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Complex systems analysis of bladder ® e
cancer susceptibility reveals a role for
decarboxylase activity in two genome-wide
association studies
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Ontology. The significance of the results was evaluated using permutation testing and
those results that replicated between the two GWAS data sets were reported.

Results: In the first step of our bioinformatics pipeline, we estimated the pairwise
synergistic effects of SNPs on bladder cancer risk in both GWAS data sets using
Multifactor Dimensionality Reduction (MDR) machine learning method that is designed
specifically for this purpose. Statistical significance was assessed using a 1000-fold
permutation test. Each single SNP was assigned a p-value based on its strongest
pairwise association. Each SNP was then mapped to one or more genes using a
window of 500 kb upstream and downstream from each gene boundary. This window
was chosen to capture as many regulatory variants as possible. Using Exploratory Visual
Analysis (EVA), we then carried out a gene set enrichment analysis at the gene level to
identify those genes with an overabundance of significant SNPs relative to the size of
their mapped regions. Each gene was assigned to a biological functional group defined
by Gene Ontology (GO). We next used EVA to evaluate the overabundance of
significant genes in biological functional groups. Our study yielded one GO category,
carboxy-lysase activity (GO:0016831), that was significant in analyses from both GWAS
data sets. Interestingly, only the gamma-glutamyl carboxylase (GGCX) gene from this
GO group was significant in both the detection and replication data, highlighting the
complexity of the pathway-level effects on risk. The GGCX gene is expressed in the
bladder, but has not been previously associated with bladder cancer in univariate
GWAS. However, there is some experimental evidence that carboxy-lysase activity
might play a role in cancer and that genes in this pathway should be explored as drug
targets. This study provides a genetic basis for that observation.
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Conclusions: Our machine learning analysis of genetic associations in two GWAS for
bladder cancer identified numerous associations with pairs of SNPs. Gene set enrichment
analysis found aggregation of risk-associated SNPs in genes and significant genes in GO
functional groups. This study supports a role for decarboxylase protein complexes in
bladder cancer susceptibility. Previous research has implicated decarboxylases in bladder
cancer etiology; however, the genes that we found to be significant in the detection and
replication data are not known to have direct influence on bladder cancer, suggesting
some novel hypotheses. This study highlights the need for a complex systems approach
to the genetic and genomic analysis of common diseases such as cancer.

Findings

Bladder cancer is a form of cancer that typically starts in the inner lining of the bladder,
called the urothelium, and can grow into or through other layers of tissue. It is a dis-
ease responsible for approximately 16,000 deaths per year, with particular impact in the
American male population. Bladder cancer is the fourth most common cancer in men,
and affects 1 in 26 men and 1 in 90 women [1]. According to the NHGRI-EBI catalog
of published genome-wide association studies (GWAS) [2], there are five single locus
genetic variants associated with bladder cancer at a genome-wide significance level.
Collectively, these genetic factors explain a very small proportion of the overall risk.
The goal of this study was to employ a bioinformatics approach to GWAS analysis that
considers pairwise genetic interactions among SNPs followed by gene-level and
pathway-level gene set enrichment analyses. This approach is based on the hypothesis
that evolution works to stabilize health by building highly redundant gene interaction
networks within and between pathways [3]. The result of this complex biology is that
the healthy state is resilient to the effects of single mutations. What we observe in
common diseases is the accumulation of multiple mutations within these pathways that
disrupts their stability and impairs their normal function. This dependence on multiple
mutations can be observed as epistasis or non-additive gene-gene interaction [4]. The
results of univariate GWAS are consistent with this hypothesis, as few univariate
genetic effects have been found that replicate consistently across studies. The goal of
our study is to employ a bioinformatics approach to GWAS analysis that is consistent
with the idea that some genetic effects will present themselves as genetic interactions
that aggregate in genes and pathways [5, 6].

We briefly present our three-phase analysis approach below and provide a flowchart in
Figure 1 as previously presented and applied to GWAS analysis [7, 8]. The GWAS data
used is available from the NCBI dbGaP database under accession number
phs000346.v2.p2. We used here the two largest GWAS data sets including one with sub-
jects from the U.S.A. and Finland (# = 4759; 620901 SNPs) and one from Spain (n = 2228,
1072820 SNPs). These were used as detection and replication data sets, respectively. We

analyzed only SNPs common to both data sets.

Phase I: SNP-level analysis

The goal of the first phase is to carry out a pairwise analysis of all SNPs using the
Multifactor Dimensionality Reduction (MDR) method to search for additive and
non-additive genetic associations [9, 10]. MDR is a nonparametric, genetic model-
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Fig. 1 Flowchart summarizing the three phases of our machine learning and gene set enrichment
analysis strategy

free machine learning method that collapses high-dimensional genetic data into a
single dimension through a process called constructive induction [10]. More infor-
mation about MDR and its implementation can be found here [11]. We exhaust-
ively evaluated all pairs of SNPs and then assessed statistical significance using a
1000-fold permutation test as described previously [11]. Each SNP was assigned
the p-value of its strongest pairwise association.

Phase Il: gene-level analysis

At the gene level, we first mapped all SNPs to genes using a window of 500 kb upstream
and downstream from the gene start and stop sites in order to capture regulatory variants.
We then performed a gene set enrichment analysis to determine if there were more SNPs
with p-values at or below the 0.05 significance level in gene regions than would be
expected given their size. This was accomplished using a right-tailed Fisher’s exact test
implemented in Exploratory Visual Analysis (EVA) [12, 13]. These P-values for SNP over-
abundance were then assigned to each gene.

Phase lll: pathway-level analysis

The final step was to determine whether the genes with a statistically significant over-
abundance of SNPs aggregate in functional groups defined by Gene Ontology (GO) [14]
provided by the Molecular Signatures Database (MSigDB) [15]. This analysis was per-
formed using EVA as described above. P-values from the Fisher’s exact test were assigned
to each GO category. Replication at the 0.05 significance level was assessed across the two
GWAS data sets. As discussed by Kim et al. [7], permutation testing combined with this
multistep process with replication helps address false-positives due to multiple testing.

Results and discussion
Our pathway-level gene set enrichment analysis yielded one GO category, carboxy-
lysase activity (GO:0016831), that was significant in both GWAS data sets with p-values
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of 0.023 and 0.043. This pathway is sometimes referred to as decarboxylase activity and
has previously been explored as a target for chemotherapy because of its role in poly-
amine metabolism that is required for tumor growth [16]. Little is known about the dir-
ect role of this pathway in bladder cancer and none of the genes from this pathway
have been implicated from the results of univariate GWAS analyses. As such, our re-
sults are novel and suggest this pathway and its genes as a new biological hypothesis
for bladder cancer genetic susceptibility. If validated, genes in this pathway could be
targets for therapy given the current focus on polyamines for chemotherapy.

There were five significant genes in the detection data set and three genes in the rep-
lication data set that are members of the carboxy-lysase GO pathway. One of these,
gamma-glutamyl carboxylase (GGCX), was significant with p-values of 0.03 and 0.04 in
the detection and replication data sets, respectively. The GGCX protein is an enzyme
that catalyzes post-translational modifications to a vitamin K-dependent protein that
functions in coagulation. Mutations in GGCX are typically associated with combined
deficiency of vitamin K-dependent clotting factors 1 and hemorrhagic disease [17].
Although there is no evidence this gene plays a role in bladder cancer, it has been asso-
ciated with prostate cancer in several GWAS [18, 19]. It is possible that genetic vari-
ation in this gene is also a risk factor for bladder cancer, but that synergistic
interactions between multiple SNPs are necessary to observe a phenotype. Importantly,
there are several drug-GGCX interactions according to The Drug Gene Interaction
Database (DGIdb) [20]. Anisindione is one such drug and, according to the NCBI
PubChem database [21], is a synthetic anticoagulant that disrupts the synthesis of
clotting factors leading to the inhibition of gamma-carboxylation of glutamic acid. The
repositioning of GGCX-related drugs for the treatment of bladder cancer is an open
question. Indeed, these drugs are often considered for anticoagulation treatment in can-
cer patients because of their beneficial effect on the tumor microenvironment [22].

It is worth noting that the branched chain keto acid dehydrogenase E1 alpha
(BCKDHA) and beta (BCKDHB) gene forms were significant in the detection and repli-
cation data, respectively. Although these two genes are on different chromosomes, their
protein products are part of the same complex that is involved in the catabolism of sev-
eral amino acids. The BCKD complex is comprised of three catalytic components, one
of them being E1, a heterotetramic branched-chain alpha-keto acid decarboxylase.
BCKDHA codes for the alpha subunit of E1, while BCKDHB codes for the beta subunit
of E1. Without this decarboxylase component, 2-oxycarboxylic acid accumulates in
blood and tissues, and causes maple syrup urine disease [23—-25]. There is no known
link between the effects of the BCKD complex and bladder cancer, but univariate
GWAS have implicated BCKDHA in prostate [26] and colorectal [27] cancer.

There were several limitations of the present study that should be kept in mind when
interpreting the results. First, power to detect gene-gene interactions is always a con-
cern given the curse of dimensionality that comes with considering multilocus genotype
combinations. We addressed the power concerns by using the MDR machine learning
method and by using a liberal significance level of 0.05. We also used the two largest
GWAS data sets available through dbGaP. Despite these measures, power may still be a
limiting issue. Second, we did not correct for the correlation structure of the SNPs in
the gene regions. This was primarily due to the potential co-occurrence of interactions
and linkage disequilibrium due to selection. Consideration of correlation is more
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complicated for gene-gene interactions studies than it is for significance testing of sin-
gle SNPs using univariate methods. Third, the detection and replication GWAS data
were primarily Caucasian subjects from the U.S., Finland, and Spain. These results may
not generalize to other populations of different ethnic background. In fact, we fully ex-
pect the spectrum of gene-gene interactions to shift from population to population as
genetic architecture changes due to different genetic backgrounds and local ecologies.
We also expect statistical measures of interaction to change as allele frequencies
change. These factors represent significant challenges to detecting and characterizing
gene-gene interactions. This study partly addresses some of these concerns by focusing
on the aggregation of statistical results at the pathway level thus taking the focus off in-
ferential statistical analysis at the SNP level.

It is also important to note that the use of a more liberal significance threshold to im-
prove power means that there is a higher type I error rate that could lead to more
false-positives. This should also be taken into consideration before deciding to carry
out a confirmatory study.

The results of this study support the idea that a bioinformatics approach to GWAS
analysis of bladder cancer yields novel, replicable results not discovered using univari-
ate statistical methods. As we exhaust efforts to identify and list SNPs that have univer-
sal main effects on disease risk across genetic backgrounds and local ecologies, it will
be important explore alternative bioinformatics methods that are designed to embrace
a complex genetic architecture underlying most common diseases such as cancer. This
means we need methods that are able to capture genetic effects that are dependent on
genetic background, environmental context, or that might be based on genetic variants
that segregate only in a small number of families giving rise to locus heterogeneity.
This study is one of the first to measure gene-gene interactions on a genome-wide scale
and to measure their aggregation across biochemical pathways and functional group-
ings of genes as detailed in GO. The carboxy-lysase activity pathway revealed by this
approach was identified across two different GWAS data sets and raises the question as
to whether decarboxylase genes should be investigated as drug targets. These results
are preliminary and warrant confirmatory studies.

Acknowledgements
The authors thank Mr. Jonathan Fisher for programming assistance.

Funding
This work was supported by NIH grants LM009012, LM010098, and ES013508.

Availability of data and material
The GWAS data used is available from the NCBI dbGaP database under accession number phs000346.v2.p2.

Authors’ contributions

JM and SC conceived of the study, carried out analyses, interpreted results, and wrote the paper. AA assisted with the
interpretation of the results while PA assisted with the data preparation and computational analysis. All authors read
and approved the final manuscript.

Competing interests
None of the authors have competing interests in this manuscript.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.



Cheng et al. BioData Mining (2016) 9:40

Author details

'Department of Biostatistics and Epidemiology, Institute for Biomedical Informatics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA 19104-6116, USA. *Department of Epidemiology, Geisel School of Medicine,
Dartmouth College, Hanover, NH 03755, USA.

Received: 11 September 2016 Accepted: 2 December 2016
Published online: 12 December 2016

References

1. American Cancer Society: http://www.cancer.org/cancer/bladdercancer/detailedguide/bladder-cancer-key-statistics

2. Welter D, MacArthur J, Morales J, Durdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H.

The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42:D1001-6.

Gibson G. Decanalization and the origin of complex disease. Nat Rev Genet. 2009;10:134-40.

4. Moore JH, Williams SM. Traversing the conceptual divide between biological and statistical epistasis: systems
biology and a more modern synthesis. Biogeosciences. 2005,27(6):637-46.

5. Moore JH, Williams SM. Epistasis and implications for personal genetics. Am J Hum Genet. 2009;85:309-20.

6. Moore JH, Asselbergs FW, Williams SM. Bioinformatics challenges genome-wide association studies. Bioinformatics.
2009;26(4):445-55.

7. Kim NC, Andrews PC, Asselbergs FW, Frost HR, Williams SM, Harris BT, Read C, Askland KD, Moore JH. Gene
ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS. BioData
Min. 2012;5:9.

8. Zieselman AL, Fisher JM, Hu T, Andrews PC, Greene CS, Li S, Sykin AJ, Moore JH. Computational genetics analysis
of grey matter density in alzheimer's disease. BioData Mining. 2014;7:17.

9. Ritchie MD, Hahn L, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. Multifactor-dimensionality reduction
reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet.
2001;69:138-47.

10. Moore JH, Gilbert JC, Tasi CT, Chiang FT, Holden T, Barney N, White BC. A flexible computational framework for
detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease
susceptibility. J Theor Biol. 2006,241:252-61.

11. Moore JH, Andrews PC. Epistasis analysis using multifactor dimensionality reduction. Methods Mol Biol. 2014;1253:
301-14.

12. Reif DM, Dudek SM, Shaffer CM, Wang J, Moore JH: Exploratory visual analysis pharmacogenomics results. Pac
Symp Biocomput. 2005:296-307.

13. Reif DM, Israel MA, Moore JH. Exploratory visual analysis of statistical results from microarray experiments
comparing high and low grade glioma. Cancer Informat. 2007;5:19-24.

14. Blake JA, et al. Gene ontology: going forward. Nucleic Acids Res. 2015;43:D1049-56.

15.  Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. Molecular signatures database
(MSigDB) 3.0. Bioinformatics. 2011;27:1739-40.

16. Nowotarski SL, Woster PM, Casero RA Jr. Polyamines and cancer: implications for chemoprevention and
chemotherapy. Expert Rev Mol Med. 2013;15:€3.

17. GGCX gamma-glutamy! carboxylase [Homo sapiens (human)]: http://www.ncbinlm.nih.gov/gene/2677.

18.  Kote-Jarai Z, et al. Seven novel prostate cancer susceptibility loci identified by a multi-stage genome-wide
association study. Nat Genet. 2011;43(8):785-91.

19.  Hoffmann TJ. A large multiethnic genome-wide association study of prostate cancer identifies novel risk variants
and substantial ethnic differences. Cancer Discov. 2015;5(8):878-91.

20. Wagner AH, et al. DGIdb 2.0: mining clinically relevant drug-gene interactions. Nucleic Acids Res. 2016;
44(D1):D1036-1044.

21. Kim S, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202-1213.

22. Wang J, Zhu C. Anticoagulation in combination with antiangiogenesis and chemotherapy for cancer patients:
evidence and hypothesis. Onco Targets Ther. 2016;9:4737-46.

23. BCKDHA Gene: http://www.genecards.org/cgi-bin/carddisp.pl?gene=BCKDHA.

24, Branched-Chain Keto Acid Dehydrogenase E1, Alpha Polypeptide; BCKDHA: http://www.omim.org/entry/608348.

25.  Branched-Chain Keto Acid Dehydrogenase E1, Beta Polypeptide; BCKDHB; http://www.omim.org/entry/248611.

26. Olama AA, et al. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci
associated with aggressive and non-aggressive disease. Hum Mol Genet. 2013,;22(2):408-15.

27. Zhang B, et al. Large-scale genetic study in east Asians identifies six new loci associated with colorectal cancer
risk. Nat Genet. 2014;46(6):533-42.

w

Page 6 of 6


http://www.cancer.org/cancer/bladdercancer/detailedguide/bladder-cancer-key-statistics
http://www.ncbi.nlm.nih.gov/gene/2677
http://www.genecards.org/cgi-bin/carddisp.pl?gene=BCKDHA
http://www.omim.org/entry/608348
http://www.omim.org/entry/248611

	Abstract
	Background
	Results
	Conclusions

	Findings
	Phase I: SNP-level analysis
	Phase II: gene-level analysis
	Phase III: pathway-level analysis

	Results and discussion
	Acknowledgements
	Funding
	Availability of data and material
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

