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Abstract
The biclustering of microarray data has been the subject of a large research. No one of
the existing biclustering algorithms is perfect. The construction of biologically
significant groups of biclusters for large microarray data is still a problem that requires a
continuous work. Biological validation of biclusters of microarray data is one of the
most important open issues. So far, there are no general guidelines in the literature on
how to validate biologically extracted biclusters. In this paper, we develop two
biclustering algorithms of binary microarray data, adopting the Iterative Row and
Column Clustering Combination (IRCCC) approach, called BiBinCons and BiBinAlter.
However, the BiBinAlter algorithm is an improvement of BiBinCons. On the other hand,
BiBinAlter differs from BiBinCons by the use of the EvalStab and IndHomog evaluation
functions in addition to the CroBin one (Bioinformatics 20:1993–2003, 2004). BiBinAlter
can extracts biclusters of good quality with better p-values.
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Introduction
DNA microarray technology is a revolutionary tool enabling the measurement of ex-
pression levels of thousands of genes in a single experiment under diverse experimental
conditions. This technology allows us to obtain big raw data that can provide a wealth
of information on the concerned genes. It proved to be a valuable tool for many bio-
logical and medical applications. Indeed, microarray data analysis is a crucial step for
these applications in order to extract pertinent biological knowledge embedded in these
large masses of data. However, the extraction process of this knowledge is far from being
trivial. From here comes the necessity to adopt data mining techniques. Many of these
techniques were applied to these data in order to extract pertinent biological knowledge.
Among the techniques that are used, we mention those of clustering [1]. Indeed, by mak-
ing a clustering, we consider that all the genes of a group can have a similar behavior under
all the conditions. However, there are genes that have a similar behavior only under a
subset of conditions. Hence, clustering is too simplistic to detect such cases [1]. Another
more interesting technique, called biclustering [2], allows to identify groups of genes that
have a similar behavior only under a subset of conditions.
In this paper, we develop new biclustering algorithms ofmicroarray data. These data are

usually coded by a data matrixM(I, J), where the ith row, i ∈ I = {1, 2, . . . , n}, represents
the ith gene, the jth column, j ∈ J = {1, 2, . . . ,m}, represents the jth condition and the cell
M[ i, j] represents the expression level of the ith gene under the jth condition.
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Themain objective is then to identify groups of genes that are coherent under groups of
conditions, these groups are called biclusters. Genes belonging to the same bicluster have
close biological functions. Let’s note that, in its general form, the biclustering problem is
NP-hard [2].
The rest of this chapter is organized as follow: In the second section, we introduce

some preliminaries. In the third section, we present the BiBinCons algorithm. In the
fourth section, we present the BiBinAlter algorithm. In the fifth section, we present an
illustrative example and an experimental study. Finally, we present the conclusion of this
paper.

Preliminaries
As we said in the introduction, the biclustering algorithms that we present in this paper
are based on CroBin [1] function for the evaluation of a group of biclusters. So, let’s
present some preliminaries related to this function. Let I = {1, 2, . . . , n} be a set of indices
of n genes, J = {1, 2, . . . ,m} be a set of indices of m conditions and Mb(I, J) =

(
mb

ij

)
, i ∈

I and j ∈ J , be a binary data matrix associated with I and J. The biclustering problem of a
binary microarray data can be formulated as a minimization of the criterionW (z,w, a):

W (z,w, a) =
a∑

k=1

m∑
l=1

∑
i∈zk

∑
j∈wl

∣∣∣mb
ij − akl

∣∣∣ . (2.1)

where
z = {z, z2, . . . , zg} is the matrix defined as a partition of I into g clusters, i.e. zi is the

cluster number of the ith row ofMb(I, J).

w = {w1,w2, . . . ,wh} is the matrix defined as a partition of J into h clusters, i.e. wi is the
cluster number of the jth column ofMb(I, J)..whe

a = (akl) is a summary matrix ofMb(I, J), it is a binary g × hmatrix where k (resp. l) is
the number of clusters on rows (resp. columns) and akl is defined by the mij’s satisfaying
the following condition:

zikwjl = 1 (2.2)

where

zik = 1 if the ith row ofMb(I, J) belongs to the kth cluster of I otherwise zik = 0.
wjl = 1 if the jth column ofMb(I, J) belongs to the lth cluster of J otherwise wjl = 0.

By using Eq. (2.2), Eq. (2.1) can be reformulated as follows:

W (z,w, a) =
∑
i,j,k,l

zikwjl

∣∣∣mb
ij − akl

∣∣∣ (2.3)

By adopting the IRCCC approach, we can make biclustering by minimizing W (z,w, a)
defined by Eq. (2.3) and by fixing either w or z:

• If w is fixed, the minimization is given by:

W (z, a|w) =
∑
i,k,l

zik|uil − (|wl| × akl)| (2.4)
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where uil = ∑
j∈wl

mij = ∑
j wjlmij,

∑
i,j,k,l

zikwjl

∣∣∣mb
ij − akl

∣∣∣ = ∑
i,k
zik

∑
j,l
wjl

∣∣∣mb
ij − akl

∣∣∣ =
∑
i,k
zik

∑
l
|uil − (|wl| × akl)|, u is a matrix of size |I| × l.

• If z is fixed, the minimization is given by:

W (w, a|z) =
∑
i,k,l

wjl|vjl − (|zk| × akl)| (2.5)

where vkj = ∑
i∈zk m

b
ij = ∑

i zikmij,
∑
i,j,k,l

zikwjl

∣∣∣mb
ij − akl

∣∣∣ = ∑
j,l
wjl

∑
i,k

zik
∣∣∣mb

ij − akl
∣∣∣ =

∑
i,k

zik
∑
l

|vkj − (|zk| × akl)|, v is a matrix of size k × |J|.

Remark. A colored block in the binary matrix Mb(I, J) will be represented by a col-
ored cell in the summary matrix A, where each colored cell contains the majority binary
value in the corresponding colored block, e.g, if the majority of cells in a block inMb(I, J)
contains 1 then the corresponding cell in A contains also 1.

Example. This example shows a binary data matrixMb(I, J) and the corresponding cell
in the summary matrix A.

A = (0, 0; 1, 1; 1, 1), i.e., a11 = 0, a12 = 0; a21 = 1, a22 = 1; a31 = 1, a32 = 1.
In the section ‘FIRST IRCCC Algorithm: BiBinCons’, we develop two IRCCC

algorithms of biclustering of binary microarray data, called respectively BiBinCons and
BiBinAlter.

FIRST IRCCC Algorithm: BiBinCons
Our biclustering algorithm, BiBinCons receives as input a binary matrix Mb(I, J) and
gives as output (zopt ,wopt ,Aopt), where zopt and wopt are respectively the final clustering
of rows and columns ofMb(I, J), and Aopt is the summary matrix related to zopt and wopt .
To describe more formally our biclustering algorithm, BiBinCons, we use the following
notations:
z0 : initial clustering of rows ofMb(I, J)
w0 : initial clustering of columns ofMb(I, J),
A0 : initial summary matrix related to z0 and w0

zc : current clustering of rows ofMb(I, J)
wc : current clustering of columns ofMb(I, J),
A′
c : current intermidate summary matrix related to zc and wc−1
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Ac : current summary matrix related to zc and wc

zopt : final clustering of rows ofMb(I, J)
wopt : final clustering of columns ofMb(I, J)
Aopt : final summary matrix related to zopt and wopt

A′
c : intermediate current summary matrix.

Algorithm 1 BiBinCons
input : Mb(I, J)
output : (zopt ,wopt ,Aopt)
Compute (z0,w0,A0) thanks to the initialization step of BiMax algorithm Prelić et al. [3], //
Initialization step :
c := 1
while (zc,wc−1,A

′
c) �= (zc−1,wc−1,Ac−1) do //////////// // Clustering of rows

////Compute (zc,wc−1,A
′
c) starting from (zc−1,wc−1,Ac−1), by using Eq. 2.4

end while
(zc−1,wc−1,Ac−1) := (zc,wc−1,A

′
c)

while(zc,wc,Ac)) �= (zc−1,wc−1,Ac−1) do ////////////// Clustering of columns
////Compute (zc,wc,Ac) starting from (zc,wc−1,A

′
c), by using Eq. 2.5

end while
(zopt ,wopt ,Aopt):= (zc,wc,Ac)
return (zopt ,wopt ,Aopt)

Second IRCCC Algorithm: BiBinAlter
Our biclustering algorithm, BiBinAlter receives as input a binarymatrixMb(I, J) and gives
as output (zopt ,wopt ,Aopt), where zopt and wopt are respectively the final clustering of rows
and columns of Mb(I, J), and Aopt is the summary matrix related to zopt and wopt . By
adopting BiBinAlter, we propose the use of functions defined:
EvalStabc represents the frequency of 0’s in the current group of biclusters at the cth

iteration. It is defined as follows:

EvalStab =
∑
k,l

|akl − (|zk| × |wl|)|
|zk||wl| (4.1)

IndHomogc represents the tradeoff between the number of mixed biclusters (containing
both 0’s and 1’s) and the total number of biclusters at the cth iteration. It is defined as
follows:

IndHomog = MixedBic
AllBic

(4.2)

To describe more formally our biclustering algorithm, iBinAlter, we have used the same
notations like previous algorithm besides of these notations:(

EvalStabc, IndHomogc
)
: couple to present the frequency of 0’s in the current group of

biclusters at the cth iteration and the tradeoff between the number of mixed biclusters
(containing both 0’s and 1’s) and the total number of biclusters at the cth iteration.(

EvalStabc−1, IndHomogc−1
)
: couple to present the frequency of 0’s in the group of bi-

clusters at the (c−1)th iteration and the tradeoff between the number of mixed biclusters
(containing both 0’s and 1’s) and the total number of biclusters at the (c − 1)th iteration.
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(
EvalStab′

(c−1), IndHomog ′
(c−1)

)
: couple to present the frequency of 0’s in the group of

biclusters at the intermidate (c − 1)′th iteration and the tradeoff between the number of
mixed biclusters (containing both 0’s and 1’s) and the total number of biclusters at the
intermidate (c − 1)′th iteration.

Algorithm 2 BiBinAlter
input : Mb(I, J)
output : (zopt ,wopt ,Aopt)
// Initialization step :
compute (z0,w0,A0)
////
// Biclustering step :
while (((zc,wc,Ac) �= (zc−1,wc−1,Ac−1)) and (EvalStabc, IndHomogc)
�= (EvalStabc−1, IndHomogc−1))) or (((zc,wc,Ac) �= (zc,wc−1,A

′
c)) and ((EvalStabc, IndHomogc)

�= (EvalStab′
(c−1), IndHomog ′

(c−1))) do
Compute(zc,wc−1,A

′
c) starting from (zc−1,wc−1,Ac−1), by using Eq. 2.4

//A′ is an intermediate summary matrix ;
Compute (EvalStab′

c, IndHomog ′
c) , by using Eqs. 4.1 and 4.2

Compute (zc,wc,Ac) starting from (zc,wc−1,A
′
c), by using Eq. 2.5

Compute (EvalStabc, IndHomogc) , by using Eqs. 4.1 and 4.2
end while
(zopt ,wopt ,Aopt):= (zc,wc,Ac)
return (zopt ,wopt ,Aopt)

Illustrative example
Let’s apply the BiBinAlter algorithm on the following binary matrixMb(I, J):

C1 C2 C3 C4 C5

G1 1 1 0 1 0
G2 0 0 1 0 1
G3 1 1 0 1 0
G4 0 0 1 0 1

Mb(I, J)

• Initialization step

First, we initialize the rows and columns thanks to the initialization step of BiMax
algorithm Prelić [3] and we compute (z0,w0,A0), we obtain:

z0 = (1, 2, 2, 3), w0 = (1, 1, 0, 0, 0), A0 = (1, 0; 1, 1; 0, 1)
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A colored block in the binary matrix Mb(I, J) will be represented by a colored cell in
the summary matrix A0, where each colored cell contains the majority binary value in the
corresponding colored block, e.g, if the majority of cells in a block in Mb(I, J) contains 1
then the corresponding cell in A0 contains also 1.

• Biclustering step:

Iteration 1: c = 1
We compute (z1,w0,A

′
1) starting from (z0,w0,A0) by using Eq. 2.4, we obtain:(

z1,w0,A
′
1

)
= ((1, 3, 2, 1), (1, 1, 2, 2, 2), (1, 1; 1, 0; 0, 1))

We compute (EvalStab′
1, IndHomog ′

1) by using Eq. 4.3, we obtain:

(
EvalStab

′
1, IndHomog

′
1

)
=

(
2,

2
3

)

We compute (z1,w1,A1) starting from (z1,w0,A
′
1), by using Eq. 2.4, we obtain:

(z1,w1,A1) = ((1, 3, 2, 1), (2, 2, 1, 2, 1), (1, 1; 1, 0; 0, 1))

We compute (EvalStab1, IndHomog1), by using Eq. 4.3, we obtain:
(
EvalStab1, IndHomog1

) =
(
1,

2
6

)

Since we have

(((zc,wc,Ac) �= (zc−1,wc−1,Ac−1)) and (EvalStabc, IndHomogc)

�= (EvalStabc−1, IndHomogc−1)
))

and

(((zc,wc,Ac) �= (zc,wc−1,A
′
c)) and ((EvalStabc, IndHomogc)

�= (EvalStab
′
(c−1), IndHomog

′
(c−1)))

we make another iteration
Iteration 2: c = 2
We compute (z2,w1,A

′
2) starting from (z1,w1,A1), by using Eq. 2.4, we obtain:(

z2,w1,A
′
2

)
= ((2, 1, 2, 3), (2, 2, 1, 2, 1), (0, 1; 1, 0, 0, 1))

We compute (EvalStab′
2, IndHomog ′

2), by using Eq. 4.3, we obtain:(
EvalStab

′
2, IndHomog

′
2

)
=

(
0,

0
6

)
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We compute (z2,w2,A2) starting from (z2,w1,A
′
2), by using Eq. 2.4, we obtain:

(z2,w2,A2) = ((2, 1, 2, 3), (2, 2, 1, 2, 1), (0, 1; 1, 0; 0, 1))

We compute (EvalStab2, IndHomog2), by using Eq. 4.3, we obtain:

(
EvalStab2, IndHomog2

) =
(
0,

0
6

)

Since we have

(((zc,wc,Ac) �= (zc−1,wc−1,Ac−1)) and (EvalStabc, IndHomogc)

�= (EvalStabc−1, IndHomogc−1)))

and

(((zc,wc,Ac) �= (zc,wc−1,A
′
c)) and ((EvalStabc, IndHomogc)

= (EvalStab
′
(c−1), IndHomog

′
(c−1)))

we make another iteration
Iteration 3: c = 3
We compute (z3,w2,A

′
3) starting from (z2,w2,A2), by using Eq. 2.4, we obtain:

(
z3,w2,A

′
3

)
= ((1, 1, 1, 1), (2, 2, 1, 2, 1), (1, 1)) (4.3)

We compute (EvalStab′
3, IndHomog ′

3), by using Eq. 4.3, we obtain:

(
EvalStab

′
3, IndHomog

′
3

)
= (1, 1)

We compute (z3,w3,A3) starting from (z3,w2,A
′
3), by using Eq. 2.4, we obtain:

(z3,w3,A3) = ((2, 1, 2, 3), (2, 2, 1, 2, 1), (0, 1; 1, 0; 0, 1))

We compute (EvalStab3, IndHomog3), by using Eq. 4.3, we obtain:

(
EvalStab3, IndHomog3

) =
(
0,

0
6

)

Since we have

(((zc,wc,Ac) �= (zc−1,wc−1,Ac−1)) and (EvalStabc, IndHomogc)

�= (EvalStabc−1, IndHomogc−1)))

and
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(((zc,wc,Ac) �= (zc,wc−1,A
′
c)) and ((EvalStabc, IndHomogc)

�= (EvalStab
′
(c−1), IndHomog

′
(c−1)))

we make another iteration
Iteration 4: c = 4
We compute (z4,w3,A

′
4) starting from (z3,w3,A3), by using Eq. 2.4, we obtain:

(
z4,w3,A

′
4

)
= ((1, 2, 1, 2), (2, 2, 1, 2, 1), (1, 0; 0, 1))

We compute
(
EvalStab′

4, IndHomog ′
4

)
, by using Eq. 4.3, we obtain:

(
EvalStab

′
4, IndHomog

′
4

)
=

(
0,

0
4

)

We compute (z4,w4,A4) starting from (z4,w3,A
′
4), by using Eq. 2.4, we obtain:

(z4,w4,A4) = ((1, 2, 1, 2), (1, 1, 1, 1, 1), (1; 0))

We compute
(
EvalStab4, IndHomog4

)
, by using Eq. 4.3, we obtain:

(
EvalStab4, IndHomog4

) = (1, 1)

Since we have

(((zc,wc,Ac) �= (zc−1,wc−1,Ac−1)) and (EvalStabc, IndHomogc)

�= (EvalStabc−1, IndHomogc−1)))

and

(((zc,wc,Ac) �= (zc,wc−1,A
′
c)) and ((EvalStabc, IndHomogc)

�= (EvalStab
′
(c−1), IndHomog

′
(c−1)))

we make another iteration
Iteration 5: c = 5
We compute (z5,w4,A

′
5) starting from (z4,w4,A4), by using Eq. 2.4, we obtain:

(
z5,w4,A

′
5

)
= ((1, 2, 1, 2), (1, 1, 1, 1, 1), (1; 0))
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We compute (EvalStab′
5, IndHomog ′

5), by using Eq. 4.3, we obtain:

(
EvalStab

′
5, IndHomog

′
5

)
= (1, 1)

We compute (z5,w5,A5) starting from (z5,w4,A
′
5), by using Eq. 2.4, we obtain:

(z5,w5,A5) = ((1, 2, 1, 2), (1, 1, 2, 1, 2), (1, 0; 0, 1))

We compute (EvalStab5, IndHomog5), by using Eq. 4.3, we obtain:

(
EvalStab5, IndHomog5

) =
(
0,

0
4

)

We have (EvalStab′
4, IndHomog ′

4) = (EvalStab5, IndHomog5)) and (z5,w5,A5) =
(z4,w3,A

′
4).

Since we have

(((zc,wc,Ac) = (zc,wc−1,A
′
c)) and ((EvalStabc, IndHomogc)

= (EvalStab
′
(c−1), IndHomog

′
(c−1)))

we stop the loop.
Then, we obtain (zopt ,wopt ,Aopt) = (z5,w5,A5). Biclusters that contain only 0’s will

not be considered because they represent genes that are not expressed under the related
conditions. Finally, (zopt ,wopt ,Aopt) can be represented inMb(I, J) as follows:

Results for synthetic datasets
In this section, we present an experimental study to evaluate the performance of our al-
gorithms of microarray data. Indeed, we compare the results of our algorithms to those
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obtained by a selection of known algorithms cited in the literature. We conducted experi-
ments on synthetic and real datasets of microarrays. The idea behind testing on synthetic
datasets is to investigate the ability of our algorithms to extract different types of biclus-
ters. However, on real datasets, we seek to assess the degree of response of our algorithms
for statistical and biological criteria.

Synthetic microarray datasets and comparaison criteria

By adopting the strategy and data described in [1], we have experimented our algorithms
on synthetic datasets by operarting as follows: First, we choose the number of biclusters,
3 clusters on rows (g = 3 ) and 2 clusters on columns (m = 2). Second, we use the Latent
Bernoulli Mixture (LBM)model [1] to generate binarymatrices (mixtures) by considering:

(a) Overlapping biclusters (overlapping rate = 5 % (well separated), 15 % (fairly
separated) and 25 % (poorly separated)).

(b ) Different data sizes (matrix size = 50 × 30 (small), 100 × 60 (medium) and
200 × 120 (large)).

Similar to [4], we use two indices, Recovery and Relevance, to evaluate our biclustering
algorithms: Let B1 be a group of true implemented biclusters in a binary data matrix Mb
and B2 be a group of output biclusters of a biclustering algorithm, Relevance reflects to
what extent B2 is similar to B1, while Recovery quantifies how well each bicluster in B1 is
recovered by B2 [3]:

Recovery = Overlap(B2,B1) (6.1)

Relevance = Overlap(B1,B2) (6.2)
where:

Overlap(B1,B2) = 1
|B1|

∑
(I1,J1)∈B1

max
(I2,J2)∈B2

|I1 ∩ I2||J1 ∩ J2|
|I1 ∪ I2||J1 ∪ J2| (6.3)

We use also two other indices cited in [2],

Shared = Scb
Totsize

100 (6.4)

NotShared = Sncb
Totsize

100 (6.5)

where
Scb is the volume of correctly extracted biclusters, Totsize is the total volume of

implemented biclusters and SNCB is the volume of not correctly extracted biclusters.
The Shared index (resp. NotShared) represents the percentage of correctly (resp. not

correctly) extracted biclusters with respect to all implemented biclusters in the data ma-
trix. Indeed, when the Shared value is equal to 100 %, the algorithm extracts all the
implemented biclusters. When the value of NotShared is 0 %, the algorithm extracts no
cell outside the implemented biclusters.

Table 1 Corresponding parameters values of our algorithms

Algorithms Corresponding parameters values

BiBinCons minrow = 2,mincol = 2

BiBinAlter minrow = 2,mincol = 2
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Table 2 Values of Shared and NotShared for non overlapping biclusters

Algorithms Shared NotShared

CC 18.21 % 36.57 %

OPSM 46.39 % 74.42 %

ISA 39.38 % 5.31 %

BiMax 58.18 % 21.39 %

BiBinCons 88 % 12 %

BiBinAlter 100 % 37.03 %

Experimental protocol

We have compared our algorithms to CC Cheng and Wee-Chung [2], OPSM Ben-Dor
and Yakhini [5], ISA Ihmels et al. [4] and BiMax Kaiser and Leisch [6]. These algorithms
were implemented in the BIClustering Analysis Toolbox (Bicat) platform. After several
simulations, the parameters of our algorithms were set as listed in Table 1. Indeed, at each
simulation, we set a parameter and we vary the other and vice inverse. Finally, we keep
the parameters which give the nearest implemented biclusters in the starting template.
For CC, OPSM, ISA and BiMax algorithms, we keep the value of the default parame-

ters values. Indeed, these values give biclusters of reasonable quality. We have adopted
Shared, NotShared, Recovery and Relevance as comparaison criteria. Table 2 shows the
best biclusters extracted by each algorithm:
As we can notice in Table 2, for the generated binary matrices, the best values of Shared

andNotShared for non overlapping biclusters were obtained by the BiBinAlter algorithm.
Indeed, to get a solution Bopt , the combination between two biclusters provides addi-
tional volume for the conditions. This reasonnable additional volume is generated by
a successive comparaisons between Pmax and the other polynoms of L, and we locate
the polynom Puncomon that has the lowest number ρ of uncommon terms with Pmax. In
fact, the interesting resulat is obtained because of we keep only the conditions that have
not been removed by the pretreatment process. Besides, the extracted bicluster from
the current matrix Mb(I, J) is removed ans we set the cells of Mb(I, J), representing the
new bicluster, to 0. Table 3 shows the best biclusters extracted by each algorithm. As
we can notice in Table 3, for the generated binary matrices, the best values of Shared
andNotShared for overlapping biclusters were also obtained by the BiBinAlter algorithm.
We can explain this as follows: BiBinAlter results covers most of the implemented bi-
clusters. Table 4 presents the number of biclusters obtained bu our algorithms on real
datastes.

Results of our algorithms on real datasets
In this section, we evaluate our algorithms on real microarray datasets.

Table 3 Values of Shared and NotShared for overlapping biclusters

Algorithms Shared NotShared

CC 13.21 % 36.57 %

OPSM 82.02 % 50.51 %

ISA 29.28 % 7.31 %

BiMax 48.18 % 22.39 %

BiBinCons 87.30 % 61 %

BiBinAlter 89.40 % 57.32 %



Ben saber and Elloumi BioDataMining  (2015) 8:38 Page 12 of 14

Table 4 Number of biclusters obtained by our algorithms on real datasets

Algorithms Yeast cell cycle Human B-cell Lymphoma

EnumLat 883 1921

DecBinBicluster 708 1720

BiBinCons 529 1900

BiBinAlter 881 1769

RefineBicluster 708 1700

Real microarray datasets

We have used two real microarray datasets: The Yeast cell cycle dataset which has been
described and then pretreated in [1]. It contains the expression of 2884 genes in 17 terms
ans the Human B-cell Lymphoma dataset which has been described by Alizadeh et al.
[1], it contains 4026 genes and 96 conditions. These datasets are used frequently in the
literature by biclustering algorithms.

Experimental protocol

The first experiments concern the statistical validation. It enables to calculate the cov-
erage for Yeast cell cycle and Human B-cell Lymphoma datasets and the p-value adjusted
forHuman B-cell Lymphoma datasets. The second experiments was applied to Yeast cell
cycle in order to study the biological significance of extracted biclusters.

Statistical validation

In order to validate statistically our algorithms on these real datasets, we evaluate the
performance of BiBinCons and BibinAlter. We calculate the total number of cells covered
by the biclusters. To do this, we have processed as in [2], and we have compared the
results of our algorithms to those reported in [2]. In the literature, the coverage test was
performed on Yeast cell cycle and Human B-cell Lymphoma datasets. This test is not
applied to RefineBicluster algorithm because it is only a refinement algorithm.
Table 5 reports the percentage of Coverage on the different algorithms for Yeast cell

cycle and Human B-cell Lymphoma datasets. We note that most algorithms have more or
less close rates. For example, for the Yeast cell cycle datase, BiBinCons has the lowest per-
formance. This is explained by the fact that BiBinCons extracts thousands of small sized
biclusters. The CC algorithm extracts biclusters with random values. Thus, CC prohibits
the genes/conditions already discovered to be selected in the next search process. This
type of mask leads to a high coverage and preventing the discovery of large biclusters.

Biological validation

To evaluate biologically extracted biclusters, we use the web tool GOTermFinder. To
do this, we present the most significant shared biclusters. In this section, we evaluate

Table 5 Values of Coverage for Yeast cell cycle and Human B-cell Lymphoma datasets

Datasets Algorithms Total coverage Genes coverage Conditions coverage

Yeast celll cycle

CC 81.47 % 97.12 % 100 %

BiBinCons 39.14 % 44.5 % 100 %

BiBinAlter 47 % 48,03 % 100 %

Human B-cell
Lymphoma

CC 36.81 % 91.58 % 100 %

BiBinCons 34.14 % 37.51 % 100 %

BiBinAlter 41 % 46.13 % 100 %
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Table 6 The most important terms of GO for the two most significant extracted biclusters from Yeast cell cycle dataset by BiBinCons and BiBinAlter

Biclusters Biological process Molecular function Cell component

12 genes, 13
conditions

Cellular response to chromatin binding microtubule organiz-
ing 13 conditions DNA damage stimulus (25 %,0.00037) center
part (66.7 %, 1:87 * 10-8) (16.7 %, 0.00742) response to DNA
damage stimulus (66.7 %, 6:30 * 10-8) cellular response to stress
(66.7 %, 2:12 * 10-7) cellular response to stimulus (66,7 %, 3:25 *
10-7) DNA repair (50 %, 2:58 * 10-5) response to stress (66.7 %,
2:98 * 10-5)

Chromatin binding microtubule organizing 13
conditions DNA damage stimulus (25 %,0.00037)

Microtubule organizing 13 conditions DNA damage
stimulus (25 %,0.00037) center part (66.7 %, 1:87 *
10-8) (16.7 %, 0.00742)

11 genes, 11
conditions

Cell cycle process GTPase activator microtubule cytoskeleton
11 conditions (63.6 %, 2:93 * 10-5) activity (18.2 %,0.00994)
(45.5 %, 6:33 * 10-6) cell cycle microtubule organizing (63.6 %,
6:85 * 10-5)

GTPase activator microtubule cytoskeleton 11 conditions
(63.6 %, 2:93 * 10-5) activity (18.2 %,0.00994)

Microtubule cytoskeleton 11 conditions (63.6 %, 2:93 *
10-5) activity (18.2 %,0.00994) (45.5 %, 6:33 * 10-6) cell
cycle microtubule organizing (63.6 %, 6:85 * 10-5)
center (36.4 %,4:97 * 10-5) spindle pole body (36.4 %,
4:97 * 10-5) spindle pole (36.4 %, 6:77 * 10-5)
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Table 7 Computing time of our algorithms

Datasets BiBinCons BiBinAlter

Yeast Cell Cycle 32 min 37 min 12 sec

Saccharomyces Cerevisiae 8 min 8 min 3 sec

BiBinCons and BiBinAlter algorithms on real microarray datasets. We have choosen this
algorithm because it gaves the best results on synthetic datasets. Table 6 presents the
most important terms of GO for the two most significant extracted biclusters from Yeast
cell cycle dataset by BiBinCons and BiBinAlter.

Computing time

Table 7 shows the computing time of BiBinCons and BiBinAlter algorithms. All devel-
oped algorithms in this thesis were implemented in R under the R studio. The physical
characteristics of the machine are as follows: a PC with an Intel Core 2 Duo T6400 with
a clock frequency of 2.0 GHz and 3.5 GO of RAM. We note that BiBinAlter algorithm is
the most time consuming and this is due to the use of proposed evaluation function.

Conclusion
In this paper, we have developed two biclustering algorithms of binary microarray data,
called BiBinCons and BiBinAlter, adopting the Iterative Row and Column Clustering
Combination (IRCCC) approach, however, the BiBinAlter algorithm is an improvement
of BiBinCons. On the other hand, BiBinAlter differs from BiBinCons by the use of
the EvalStab and IndHomog evaluation functions in addition to the CroBin one [1].
BiBinAlter can extract biclusters of good quality with better p-values. In this paper, we
have presented an experimental study of our biclustering algorithms of microarray data.
We have compared the results of our algorithms to those obtained by a selection of the
known biclustering algorithms. We have conducted experiments on both synthetic and
real datasets of microarrays. For both synthetic and real datasets, our biclustering algo-
rithm BiBinAlter outperforms the other algorithms, followed by our other biclustering
algorithms nd BiBinCons.
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