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Abstract
Background: Redundant hierarchical relations refer to such patterns as two paths from
one concept to another, one with length one (direct) and the other with length greater
than one (indirect). Each redundant relation represents a possibly unintended defect
that needs to be corrected in the ontology quality assurance process. Detecting and
eliminating redundant relations would help improve the results of all methods relying
on the relevant ontological systems as knowledge source, such as the computation of
semantic distance between concepts and for ontology matching and alignment.

Results: This paper introduces a novel and scalable approach, called FEDRR – Fast,
Exhaustive Detection of Redundant Relations – for quality assurance work during
ontological evolution. FEDRR combines the algorithm ideas of Dynamic Programming
with Topological Sort, for exhaustive mining of all redundant hierarchical relations in
ontological hierarchies, in O(c · |V| + |E|) time, where |V| is the number of concepts, |E|
is the number of the relations, and c is a constant in practice. Using FEDRR, we
performed exhaustive search of all redundant is-a relations in two of the largest
ontological systems in biomedicine: SNOMED CT and Gene Ontology (GO). 372 and
1609 redundant is-a relations were found in the 2015-09-01 version of SNOMED CT and
2015-05-01 version of GO, respectively. We have also performed FEDRR on over 190
source vocabularies in the UMLS - a large integrated repository of biomedical
ontologies, and identified six sources containing redundant is-a relations. Randomly
generated ontologies have also been used to further validate the efficiency of FEDRR.

Conclusions: FEDRR provides a generally applicable, effective tool for systematic
detecting redundant relations in large ontological systems for quality improvement.

Keywords: Redundant relations, Dynamic programming, SNOMED CT, Gene ontology,
UMLS

Background
Ontologies are shared conceptualizations of a domain represented in a formal language.
They represent not only the concepts (nodes) but the relationships (edges) between
the concepts. Ontologies have become a critical knowledge source in informatics and
data intensive applications, such as information retrieval [1], data integration [2], data
management [3], and decision support [4].
This paper focuses on a particular type of ontological structural defect: redundant rela-

tions. Redundant hierarchical relations refer to such patterns as two paths from concept
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X to concept Y , one with length one (direct) and the other with length greater than
one (indirect). For hierarchical relations such as subsumption (is-a), relations implied by
transitivity should not be explicitly stated. For example, in Gene Ontology (GO 2015-
05-01 version) we have (see Table 1). A (hormone secretion) is-a B (hormone transport),
B (hormone transport) is-a C (regulation of hormone levels), C (regulation of hormone
levels) is-a D (regulation of biological quality), D (regulation of biological quality) is-a E
(biological regulation), E (biological regulation) is-a F (biological process).
However, “A (GO:0046879) is-a F (GO:0008150)” is directly asserted as well (Fig. 1).

This represents redundant relations to be studied in this paper: two paths exist between
A and F: one directly between A and F, and the other indirectly through B, C, D, and E as
intermediate concept nodes.
The principle of parsimony in ontological modeling refers to the omission of rela-

tions implied by the transitive property of a relationship, such as “is-a” relations in GO.
By violating this principle, redundant relations may increase maintenance burden for
ontology curators. It can also cause inaccurate methods and algorithms based on this
general principle. For example, semantic distance between concepts is a widely used tech-
nique [5]. Ontological mapping and alignment methods rely on the ordered structure of
the hierarchical relation [6], with notions of neighborhood and proximity serving as their
foundation. The presence of redundant relations induces a short-circuit: two concepts
with a larger semantic distance may result in a smaller distance by mistake; and concepts
not within a neighborhood may be counted as such.
Using brute force, exhaustive detection of redundant relations can be computationally

expensive for large ontologies. For example, SNOMED CT (2015-03-01 version) con-
tains over 300,000 active concepts. A naive approach would be to find the longest paths
between the end nodes of each of the over 500,000 edges (relations). Assuming each edge
takes 100 ms, processing a single version of SNOMED CT would take 14 hours. Finding all
paths between all possible pairs among the 300 k nodes would take over 10,000 days if
each pair takes 10 ms.
This paper introduces a novel and scalable approach, called FEDRR, Fast, Exhaustive

Detection of Redundant Relations, for quality assurance work during ontological evolu-
tion. In contrast to the 14 hours naive approach required for each SNOMED CT version,
FEDRR needed <20 seconds (see Table 2).
Using FEDRR, we performed exhaustive search of all redundant is-a relations in two

of the largest ontological systems in biomedicine: SNOMED CT and GO. 372 and 1609
redundant is-a relations were found in the SNOMED CT (2015-09-01 version) and GO
(2015-05-01 version), respectively. Each redundant relation represents a possibly unin-
tended defect that needs to be corrected in the ontology quality assurance process. We
further performed longitudinal analyses using FEDRR on 5 versions of SNOMED CT

Table 1 Indirect path from concept A (hormone secretion) to concept F (biological process) in GO
(2015-05-01 version)

GO Id Relation GO Id

A GO:0046879 is-a B GO:0009914

B GO:0009914 is-a C GO:0010817

C GO:0010817 is-a D GO:0065008

D GO:0065008 is-a E GO:0065007

E GO:0065007 is-a F GO:0008150
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Fig. 1 Graphical rendering of Table 1 and a direct edge between A and F. Directed edges represent “is-a”
relation

and 10 versions of GO. We also investigated redundant is-a relations in the UMLS, an
integrated repository of biomedical terminologies, including SNOMED CT and GO.

SNOMED CT

SNOMED CT is the world’s largest clinical terminology [7, 8]. It provides broad coverage
of clinical medicine, including findings, diseases, and procedures for use in electronic
medical records.
From a structural perspective, SNOMED CT can be seen as a series of large directed

acyclic graphs, one for each of its 19 “sub-hierarchies” including Procedure, Substance,
Body structure, Specimen, Clinical finding, and Organism. No concept is shared across
sub-hierarchies except for the root. Each concept comes with a SNOMED CT identifier,
which is an integer. SNOMED CT concepts are linked by hierarchical relations within
each sub-hierarchy.

Gene ontology

The Gene Ontology (GO) [9] is a collection of three ontologies to describe attributes of
gene products in three non-overlapping domains of molecular biology: Cellular Com-
ponent, the parts of a cell or its extracellular environment; Molecular Function, the
elemental activities of a gene product at the molecular level, such as binding or catalysis;
and Biological Process, operations or sets of molecular events with a defined beginning
and end, pertinent to the functioning of integrated living units (cells, tissues, organs, and
organisms). Within each ontology, terms have free text definitions and unique identifiers.
GO terms can be related to each other by is-a and part-of relationships, forming a directed
acyclic graph. The GO vocabulary is designed to be species-agnostic, and is intended to
capture multiple organisms.

Table 2 Summary of the results for 5 versions of SNOMED CT

Version # Concepts # is-a Relations TC RR RR % T(ms)

2013-09-01 300,485 447,442 5,226,630 240 0.00459 10,472

2014-03-01 300,409 446,603 5,188,221 277 0.00534 10,335

2014-09-01 302,902 449,564 5,222,506 305 0.00584 10,074

2015-03-01 315,904 467,799 5,408,010 235 0.00435 15,264

2015-09-01 320,911 476,226 5,511,334 372 0.00675 16,077

TC: number of transitive closure pairs, RR: number of redundant is-a relations, T(ms): time taken in milliseconds
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UMLS

The Unified Medical Language System (UMLS) [8], produced and distributed by US
National Library of Medicine (NLM), is a large integrated repository of biomedical con-
trolled vocabularies to facilitate interoperability among disparate systems in biomedicine
and health. The source vocabularies include SNOMEDCT_US (SNOMED CT US Edi-
tion), SCTSPA (SNOMED CT Spanish Language Edition), GO, FMA (Foundational
Model of Anatomy), HPO (Human Phenotype Ontology), and NCI (NCI Thesaurus).
Knowledge in the UMLS Metathesaurus is organized by concept (or meaning). Term

variants from source vocabularies are clustered together to form a concept, and each con-
cept is assigned a unique concept identifier (CUI). The basic building blocks (or atoms) of
the UMLS Metathesaurus are the concept names or strings from each source vocabulary.
Every occurrence of a string in each source is assigned a unique atom identifier (AUI).
For instance, concept names Hypertension, High blood pressure, and Hypertensive disor-
der from SNOMEDCT_US have AUIs A2882711, A2876587, and A3501627, respectively.
Hypertension and Vascular Hypertensive Disorder from NCI has AUIs A7571194 and
A7628940, respectively. Such concept names from different sources represent the same
meaning and are assigned a unique CUI: C0020538. Moreover, relationships between
terms in source vocabularies are preserved in the UMLS as relationship attributes.
The 2015AB release of the UMLS contains over 3.2 million concepts and 12.8 million

unique concept names from more than 190 source vocabularies.

Ontology quality assurance

Large, comprehensive terminological systems such as SNOMED CT and GO continue
to evolve over time. They are often incomplete, under-specified, and non-static, for rea-
sons such as the evolving state of knowledge in a domain, the involvement of manual
curation work, and the progressive nature of ontological engineering itself. New appli-
cations are calling for new ontologies or expansion and enhancement of existing ones.
Many additional factors, such as merging or reusing existing ontologies and porting to a
common representation framework, may introduce inconsistencies and unintended arti-
facts. Thus Ontology Quality Assurance (OQA) is an indispensable part of the ontological
engineering lifecycle [10–21]. OQA attempts to assess and improve the overall quality of
ontologies in aspects such as the consistency of the ontological structure with respect to
the explicit and implicit knowledge they capture; the coverage of the ontology in terms of
classes and properties needed to support specific applications; and the non-redundancy
of classes and properties.
The basic premise of OQA is a mixed closed-world assumption (CWA) and open-

world assumption (OWA). In a formal system of logic used for knowledge representation,
such as ontological systems, CWA refers to the assumption that a relationship holds true
between two concepts is also explicitly asserted to be true, unless they are implied by log-
ical properties such as transitivity. It dictates that, in reverse, a relationship between two
concepts that is not asserted explicitly, must be false. OWA, on the other hand, refers to
the assumption that lack of knowledge does not imply falsity.
In the context of OQA, OWA refers to the evolving state of knowledge in a domain, in

the sense that new concepts may be included in an ontological system in a continuous
fashion. The lack of a concept in an ontological system does not imply that such a concept
does not exist. CWA, on the other hand, implies that, among existing concepts in an
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ontological system, the lack of an explicit relationship of a known relation-type between
two concepts means that such a relationship does not exist between the two concepts.
The principle of parsimony in ontological modeling is a direct consequence of CWA. It

refers to the fact that relations implied by the transitive property of a relationship, such
as the example given in Fig. 1, must not be explicitly stated. By violating this principle,
redundant relations can cause methods and algorithms based on this general principle
inaccurate. Detecting redundant relations is an important task for OQA, which is the
focus of this paper.

Methods
The general mathematical abstraction of an ontological structure is a graph-theoretic one:
nodes correspond to concepts, and edges correspond to relations (between nodes). For
hierarchical relations in ontological systems such as “is-a,” which obeys the transitivity
property that

if A is-a B and B is-a C, then A is-a C,

one can model the structure of an ontological system as a directed acyclic graph (DAG,
as shown in part in Fig. 1).
Definition 1. Suppose G = (V ,E) is a directed acyclic graph with V a set of nodes, and
E a set of edges between the nodes. A redundant relation in G is a pair of nodes (s, t) such
that (s, t) ∈ E, and there is an indirect path (i.e., length more than 1) from s to t.
The closely related known algorithm for computing redundant relations in the liter-

ature is all-pair longest path [22]. Although fixed source longest path can be solved in
time-complexity O(|V | + |E|) in a DAG [22], all-pair longest path requires iteration over
V , resulting in an O(|V | · |E| + |V |2) time-complexity algorithm. For large ontological
systems such as SNOMED CT, such a running time amounts to an intractable amount of
processing time (requiring 10,000 days if all-pair paths were to be computed).
FEDRR solves this problem in time-complexity O(c · |V | + |E|), where c is the average

number of descendants of a node. For the latest version of SNOMED CT, we have c =
17.12 (see Time Complexity Analysis). For a single version of SNOMED CT, the actual
processing time is less than 20 seconds.
There are two key algorithmic ideas behind FEDRR. One is avoidance of repeated

computations by remembering the set of directly reachable nodes as well as the set of
indirectly reachable nodes, for each node. The second is to completely skip node pairs
that are not connected by a directed path. These ideas are reflected in FEDRR using a
novel combination of dynamic programming with topological sort. The sparsity of most
ontological structures, viewed as a DAG, is a particularly suitable property for the second
idea to take advantage of.
For a node u in a DAG G = (V ,E), we introduce two sets, Du and Iu, where

• Du = {v | (v,u) ∈ E}, called the D-set, consists of the direct descendants (i.e.
children) of u; and

• Iu, called the I-set of u, is the set of all indirect descendants of u.

The design of our algorithm is based on the following observation.
Lemma 1. For each node v ∈ Du ∩ Iu, (v,u) is redundant.
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Our algorithm amounts to the computation of (Du, Iu) for each node u. To utilize the
idea of dynamic programming, we update (Du, Iu) for each node u according to the order
by topological sort. The basic update scheme is illustrated in the following diagram:
Suppose we have obtained (Dvi , Ivi) for each i = 1, . . . , k, where {v1, v2, . . .} = {v |

(v,u) ∈ E}. Then we set Du = {v1, v2, . . .} and Iu = ⋃k
i=1(Di ∪ Ii). The pseudo-code of

FEDRR appears in Algorithm 1.

Algorithm 1 FEDRR: Dynamic programming using topological sort to compute theD-set
and I-set of each node
1: Input: G(V )

2: q := new Queue()
3: for all v ∈ V do
4: I[ v] := ∅
5: D[ v] := ∅
6: if no incoming edge for v then
7: q.enqueue(v)
8: end if
9: end for

10: while q not empty do
11: s := q.dequeue()
12: for all t ∈ s.to do
13: I[ t] := I[ t]∪I[ s]∪D[ s]
14: D[ t] := D[ t]∪{s}
15: mark edge (s, t)
16: if no unmarked incoming edge for t then
17: q.enqueue(t)
18: end if
19: end for
20: end while

FEDRR starts by initializing an empty queue to hold the nodes that will be sorted
(line 2). Then nodes with no incoming edges are put to the queue, with theD-set and I-set
initialized as empty (lines 3 - 9). In the next phase (lines 10 - 20), the nodes are dequeued
one at a time, with the I-sets and D-sets (for t) updated according to the mechanism
described in Fig. 2.
We illustrate the steps of Algorithm 1 using an example. The input DAG is given in

Fig. 3 (top left), and there is a redundant edge (colored in red) that FEDRR is supposed
to detect. The algorithm starts with setting initial values for the D-set and the I-set and
enqueuing those node with no incoming edges, as shown on the top right of Fig. 3. The
result is shown on the bottom right of Fig. 3.

Correctness

The correctness of the algorithm can be proved using mathematical induction by showing
I[ vi]= Ivi and D[ vi]= Dvi after node vi is dequeued (line 11) for i = 1 . . . |V |.
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Fig. 2 Basic mechanism for updating the D-set and the I-set of a node

Proof i = 1. The first dequeued node must be a node with no incoming edges. This
means Iv1 = ∅ and Dv1 = ∅. As both I[ v1]= ∅ and D[ v1]= ∅ from lines 4 and 5, we have
I[ v1]= Iv1 and D[ v1]= Dv1 .
Suppose I[ vi]= Ivi and D[ vi]= Dvi is true for i = 1 . . . k − 1. For i = k, then we have

D[ vk]= {v | (v, vk) ∈ E} and I[ vk]=
⋃

j(D[ vkj ]∪I[ vkj ] ), where vkj ∈ {v | (v, vk) ∈ E}.

Fig. 3 Illustration of Algorithm 1
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Based on the definition of Dv, we have Dvk = {v | (v, vk) ∈ E} = D[ vk]. From the
induction hypothesis, we have I[ vi]= Ivi and D[ vi]= Dvi for i = 1 . . . k − 1. This means
I[ vk]=

⋃
j

(
D[ vkj ]∪I[ vkj ]

)
= ⋃

j

(
Dvkj ∪ Ivkj

)
= Ivk .

Time complexity analysis

The topological sorting itself takesO(|V | + |E|) time [23]. With the computation of D-set
and I-set, the total time isO(

∑
(u,v)∈E(|Dv|+|Iv|)+|V |+|E|).When |E| = O(|V |) (which is

the case for both SNOMEDCT andGO), the running time isO(
∑

v(|Dv|+|Iv|)+|V |+|E|).
If we let c =

∑
v(|Dv|+|Iv|)

|V | , then the running time is in O(c · |V | + |E|). Based on the
definition of Dv and Iv,

∑
v(|Dv| + |Iv|) is the size of transitive closure pairs shown in

Tables 2 and 4. Even though the worst-case running time is O(|V |2)(when c = |V |), c
is a relatively small constant for ontological systems in practice. This is validated by our
experimental results shown in Tables 2 and 4. For the 2015-03-01 version of SNOMED
CT, c = 5,408,010

315,904 = 17.12, and for the 2015-05-01 version of GO, c = 557,550
42,979 = 12.97.

Results
Experimental environment

To detect redundant is-a relations from SNOMED CT and Gene Ontology, we ran the
FEDRRmethod on aMacBook Pro running theMacOSX Yosemite with 16 GB RAM and
Intel Core i7 processor. FEDRR was implemented in Java programming language based
on JDK7.

Redundant is-a relations in SNOMED CT

We ran the FEDRR method on 5 versions of SNOMED CT (U.S. edition) from 2013 to
2015 dated on 2013-09-01, 2014-03-01, 2014-09-01, 2015-03-01, and 2015-09-01. Table 2
summarizes the result of each version including numbers of concepts, is-a relations, and
transitive closure pairs (TC), and number of redundant is-a relations (RR); percentage
of redundant is-a relations (RR%) among transitive closure pairs; and computing time in
milliseconds to detect redundant is-a relations. For example, for the 2015-09-01 version,
there were 320,911 concepts, 476,226 is-a relations, 5,511,334 transitive closure pairs, and
372 redundant is-a relations; the percentage of the redundant is-a relations among the
transitive closure pairs is 0.00675 %; and it took about 16 seconds to complete. For each
version, it only took a few seconds to identify all the redundant is-a relations, indicating
the efficiency of FEDRR.
Table 3 shows the numbers of redundant is-a relations in 5 versions of SNOMED CT

with respect to the length of the indirect path. For each version, li (i = 2, 3, 4) is the num-
ber of redundant is-a relations in length of i regarding to the indirect path. For example,
in the version of 2015-09-01, there were 358 redundant is-a relations in length of 2, 13 in
length of 3, and 1 in length of 4. In general, most redundant is-a relations were in length
of 2, and no redundant is-a relations exceeding length of 4 was identified.

Redundant is-a relations in gene ontology

We ran the FEDRR method to detect redundant is-a relations in 10 versions of Gene
Ontology from 2014-08-01 to 2015-05-01 updated monthly. Table 4 summarizes the basic
results of each version. For instance, for the 2015-05-01 version, there were 42,979 con-
cepts, 71,954 is-a relations, 557,550 transitive closure pairs, and 1,609 redundant is-a
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Table 3 Numbers of redundant is-a relations in 5 versions of SNOMED CT regarding to the length of
the indirect path. li represents the number of redundant is-a relations in length of i regarding to the
indirect path

Version l2 l3 l4 Total

2013-09-01 233 7 0 240

2014-03-01 264 11 2 277

2014-09-01 291 13 1 305

2015-03-01 224 10 1 235

2015-09-01 358 13 1 372

relations; the percentage of the redundant is-a relations among the transitive closure pairs
is 0.2886 %; and it took 1,538 milliseconds to complete. As the number of concepts and
is-a relations were increasing, the number and percentage of redundant is-a relations
(RR) were monotonically increasing every month and increased more than twice from
the 2014-08-01 version (497; 0.0961 %) to the 2015-05-01 version (1,609; 0.2886 %). For
each version, it only took a couple of seconds to identify all the redundant is-a relations,
indicating the efficiency of FEDRR.
Table 5 shows the numbers of identified redundant is-a relations for the 10 versions with

respect to the length of the indirect path. For each version, li (i = 2, . . . , 7) is the number
of redundant is-a relations in length of i regarding to the indirect path. For example, in the
version of 2015-05-01, there were 1,238 redundant is-a relations in length of 2 and 255 in
length of 3. Most redundant is-a relations were in length of 2 or 3 regarding to the indirect
path. There were only a couple of redundant is-a relations in length of 7. No redundant
is-a relations exceeding length of 7 was identified.

Redundant is-a relations in UMLS

We ran the FEDRR method to detect redundant is-a relations from over 190 source
vocabularies integrated in the UMLS (2015AB release). Since the original occurrences of
concept names are preserved and identified as AUIs in the UMLS, we used AUIs and
relations between AUIs to detect redundant is-a relations. We also filtered out inactive
is-a relations in the UMLS before applying the FEDRR method (obsolete relations are
indicated by a value of ‘O’ in the SUPPRESS field in the relation file MRREL.RRF).

Table 4 Summary of the results for 10 versions of Gene Ontology

Version # Concepts # is-a Relations TC RR RR% T(ms)

2014-08-01 41,436 66,544 517,092 497 0.0961 1,372

2014-09-01 41,694 66,995 522,741 502 0.0960 1,472

2014-10-01 41,867 67,536 528,821 631 0.1193 1,455

2014-11-01 42,012 69,300 541,718 1,031 0.1903 1,497

2014-12-01 42,189 69,887 545,168 1,193 0.2188 1,425

2015-01-01 42,329 70,272 544,210 1,277 0.2347 1,510

2015-02-01 42,466 70,724 546,158 1,420 0.2600 1,549

2015-03-01 42,588 71,032 548,006 1,463 0.2670 1,542

2015-04-01 42,805 71,549 552,367 1,552 0.2810 1,437

2015-05-01 42,979 71,954 557,550 1,609 0.2886 1,538

TC: number of transitive closure pairs, RR: number of redundant is-a relations, RR%: percentage of redundant is-a relations among
transitive closure pairs, T(ms): time taken in milliseconds
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Table 5 Numbers of redundant is-a relations in 10 different versions of Gene Ontology regarding to
the length of the indirect path. li represents the number of redundant is-a relations in length of i
regarding to the indirect path

Version l2 l3 l4 l5 l6 l7 Total

2014-08-01 421 40 23 11 1 1 497

2014-09-01 419 44 24 13 1 1 502

2014-10-01 512 72 29 15 2 1 631

2014-11-01 771 164 64 27 4 1 1,031

2014-12-01 921 174 63 27 7 1 1,193

2015-01-01 980 202 62 24 8 1 1,277

2015-02-01 1,098 220 68 24 8 2 1,420

2015-03-01 1,119 237 72 25 8 2 1,463

2015-04-01 1,198 238 78 29 7 2 1,552

2015-05-01 1,238 255 78 29 7 2 1,609

Based on our experiment, the concept graph in terms of AUI is acyclic, and FEDRR
completes the exhaustive search for all the sources in our experiments. Six sources were
found to have redundant is-a relations (see Table 6): SNOMEDCT_US (2015_09_01),
SNOMEDCT_VET (2015_04_01), GO (2015_04_04), NCI (1502D), HPO (2015_04_20),
and UMD (2015AA). For instance, in HPO, there were 18,175 AUIs, 14,762 is-a rela-
tions, 117,366 transitive closure pairs, and 101 redundant is-a relations. Moreover, it took
FEDRR less than 30 seconds to detect redundant is-a relations for each of these source
vocabularies.
As can be seen from Table 6, SNOMEDCT_US in the UMLS shows the same number

(372) of redundant is-a relations compared to the result obtained based on its original
source (version 2015_09_01 in Table 2). GO in the UMLS has slightly more redundant is-
a relations (1,576 v.s. 1,552) compared to the result obtained based on its original source
of GO (version 2015_04_01 in Table 4). This difference may be caused by the a different
version of GO (version 2015_04_04) integrated in the 2015AB release of the UMLS.

Redundant is-a relations in randomly generated ontology

We have also tested FEDRR on randomly generated ontologies. There are two goals in
testing FEDRR on randomly generated ontologies.

• To test the efficiency of FEDRR on arbitrarily large ontologies, and
• To compare the ratio of redundancy relations in real world biomedical ontologies

with random ontologies with similar properties.

Table 6 Summary of the results for source vocabularies in UMLS (2015AB release) with redundant
relations

Version # AUIs # is-a Relations TC RR RR% T(ms)

SNOMEDCT_US 846,444 476,055 5,511,334 372 0.00675 28,977

SNOMEDCT_VET 85,939 19,832 29,688 7 0.024 954

GO 148,900 71,687 554,859 1,576 0.2840 9,128

NCI 270,618 119,707 701,986 20 0.0028 5,881

HPO 18,175 14,762 117,366 101 0.0861 502

UMD 34,124 10,750 37,732 20 0.0530 1,906

AUI: Atom Unique Identifier, TC: number of transitive closure pairs, RR: number of redundant is-a relations, T(ms): time taken in
milliseconds
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As each ontology can be represented as a DAG, we implemented Algorithm 2 to gener-
ate a randomDAG(N ,E,Cmin,Cmax), whereN is the number of nodes, E is the number of
edges, and Cmin/Cmax are the minimum/maximum number of children a node can have.

Algorithm 2 Procedure to generate a random ontology
1: Input: N ,E,Cmin,Cmax
2: q := new Queue()
3: root := new node
4: q.enqueue(root)
5: numOfNodes := 0
6: numOfEdges := 0
7: edges := φ

8: while numOfNodes < N do
9: p := q.dequeue()

10: c := random(Cmin,Cmax)

11: for i ≤ c do
12: child := newnode
13: edges := edges ∪ {(p, child)}
14: numOfNodes++
15: numOfEdges++
16: i++
17: end for
18: end while
19: while numOfEdges < E do
20: src := random(0, numOfNodes)
21: dest := random(0, numOfNodes)
22: if src �= dest & (src, dest) �∈ edges then
23: edges := edges ∪ {(src, dest)}
24: numOfEdges++
25: end if
26: end while

Results of FEDRR on nine random ontologies are presented in Table 7. For each set of
parameters, the median (using RR) of five runs is recorded. As can be seen from Table 7,
FEDRR performs very well in terms of time efficiency and is suitable for online auditing
of ontologies. It also scales very well to handle more than 1 million nodes and relations.
The results also clearly indicates that the number of redundant relations increases when

the density of the edges increases. For comparable density of edges, the ratio of redun-
dant relations in SNOMED CT (US edition) (ranging from 0.0039 to 0.0058 %) and GO
(ranging from 0.096 to 0.289 %) is much higher than in randomly generated ontologies
(ranging from 0.0001 to 0.0054 %) .
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Table 7 Summary of the results for randomly generated ontologies

(N, E, Cmin, Cmax) # Layers TC RR RR% T(ms)

(500,000, 550,000, 2, 5) 12 5,957,690 6 0.0001 5,847

(500,000, 550,000, 2, 10) 8 4,036,792 12 0.0003 5,212

(500,000, 550,000, 2, 20) 6 3,000,751 7 0.0002 5,637

(500,000, 600,000, 2, 20) 6 3,567,691 13 0.00036 5,449

(500,000, 700,000, 2, 20) 6 4,190,494 34 0.00081 5,332

(500,000, 900,000, 2, 20) 6 7,104,749 109 0.00153 8,183

(500,000, 1,300,000, 2, 20) 6 25,934,499 1, 404 0.0054 33,235

(1,000,000, 1,200,000, 2, 20) 7 7,071,813 21 0.0003 18,051

(1,000,000, 1,400,000, 2, 20) 7 8,694,703 133 0.0015 11,582

N: number of concepts, E: number of is-a relations, Cmin/Cmax: minimum/maximum number of children a node can have, TC:
number of transitive closure pairs, RR: number of redundant is-a relations, T(ms): time taken in milliseconds

Change rates in ontology evolution

Most ontologies in life science evolve continuously to account for new discoveries
[11, 13, 14]. Our experimental studies indicated that the change rates of redundant is-
a relations are significantly higher than the change rates of all is-a relations for both
SNOMED CT and Gene Ontology.
Figure 4 is a graphical summary of the differences between SNOMEDCT versions using

the change rate of redundant is-a relations versus the change rate of all is-a relations. The
change rate between two versions is defined as (|N − O| + |O − N |)/(|O| + |N |), where
N is the set of relations in the new version, O is the the set of relations in the old version,
N − O is the set of relations in the new version but not in the old version, and O − N is
the set of relations in the old version but not in the new version. It should be noted that
N − O �= O − N and |N − O| �= |N | − |O| in general. Figure 5 shows the summary of
the differences between Gene Ontology versions using the change rate of redundant is-a
relations versus the change rate of all is-a relations.
As can be seen from Figs. 4 and 5, the change rates of redundant is-a relations between

versions are consistently higher than that of all is-a relations for both SNOMED CT and

Fig. 4 Change rate of redundant is-a relations compared to the change rate of all is-a relations during
SNOMED CT evolution
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Fig. 5 Change rate of redundant is-a relations compared to the change rate of all is-a relations during Gene
Ontology evolution

Gene Ontology. For SNOMEDCT, the change rates of redundant is-a relations are 4 to 10
times higher than that of all is-a relations. For Gene Ontology, the change rates are 5 to 12
times higher. This indirectly validates the importance of eliminating redundant relations
from ontologies during ontological evolution.

Revision reversals of redundant relations

A particular case of ontological changes during ontology evolution is the revision rever-
sal of relations, which refers to the addition (removal) of a relation being reversed by a
removal (addition) in later versions. For example, the relation “Telangiectasia of skin of
face (disorder)” is-a “Disorder of skin of head (disorder)” was not present in the 2013-
09-01 version. It was added in the 2014-03-01 version, but was subsequently removed in
the 2015-03-01 version. The following is a list of redundant is-a relations added in the
2014-03-01 version, but removed from the 2015-03-01 version.

131461000119105 is − a 275544003
699056001 is − a 400082007
699056001 is − a 118930001
234140000 is − a 400082007

(1)

Clinically, such revision reversals may indicate the confusion about representing the
relations among a group of concepts, which is closely related to the higher change ratio
presented in Figs. 4 and 5. For SNOMED CT, we have observed much higher rate of revi-
sion reversals among the redundant is-a relations (19 out of 415; 4.58 %) compared to all
is-a relations (1575 out of 491,825; 0.32 %). The revision reversal results in even higher
rate when considering the segment induced by the redundant relation (59 out of 415;
14.22 %). For Gene Ontology, the rate of revision reversals among the redundant is-a rela-
tions (8 out of 1,614; 0.50 %) compared to all relations (188 out of 72,729; 0.26 %). The
revision reversal results in even higher rate when considering the segment induced by the
redundant relation (28 out of 1624 or 1.72 %).
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Fig. 6 A visualized example of redundant is-a relation in SNOMED CT

Evaluation

Even though in most cases redundant edges should be removed, in some cases the redun-
dancy is caused by a mistake of an edge along the indirect path. For example, in Fig. 6,
the assertion that “Bilateral congenital dislocation of hip” is-a “Congenital dislocation of
right hip” is most likely in error. This is because a concept involving “bilateral” should not
be a subclass of a concept of limited laterality: “right” (but not “left”). Removing this edge
would have automatically eliminated the redundancy of the detected relation.
To evaluate the performance of FEDRR’s detection of redundant is-a relations from

original sources of SNOMED CT and GO, a random sample of 30 redundant relations
from SNOMED CT (2015-03-01 version) and 50 from GO (2015-05-01 version) were
selected and manually reviewed by two human annotators. One annotator was asked to
manually verify if the redundant hierarchical relations identified by FEDRR are correct.
The other annotator was asked to review each redundant relation and provide on feed-
back if the redundant relation (direct edge) should be removed or an edge in the indirect
path should be removed. For instance, Fig. 7 presents an example of redundant relation
from GO manually reviewed by the second annotator. In this case, the annotator’s feed-
back is to remove the direct edge. For cases like the one shown in Fig. 6, the annotator’s
feedback is to remove the indirect edge that is incorrect.
The first annotator verified that all of the redundant is-a relations identified by FEDRR

are correct, that is, 100 % accurancy. Table 8 shows the feedback of the second annotator.
Among 30 redundant is-a relations in SNOMED CT, 24 (80 %) should have direct edge
removed, and 6 (20 %) should have indirect edge removed. Among 50 redundant is-a

Fig. 7 A visualized example of redundant is-a relation in GO
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Table 8 Numbers of direct edge and indirect edge that should be removed for 30 redundant is-a
relations in SNOMED CT and 50 in Gene Ontology

Remove direct edge Remove indirect edge

SNOMED CT 24 (80 %) 6 (20 %)

Gene Ontology 45 (90 %) 5 (10 %)

relations in GO, 45 (90 %) should have direct edge removed, and 5 (10 %) should have
indirect edge removed.
To evaluate the performance of FEDRR’s detection of redundant hierarchical rela-

tions from UMLS, a random sample of 30 redundant relations detected from the
SNOMEDCT_US in the UMLS was selected and manually reviewed by the first annota-
tor. The annotator verified that all the 30 redundant relations identified by FEDRR are
correct (100 % accuracy).

Discussion
Related work

There has been related work on exploring redundant relations in biomedical ontologies
or terminologies [24–28]. Bodenreider [24] investigated the redundancy of hierarchical
relations across biomedical terminologies in the UMLS. Different from Bodenreider’s
work, FEDRR focuses on developing a fast and scalable approach to detect redundant
hierarchical relations within a single ontology.
Gu et al. [25] investigated five categories of possibly incorrect relationship assignment

including redundant relations in FMA. The redundant relations were detected based on
the interplay between the is_a and other structural relationships (part_of, tributary_of,
branch_of ). A review of 20 samples from possible redundant part_of relations validated 14
errors, a 70 % correctness. FEDRR differs from this work in two ways. Firstly, FEDRR aims
to provide an efficient algorithm to identify redundant hierarchical relations from large
ontologies with 100 % accuracy. Secondly, FEDRR can be used for detecting redundant
relations in all DAGs with the transitivity property.
Mougin [26] studied redundant relations as well as missing relations in GO. The iden-

tification of redundant relations was based on the combination of relationships including
is_a and is_a, is_a and part_of, part_of and part_of, and is_a and positively_regulates.
FEDRR’s main focus is to provide a generalizable and efficient approach to detecting
redundant hierarchical relations in any ontology, which has been illustrated by applying
it to all the UMLS source vocabularies. Moreover, the redundant hierarchical relations
detected by FEDRR were evaluated by human experts, while only number of redundant
relations was reported in [26] without human annotator’s validation.
Mougin et al. [27] exhaustively examined multiply-related concepts within the UMLS,

where multiply-related concepts mean concepts associated through multiple relations.
They explored whether suchmultiply-related concepts were inherited from source vocab-
ularies or introduced by the UMLS integration. About three quarters of multiply-related
concepts in the UMLS were found to be caused by the UMLS integration. Additionally,
Gu et al. [28] studied questionable relationship triples in the UMLS following four cases:
conflicting hierarchical relationships, redundant hierarchical relationships, mixed hier-
archical/lateral relationships, and multiple lateral relationships. It was reported in [28]
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that many examples indicated that questionable triples arose from the UMLS integration
process.
Bodenreider [29], Mougin and Bodenreider [30], and Halper et al. [31] studied various

approaches to removing cyclic hierarchical relations in the UMLS. Although no cycles
have been detected in the current UMLS in terms of the AUI, such approaches ([29–31])
to detecting and removing cyclic relations are needed before FEDRR can be applied. This
is because FEDRR is based on the topological sorting of a graph, which requires no cycles
in a graph.

Future work

Although we have focused on investigating redundant is-a hierarchical relations in
this paper, FEDRR is a general method and is applicable to detect redundant relations
in other hierarchical structures. In future work, we plan to apply FEDRR on other
hierarchical relationships such as part_of in SNOMED_CT and FMA, and branch_of
in FMA.

Conclusions
Detecting and removing redundant relations is an important quality improvement task for
biomedical ontologies because non-redundancy is the basic premise of all semantic mea-
sures derived from ontological structures, such as semantic distance between concepts
and ontology mapping and alignment. We introduced FEDRR for fast and exhaustive
detection of redundant hierarchical relations in ontological hierarchies. Our algorithm
runs in linear time to the size of the ontological structure in practice.
Using FEDRR, we performed systematic and exhaustive search of redundant is-a rela-

tions in two large ontological systems in biomedicine: SNOMED CT and Gene Ontology,
as well as all the source vocabularies in the UMLS. The algorithmic core of FEDRR is easy
to implement and extremely efficient. In our extensive experiments on real-world, large
ontological structures, it took less than 20 seconds for FEDRR to process SNOMED CT
and Gene Ontology. Moreover, FEDRR is a general approach and can be applied to detect
redundant relations in other hierarchical structures.
With these results, we believe that FEDRR is production ready. It is available at https://

github.com/gmingx/fedrr.
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