8296

entries), in which the short-length sequences that contained more exposed residues

were added for balance. Similar with ACCpro5 our BMRSA also uses the known buried

and exposed information from PDB, but using a different scheme. We construct BE-

profile and considered it as a variable. BMRSA performs more accurate and more bal-

ance between the buried and the exposed states. The accuracy achieves 86.3, and 85.9

and 86.7% for buried and exposed respectively. The gap is only 0.8%. It demonstrates

our approach significantly improves RSA prediction.

To further verify the performance of our approach, we assessed BMRSA on CASP11

(11th Critical Assessment of Techniques for Protein Structure Prediction) targets and

compared the results with other approaches. The CASP11 set (82 proteins) was down-

loaded from the official website. The most sequences of CASP11 targets have lower

than 30% sequence identities with what have been stored in the PDB before 2014. Our

purpose is to use the known structural information as much as possible to predict RSA

of these targets. In CASP11 the buried ratio is 49.86%.

Table 3 shows the performances of four methods on CASP11. Due to CASP11

is a strict test set the accuracies of five methods all come down. Theoretically,

RSA prediction exploits sequence profile and/or template information [13].

NetSurfP and PaleAle are sequence-based methods. Their predictive accuracies for

CASP11 come down slightly (~2%) comparing with for DB101. ACCpro5 (also

RaptorX) and our approach are sequence-based and template-based methods. So,

they are usually excellent comparing with a sequence-based one when there are

sequence homologies between a query and the templates (for example, DB101).

However, if a query has a few or no sequence similarity with the templates (i.e.

CASP11) the performance of a template-used approach would be affected greatly.

Here, the accuracies of the template-based approaches come down about 6–7%

and approximate to a sequence-based approach (PaleAle 4.0). It is worth pointing

out that when a RSA predictor, for example a sequence-based model (PaleAle 4.0)

or a template-based model (ACCpro5), used an unbalance non-redundant training

set obtained by using CD-Hit or PISCES tool, its performance should be

unbalance.

PaleAle 4.0 achieves the best buried accuracy of 85.1%. However the gap is still over

12%. Our approach achieves the best accuracy of 79.3% and the best exposed accuracy

80.6% (except RaptorX). The gap is 2.5%. It again confirms BMRSA is an outstanding

RSA predictor especially when the exposed accuracy is considered more important.

According to defined B/I/E states by RaptorX the residue ratio of CASP11 is

0.33:0.31:0.36. The Q3 was 0.663 reported by RaptorX [13]. Due to the intermediate

Table 3 Performance of RSA predictors using CASP11 dataset

Method Sensitivity Specificity |Se-Sp| Accuracy MCC

NetSurfP 0.789 0.762 0.027 0.777 0.554

PaleAle 4.0 0.851 0.730 0.121 0.791 0.582

ACCpro5 0.816 0.746 0.070 0.781 0.563

RaptorX 0.726 (<0.1) 0.823 (>0,4) 0.097 0.789 0.545

BMRSA 0.781 0.806 0.025 0.793 0.587
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did not be included in our measurements, the sensitivity and the specificity of RaptorX

listed in Table 2 just are references.

Special examples

Two special examples are used to illustrate BMRSA performance. The three-

dimensional structure of a Schizosaccharomyces pombe protein (PDB ID: 4QYT-A;

Fig. 4 Two examples of RSA prediction. a 4QYT-(a); (b) T0811. The predicted true buried residue is indicated by
yellow and the predicted false buried residue by gray. The predicted true exposed residue is indicated by red
and the predicted false buried residue by green
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195 residues) selected from DB101 is shown in Fig. 4a. The BMRSA overall prediction

accuracy was 98% with a sensitivity of 99% and a specificity of 98%. A CASP11 target

(T0811, 255 residues) is a triosephosphate isomerase and is shown in Fig. 4b. The BMRSA

overall prediction accuracy was 86% with a sensitivity of 84% and a specificity of 88%.

The results of two special examples provide insight into the varieties of solvent

accessibility. The ratio of buried residues to exposed residues is 0.558 and 0.542

for 4QYT-A and T0811, respectively. The number of exposed residues is less than

the number of buried residues. Aside from sequences located at the protein

surface, exposed and buried residues often appear alternately in protein sequences.

When a residue resides in a coil structure its status as either exposed or buried

depends upon the orientation of the coil relative to the overall protein tertiary

structure. When a helical structure is located on the surface of a protein, half of

its residues orient outward and are solvent exposed, while the other half orient

toward the inside of the protein and are considered buried. In these two examples,

the residues of the β-sheet structures are all considered buried.

Conclusion
In this study, we described a balanced model of RSA prediction based on a balanced

training set and an optimized variable combination. Our approach is simple but

performs better than state-of-the-art approaches. Specifically, BMRSA is capable of

predicting exposed-residue states more accurately relative to buried-residue states. We

believe that the balanced model will be widely used when higher levels of accuracy for

predicting exposed-residue states are required and where interactions between a

protein and its surroundings are of interest.

Additional file

Additional file 1: S1. The PDB IDs of DB8296. S2. The PDB IDs of DB101. (DOCX 101 kb)
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