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Abstract
Background: The purpose of the MaxT algorithm is to provide a significance test
algorithm that controls the family-wise error rate (FWER) during simultaneous
hypothesis testing. However, the requirements in terms of computing time and
memory of this procedure are proportional to the number of investigated hypotheses.
The memory issue has been solved in 2013 by Van Lishout’s implementation of MaxT,
which makes the memory usage independent from the size of the dataset. This
algorithm is implemented inMBMDR-3.0.3, a software that is able to identify genetic
interactions, for a variety of SNP-SNP based epistasis models effectively. On the other
hand, that implementation turned out to be less suitable for genome-wide interaction
analysis studies, due to the prohibitive computational burden.

Results: In this work we introduce gammaMAXT, a novel implementation of the maxT
algorithm for multiple testing correction. The algorithm was implemented in software
MBMDR-4.2.2, as part of the MB-MDR framework to screen for SNP-SNP,
SNP-environment or SNP-SNP-environment interactions at a genome-wide level. We
show that, in the absence of interaction effects, test-statistics produced by the MB-MDR
methodology follow a mixture distribution with a point mass at zero and a shifted
gamma distribution for the top 10% of the strictly positive values. We show that the
gammaMAXT algorithm has a power comparable to MaxT and maintains FWER, but
requires less computational resources and time. We analyze a dataset composed of 106

SNPs and 1000 individuals within one day on a 256-core computer cluster. The same
analysis would take about 104 times longer withMBMDR-3.0.3.

Conclusions: These results are promising for future GWAIs. However, the proposed
gammaMAXT algorithm offers a general significance assessment and multiple testing
approach, applicable to any context that requires performing hundreds of thousands
of tests. It offers new perspectives for fast and efficient permutation-based significance
assessment in large-scale (integrated) omics studies.

Keywords: Multiple testing, Genome-wide interaction studies, MaxT, Gamma
distribution, SNP-environment interactions, 3-order interactions, Algorithmic

Background
Personalized medicine proposes to customize healthcare using molecular analysis
[1–5]. However, for most human complex diseases, a deeper comprehension of the under-
lying biology is needed to make this approach workable. Since individual genes usually
do not account for much of the heritability of phenotypes, the focus should be on the
combined effect of all the genes in the background, rather than on the disease genes
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in the foreground [6–9]. MBMDR-4.2.2 is a software dedicated to genome-wide asso-
ciation interaction studies (GWAIs), the purpose of which is to identify pairs of SNPs
and/or environmental factors that might regulate the susceptibility to the disease under
investigation. The difficulty is to find a good balance between four main issues, that we
summarise in the following objectives:

(1) Minimize the amount of false discoveries.
(2) Achieve sufficient statistical power to detect relevant pairs.
(3) Reduce the computational burden implied by the high number of tests for

interactions.
(4) Provide a versatile software package that accommodates different study designs

and study features, including flexibility in trait measurement types and the
possibility to adjust for important predictor variables and confounders.

Available software

Among the numerous software designed for pair-wise or higher-order SNP-SNP inter-
actions, we recall BOOST [10], BiForce [11], epiGPU [12], EpiBlaster [13], GLIDE
[14], Multifactor Dimensionality Reduction (MDR) [15, 16] and Model-Based Multifac-
tor Dimensionality Reduction (MB-MDR) [17, 18]. The following comparison of these
approaches is mainly inspired from [19] who review and discuss several practical aspects
GWAIs typically involve. BOOST is a software based on fast Boolean operations, to
quickly search for epistasis associated with a binary outcome. Its main drawbacks are
its inability to accommodate missing data and its necessity to perform a multiple test-
ing correction outside the software package. BiForce is a regression-based tool handling
binary and continuous outcomes, that can take account of missing genotypes and has
a built-in multiple testing correction algorithm. Although, the latter is based on a fast
Bonferroni correction implementation, it leads to reduced power for GWAIs, as fur-
ther discussed in Multiple-testing correction Section. EpiBlaster, epiGPU and GLIDE are
all GPU-based approaches. An obvious drawback of GPU-dependent software is that it
is tuned for a particular GPU-infrastructure. Therefore, users are advocated to acquire
the exact same infrastructure and only experts can adapt the code to specific needs.
Note that users willing to work on dedicated hardware to speed up the computations
can even turn to field-programmable gate array (FPGa) [20]. MDR is a non-parametric
alternative to traditional regression-based methods that converts two or more variables
into a single lower-dimensional attribute. The end goal is to identify a representation
that facilitates the detection of non-linear or non-additive interactions. Over-fitting
issues in MDR are solved via cross-validation and permutations. Since the design of
MDR, several adaptations have been made [21]. MB-MDR breaks with the tradition of
cross-validation and invests computing time in permutation-based multiple multilocus
significance assessments and the implementation of the most appropriate association
test for the data at hand. It is able to correct for important main effects. Its main asset
compared to the other methods is its versatility. MB-MDR can for instance be used to
highlight gene-environment or gene-gene-environment interactions in relation to a trait
of interest, while efficiently controlling type I error rates. The trait can either be expressed
on a binary or continuous scale, or as a censored trait. MDMDR-3.0.3 is a C++ software
tool based on the MB-MDR methodology, achieving good results regarding objectives
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(1), (2) and (4) [22, 23]. However, concerns about computational efficiency remain when
scaling up to exhaustive genome-wide interaction contexts. In this work we introduce a
new version of the software,MDMDR-4.2.2, based on a novel multiple-testing correction
algorithm, with the purpose of improving the performances along objective (3), with the
same benefits as before regarding the other three ones.

Multiple-testing correction

In GWAIs, the most global null hypothesis is that none of the SNPs pairs, nor their
main effects, are associated with the trait. Testing each pair independently at level α

does not control the overall FWER at level α; an adjustment is needed for the fact
that multiple tests are performed. One such adjustment can be realized via a Bonfer-
roni correction [24]. This is a so called single-step procedure for strong FWER control.
Single-step methods tend to be conservative though and improvements in power can
be achieved by so called step-down procedures [25]. Among these we recall step down
minP adjusted p-values (minP) and step down maxT adjusted p-values (maxT). These
methods guarantee strong control of the FWER under the subset pivotality assumption
and weak control under all conditions [26]. Both procedures are available in MDMDR-
3.0.3, the adjusted p-values being estimated by permutation. Since a high number of
pairs of SNPs are tested, minP tends to be more conservative than maxT [25]. Fur-
thermore, minP requires more computations than maxT. For these reasons, maxT is
the default choice in MDMDR-3.0.3. Note that the drawback of maxT compared to
minP, is that when the test statistics are not identically distributed unbalanced adjust-
ments can be observed because not all tests contribute equally to the computed adjusted
p-values.
Figure 1(a) describes the classical implementation of maxT in MB-MDR. Test-statistics

are computed for allm pairs of SNPs and sorted in decreasing order in vector Real Data.
The trait is permuted B times and test-statistics are computed for all pairs of SNPs and
stored in vectors Permutationi, i = 1, . . . ,B. The latter are browsed from right to left and
any value higher than its left neighbor’s value overwrites the latter value. This step is an

Fig. 1 classical MaxT versus Van Lishout’s implementation of MaxT. In the classical implementation of MaxT,
all Ti,j values are computed and stored in memory, ∀i = 0 . . . B, ∀j = 1 . . .m. Then, Ti,j is overwritten by Ti,j+1

whenever Ti,j+1 > Ti,j , ∀i = 1 . . . B, ∀j = m − 1 . . . 1. Finally, pj+1 is overwritten by pj whenever pj > pj + 1,
∀j = 1 . . .m − 1. In Van Lishout’s implementation of MaxT, the [ Ti,n+1, . . . , Ti,m] values are computed as
before ∀i = 1 . . . B, but only the maximum valuesMi are stored in memory (for i > 0)
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algorithmic trick to reach efficiently an idea that is best explained the other way around.
Let Ti,max be the maximum of Permutationi, i = 1, . . . ,B. The Ti,max values can be used
to approximate the distribution of the highest observed value when testingm pairs under
the global null hypothesis (no pair of SNPs associated to the disease). Comparing T0,1
to this distribution enables the computation of adjusted p-value p1, i.e. the probability
of observing a value as extreme as T0,1 for the most promising pair of SNPs. Removing
the latter from the data and restarting the whole procedure would obviously allow the
computation of adjusted p-value p2 and so on for the remaining ones. From an algorith-
mic point of view, this would be a waste of time, hence the aforementioned procedure
leading to the same result. Finally, the adjusted p-values are browsed from left to right
and any value higher than its right neighbors’s value overwrites the latter. This procedure
obviously aims at controlling the FWER. A particular hypothesis can indeed now only be
rejected if all hypotheses were rejected beforehand. The problem of the original maxT is
that it is both time and memory consuming.
Van Lishout’s implementation of maxT solves the latter issue [23]. It is based on the

observation that in practice, only a few adjusted p-values will point towards interest-
ing interactions to investigate. With this in mind, it adapts the original method such
that it still calculates the test-statistics of all pairs, but only computes the adjusted
p-values of the n best pairs, i.e. the ones with the n lowest adjusted p-values. The
default value is n = 1000 and can be tuned without loss of generality according to the
researcher’s needs. Note that despite the fact that only n adjusted p-values are produced,
they are still adjusted at the overall level, i.e. for the m association tests. Figure 1(b)
describes Van Lishout’s MaxT implementation. The different steps are reported in
Table 1.

Bottlenecks of Van Lishout’s maxT

Van Lishout’s implementation of maxT still leaves room for improvement. In what fol-
lows, we identify its main bottlenecks, in order to improve the overall performance on
large-scale data. In Table 2 we report the number of operations performed (with the
default parameters of the software n = 1000 and B = 999) on a dataset containing 106

SNPs, which is equivalent tom ≈ 5 × 1011 pairs of SNPs.
Table 2 reflects that in step 1 of Van Lishout’s maxT, as many elementary compu-

tations are carried out as there are SNP pairs to test. Although significance assess-
ment can be based on fewer SNP pairs, this first step of computing test values

Table 1 Van Lishout’s MaxT

(1) Compute the test-statistics for all pairs, but only store the n highest tests values. The result is a Real data
vector where T0,1 ≥ T0,2 ≥ . . . ≥ T0,n .

(2) Initialise a vector p of size n with 1’s.

(3) Perform the following operations for i = 1, . . . , B:

(a) Generate a random permutation of the trait column.

(b) Compute Ti,1, . . . , Ti,n and store them in a Permutationi vector.

(c) Compute the maximumMi of the test-statistics values Ti,n+1, . . . , Ti,m .

(d) Replace Ti,n byMi if Ti,n < Mi .

(e) Force the monotonicity of the Permutationi vector: for j = n − 1, . . . , 1 replace Ti,j by Ti,j+1 if Ti,j < Ti,j+1.

(f) For each j = 1, . . . , n, if Ti,j ≥ T0,j increment pj by one.

(4) Divide all values of vector p by B + 1 to obtain the p-values vector. Force monotonicity: for j = 1, . . . , n − 1,
replace pj+1 by pj if pj+1 < pj .
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Table 2 Analysis of the computing times of the different steps of Van Lishout’s implementation of
MaxT on a dataset containing 1 million SNPs

Theoretical value Numerical value

Step 1 O(m) O(1011)

Step 2 O(n) O(103)

Step 3 (a) O(B) O(103)

Step 3 (b) O(Bn) O(106)

Step 3 (c) O(Bm) O(1014)

Step 3 (d) O(B) O(103)

Step 3 (e) O(Bn) O(106)

Step 3 (f) O(Bn) O(106)

Step 4 O(n) O(103)

and ordering them cannot be avoided nor simplified. However, the most computa-
tionally intensive part of the significance assessment procedure is step 3(c). With
106 inputted SNPs, the number of elementary computations required is proportional
to 1014. Therefore, any improvement at this stage will lead to better overall per-
formances. In “Methods” section, we introduce a novel algorithm for multiple test-
ing, based on Van Lishout’s implementation of maxT. It is implemented in the
software MBMDR-4.2.2 and resolves remaining concerns about maxT’s computa-
tion time in genome-wide screens for genetic interactions using the MB-MDR
framework.

Methods
In MBMDR-4.2.2 the value of Mi from Fig. 1 will be estimated from a sample from
[Ti,n+1, . . . ,Ti,m] rather than calculated exactly. A detailed explanation of howwe perform
such an improvement is provided in the next section.

Distribution of MB-MDR statistics

We have indicated before that MB-MDR offers a flexible framework to test for SNP-
SNP interactions. The software in which the framework is implemented has a modular
built-up that allows a flexible choice of association test, depending on the input data. For
instance, for quantitative traits, t-tests or non-parametric equivalents can be carried out.
For binary traits, chi-squared test of independence can be chosen. The association test
that best reflects the data at hand is used in both stage 1 and stage 2 of the MB-MDR
framework [27]. After the data manipulation of combining cells using trait information,
MB-MDR’s final test statistic no longer follows the theoretical sample distribution of the
initially chosen test statistic. In fact, earlier work has shown that such sequential pool-
ing may lead to permutation-based distributions of within MB-MDR test statistics that
depend on the number of multi-locus genotype cells pooled [28] or on the minor allele
frequencies (MAFs) of the SNP pair under consideration [29]. Rather than looking at the
null distribution of the test statistic linked to a SNP-pair, we are now interested in the
distribution of a number of test values over several SNP-pairs, from which to derive the
maximum value Mi. We hypothesize that test values in [Ti,n+1, . . . ,Ti,m], with i > 0, fol-
low a mixture distribution of a shifted gamma distribution [30] and a point mass at zero.
Note that zero test values are induced by scenarios for which the MB-MDR test statis-
tic cannot be computed. InMBMDR-4.2.2, whenever a group of subjects (e.g., in a 2-SNP
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interaction study, those subjects having two copies of the minor allele at each locus) is
compared to the remaining subjects with respect to the trait under study and by using an
appropriate association test statistic, this group can either be associated to a higher “risk”
(“H” category), a lower “risk” (“L” category) or undecisive “risk” (nor “H”, nor “L”; “O” cate-
gory) for the trait. Here, “risk” is used loosely. For instance for continuous traits, the “risk”
categories above may rather refer to increased (“H” category), decreased (“L” category)
mean trait values. Also, in the MB-MDRmethodology, risk scales can be refined to incor-
porate multiple risk categories. It is important to realize that if all subjects are assigned
the same label (in this scenario, most probably the “O” label), then MB-MDR will return
an exact zero. It is not surprising that lack of power of GWAIs (which depends on sample
size but also true effect size) will induce such technical zeros for a significant proportion
of the tested SNP pairs. In order to take this important amount of zeros into account, we
use the approach described in [31].We assign a discrete probability mass to the exact zero
value. Hence, if Xi is a random variable returning a random value from [Ti,n+1, . . . ,Ti,m],
with i > 0, we can define the probabilities π = P(Xi > 0) and 1 − π = P(Xi = 0).
Therefore, the distribution of Xi is semi-continuous with a discontinuity at zero. This
implies that the probability density function is fXi(x) = (1 − π)δ(x) + πgXi(x)1(x>0),
where δ(x) is a point probability mass at x = 0, gXi(x) is the distribution of the strictly
positive values and 1(x>0) is an indicator function taking the value 1 if x > 0 and 0 oth-
erwise. The parameter π depends on the data at hand and can be estimated with the
Maximum Likelihood Estimation (MLE) method [32] from the observed frequency in
a sample from [Ti,n+1, . . . ,Ti,m]. Due to the fact that our main goal consists in predict-
ing a maximum, we are not particularly interested in fitting the distribution of gXi(x)
on the entire set of strictly positive values. As a matter of fact, fitting the tail of gXi(x)
should suffice. We show in the next section that focusing on the top 10% strictly pos-
itive values is an acceptable practical choice. We consider this a good tradeoff between
fitting on a large and a smaller range of positive values. The former might lead to a poor
fit of the tail, because many samples might not belong to that range. The latter might
lead to a poor fit of the tail due to an insufficient number of samples. The amount of
values belonging to the top 10% strictly positive values in [Ti,n+1, . . . ,Ti,m] is given by
q = (m−n)π

10 .

Assumption 1

We assume that the shifted gamma distribution is a good fit to the tail of gXi(x). Hence,
if Yi is a random variable returning a value from the aforementioned top 10% of strictly
positive values, we postulate that its cumulative distribution function (CDF) is given by

FYi( y) = γ
(
k, y−y0

θ

)
�(k) , where γ is the lower incomplete gamma function, y0 is the location

parameter, k is the shape parameter and θ the scale parameter. Some authors discour-
age the use of the gamma distribution for model fitting due to the difficulty of parameter
estimation [33]. However, in the specific case of fitting the tail of the distribution of
the MB-MDR statistics, we believe that simpler models would be consistently inaccu-
rate. Moreover, the lack of knowledge regarding the shape of a plausible distribution
and the diversity of the data we are performing our computations on, make a versatile
distribution function like the gamma, a reasonable assumption. Note that the choice of
shifting the gamma distribution comes naturally due to the fact that the smallest strictly
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Table 3Mean and variance of the fitted parameters for datasets D1 − D4

D1 D1 D2 D2 D3 D3 D4 D4

Mean Var Mean Var Mean Var Mean Var

π 0.337 1.247 × 10−6 0.335 3.815 × 10−6 0.137 4.948 × 10−7 0.366 9.356 × 10−7

y0 7.742 5.566 × 10−4 7.825 8.778 × 10−4 6.189 6.472 × 10−4 7.788 3.805 × 10−4

k 1.017 2.612 × 10−4 1.012 2.534 × 10−4 0.990 3.580 × 10−4 1.017 1.725 × 10−4

θ 1.917 1.462 × 10−3 1.974 1.532 × 10−3 1.694 1.829 × 10−3 1.917 9.695 × 10−4

positive value should not be in the neighborhood of zero. Indeed, a small value would
represent a low-significant association between the interaction of the two loci and the
phenotype. As previously mentioned, this would lead to the “O” category for all subjects
and an exact zero. The CDF of the random variable Zi returning the maximum of the
q values belonging to the top 10% strictly positive values in [Ti,n+1, . . . ,Ti,m] is given by

FZi(z) =
[

γ
(
k, z−y0

θ

)
�(k)

]q

. Indeed, if we take q independent and identically distributed (i.i.d.)

values y1, y2, . . . , yq, then P[( y1 ≤ yt) ∧ ( y2 ≤ yt) ∧ . . . ∧ ( yq ≤ yt)]=[FYi(yt)]q = FZi(z).

Assumption 2

We postulate that the parameters π , y0, k and θ are stable from one permutation to
another. This assumption is a plausible one, given the results in Table 3, which show
low variance of these parameters across 999 permutations. An analogous observation
has been noticed in a similar work [34], based on hypothesis testing with an extreme
value distribution. In order to reduce the computational burden of the fitting, we estimate
the parameters once every 20 permutations. We consider this a compromise between
robustness and performance.

Estimating the parameters of the shifted gamma distribution

As mentioned in the introduction, the gammaMAXT algorithm only differs from Van
Lishout’s implementation of maxT (Table 1) with respect to step 3(c). In the novel imple-
mentation the maximum Mi is estimated from a sample of size S = 106 of strictly
positives values in [Ti,n+1, . . . ,Ti,m] rather than calculated directly. The parameter π is

Table 4 Step 3(c) of gammaMAXT

(1) If (i modulo 20 = 1) estimate π , y0, k and θ :

(a) Set z = 0. Create vector v of size S.

(b) Randomly select integer r in [ n + 1,m].

(c) If Ti,r = 0, z=z+1, else store Ti,r in v.

(d) Repeat steps (b) and (c) until v is full.

(e) Sort v. Remove the 90% lowest values. The new size of v is N = S
10 .

(f) Estimate π = S
z+S .

(g) Estimate y0 by the minimum of v.

(h) Estimate k: see below.

(i) Estimate θ = 1
kN

N∑
i=1

(v[ i]−y0).

(2) If (i modulo 20 �= 1), use the latest estimated values of π , y0, k and θ .

(3) SampleMi from the distribution of the maximum, whose CDF is FZi (z) =
[

γ
(
k, z−y0

θ

)
�(k)

] (m−n)π
10

.
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estimated on the fly using a variable z, counting the amount of zeros encountered during
the sampling process. The new step 3(c) is described in Table 4.
Whereas estimates in steps (1)(f ), (1)(g) and (1)(i) are obtained via Maximum Like-

lihood, the estimation of the parameter k requires more elaboration. According to
[35], an acceptable initial guess being within 1,5% of the correct value is given by

k = 3−s+
√

(s−3)2+24s
12s , with s = ln

(
1
N

N∑
i=1

(v[i]−y0)
)

− 1
N

N∑
i=1

ln(v[ i]−y0). This ini-

tial guess is updated iteratively via the Newton-Raphson method [36]. In particular,
in every iteration, k is updated as k = k − ln(k)−ψ(k)−s

1
k −ψ ′(k) until the difference between

the new and the old value of k is lower than the desired precision (default: 0.000001).
ψ(k) and ψ ′(k) are respectively the digamma and trigamma functions. Finally, Table 5
describes the procedure used at step (3) to compute the final Mi estimation. Note that
we have to sample and not take the expectation, in order to mimic the original maxT
algorithm.

Parallel workflow

Figure 2 describes the four steps of the parallel workflow developed to further make
MBMDR-4.2.2 suitable for GWAIs. The detailed algorithm is given in Table 6.

Results and discussion
In this section, we first show results supporting the two assumptions on which the novel
algorithm is based. Then, we analyse the performances in terms of computing-time,
power and control of the FWER.

Results supporting assumption 1

In this part, we investigate the hypothesis that the tail of gXi(x) follows a shifted gamma
distribution and that fitting the top 10% of strictly positive values is an acceptable choice.
We use the following datasets for this experiment:

• A simulated dataset D1 expressed on a binary scale, composed of 1000 SNPs and
1000 individuals. Table 7 states the two-locus penetrance table used to generate it. A
balanced number of cases and controls is sampled. The minor allele frequencies of
the functional SNPs are fixed at 0.5 and those of the non-functional SNPs are
randomly generated from a uniform distribution on [0.05, 0.5]. This corresponds to
the first of six purely epistatic models discussed in [15]. Furthermore, any value in the
dataset had a 5% chance to be missing.

• A simulated dataset D2, with the same properties as D1, except that the trait is
expressed on a continuous scale.

• A simulated dataset D3, with the same properties as D1, except that the MAF’s are on
average lower, i.e. the non-functional SNPs were randomly generated from a uniform
distribution on [0.05, 0.1].

Table 5 SampleMi when CDF is FZi (z)

(a) Take a too high initial guess ofMi (default: 1000). Initialize variable b to half of this value.

(a) Randomly select a real number rn ∈[0, 1].
(c) If FZi (Mi) is lower than rn ,Mi = Mi + b, elseMi = Mi − b. Divide b by 2.

(d) Repeat step (c) until b is below the desired precision (default: 0.000001).
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Fig. 2 MBMDR-4.2.2 parallel workflow. First, each cluster node performs a fair proportion of the T0,1, . . . , T0,m
values from Fig. 1 and saves the n highest into file top_c.txt. Second, a node aggregates all top_c.txt files and
retrieves the overall n highest values, saved in topfile.txt. Third, each cluster node reads topfile.txt and
performs an equitable fraction of the B permutations of Fig. 1, saving results into file permut_c.txt. Finally, a
cluster node aggregates all permut_c.txt and produces the final output file

• A real-life dataset D4 on Crohn’s disease, for which the trait is expressed on a binary
scale [37, 38], reduced to 12471 SNPs and 1687 subjects as in [23].

For each of the aforementioned datasets, we first carry out the initial Van Lishout’s
implementation of maxT based on 104 permutations to generate a reference distribution

Table 6 gammaMAXT parallel workflow

(1) Each cluster node c = 1 . . . C performs an equitable fraction of the computations of the T0,1, . . . , T0,m
values from Fig. 1. The n highest values (and corresponding SNP pair indexes) from each node are saved
into file top_c.txt.

(2) Upon termination of all computations at the previous step, a cluster node aggregates all top_c.txt files and
retrieves the overall n highest values (and corresponding SNP pair indexes). Results are saved into topfile.txt.

(3) Each cluster node reads topfile.txt, initialize a vector V of size n with 0’s and performs an equitable fraction
of the B permutations of Fig. 1. For each permutation i attributed to node c:

(a) Generate a random permutation of the trait column.

(b) Compute Ti,1, . . . , Ti,n and store them in a Permutationi vector.

(c) Execute step (3)(c) of the gammaMAXT algorithm to estimateMi .

(d) Replace Ti,n byMi if Ti,n < Mi .

(e) Force the monotonicity of the Permutationi vector: for j = n − 1, . . . , 1 replace Ti,j by Ti,j+1 if Ti,j < Ti,j+1.

(f) For each j = 1, . . . , n, if Ti,j ≥ T0,j increment Vj by one.

Upon completion of all computations on node c, save V into file permut_c.txt.

(4) A cluster node sums all vectors from the permut_c.txt files to obtain a vector p. All elements of p are
incremented by 1 and divided by B + 1. The monotonicity is forced: for j = 1, . . . , n − 1, replace pj+1 by pj
if pj+1 < pj .
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Table 7 Two-locus penetrance table used to create the simulated datasets D1, D2 and D3

b/b b/B B/B

a/a 0 0.1 0

a/A 0.1 0 0.1

A/A 0 0.1 0

for Mi. We second execute step (3)(c) of the gammaMAXT algorithm based on 104

permutations, with different values for the internal parameter defining the percentage of
strictly positive values belonging to the tail of gXi(x). Figure 3 is generated in R and shows
the results for dataset D1. We observe that focusing on respectively 25, 20, 15, 5 and 1%
of the strictly positive values leads to a good fit, but that 10% is the optimal alternative.
The curves of subfigure (d) are indeed close and the Kolmogorov-Smirnov (KS) distance
is the lowest among these choices. This supports the hypothesis that the gammaMAXT
algorithm produces accurate predictions of the Mi values. Addditional file 1: Figure S1,
Addditional file 2: Figure S2 andAddditional file 3: Figure S3 show that 10% is consistently
a good option, although not always the most optimal one.

Fig. 3 Theoretical (green) versus predictedMi values for D1. 10% is the optimal choice, leading to the lowest
Kolmogorov-Smirnov distance
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Results supporting assumption 2

In this section, we show results supporting the hypothesis that parameters π , y0, k and
θ are stable across permutations. We perform MBMDR-4.2.2 analyses on datasets D1
to D4, using the default settings. For this experiment, we modified the gammaMAXT
algorithm such that it fits new parameters for each of the 999 permutations (not only
once every 20 as previously mentioned) and saves these into a file. We report their
means and variances in Table 3. We observe that the variance is very low across all
scenarios.

Computing-time of the gammaMAXT algorithm

In order to assess the speed performances of MBMDR-4.2.2, we created 4 different
datasets with 1000 individuals each, of respectively 103, 104, 105 and 106 SNPs. All
datasets were generated using GAMETES, a fast, direct algorithm for generating pure
epistatic models with random architectures [39]. Another set of 4 datasets, containing
the same number of individuals and SNPs, but expressing the trait on a continuous scale,
was created using a similar strategy as for D2. The parallel workflow of MBMDR-4.2.2
has been tested on a 256-core computer cluster (Intel L5420 2.5 GHz). The sequential
version has been tested on a single core of this cluster. Table 8 shows the results. We
observe thatMBMDR-4.2.2 outperforms the computing times ofMBMDR-3.0.3 reported
in [23]. For instance, solving a continuous dataset of 104 SNPs on a single core takes about
56 min with MBMDR-4.2.2 and almost 12 days with MBMDR-3.0.3, i.e. about 300 times
less. Solving a continuous dataset of 106 SNPs on a 256-core cluster takes about one day
withMBMDR-4.2.2 and would take about 104 longer withMBMDR-3.0.3. In general, the
theoretical computing time of step 3 (c), which was O(Bm) in MBMDR-3.0.3 according
to Table 2, is now independent from B and m. The computing time of MBMDR-4.2.2 is
therefore asymptotically equal to the computing time of step 1, i.e. O(m) (a big improve-
ment compared to O(Bm), the asymptotic computing time of MBMDR-3.0.3). Note that
the computing times reported in [23] are based on runs without any correction for the
main effects of the SNPS. In this case, the times corresponding to a binary trait are about
twice faster than those based on a continuous case. In our study, a codominant correction
for the main effects of the SNPs has been performed, implying a regression framework.
Since the latter is similar in the binary and continuous case, we logically observe similar
computing times.

FWER of the gammaMAXT algorithm

To study the control of the FWER, we runMBMDR-4.2.2 on four sets of datasets:

Table 8 Execution times ofMBMDR-4.2.2. The parallel workflow was tested on a 256-core computer
cluster (Intel L5420 2.5 GHz). The sequential executions were performed on a single core of this cluster

SNPs MBMDR-4.2.2 MBMDR-4.2.2 MBMDR-4.2.2 MBMDR-4.2.2
Binary trait Binary trait Continuous trait Continuous trait

sequential execution parallel workflow sequential execution parallel workflow

103 13 min 33 sec 20 sec 13 min 18 sec 18 sec

104 52 min 15 sec 1 min 05 sec 56 min 14 sec 53 sec

105 64 h 35 min 22 min 15 sec 70 h 03 min 20 min 28 sec

106 ≈ 270 days 25 h 12 min ≈ 290 days 24 h 06 min

The results prefixed by the symbol “≈” are extrapolated
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• A set S1 of 1000 datasets, each composed of 1000 SNPs and 1000 individuals,
containing null data generated randomly from a uniform distribution on [0.05, 0.5]. A
balanced number of cases and controls is sampled.

• A set S2 with the same properties as S1, except that the trait is expressed on a
continuous scale.

• A set S3 of 200 datasets, each composed of 104 SNPs and 1000 individuals,
constructed in the same way as S1.

• A set S4 with the same properties as S3, except that the trait is expressed on a
continuous scale.

We report the observed false-positive rates in Table 9. In practice, these are computed
as the percentage of datasets containing at least one pair of SNPs that gave rise to an
adjusted p-value below 5%. On each set, we note that the estimated rates are within the
interval [ 2, 5 % − 7, 5 %] and satisfies thus Bradley’s liberal criterion of robustness for the
significance level α = 5% [40]. This criterion specifies that the FWER are controlled for
any significance level α, if the empirical rate α̂ is contained in the interval 0.5α ≤ α̂ ≤
1.5α.

Power of the gammaMAXT algorithm

To evaluate the power, we create nine sets of data with GAMETES. Each set consists in
1000 datasets, all composed of 1000 individuals (500 cases and 500 controls) and 200
SNPs (out of which exactly one pair is linked with the trait). The heritability varies across
the datasets from 0.03 to 0.01. In this way, we provide a range of decreasing effect sizes
showing the power reduction. Table 10 indicates the percentage of time that the pair
linked with the trait gave rise to an adjusted p-value below 5 %.We observe that the origi-
nalMaxT and the new gammaMAXT algorithm leads to very similar power. By predicting
the Mi values instead of computing them explicitly, we can of course not win power, so
that the power of the gammaMAXT algorithm is obviously equal or lower than the one
of MaxT. However, we observe that the difference is small, the largest power reduction
being of 1,7%.

Conclusion
In this work we introduced gammaMAXT, a novel implementation of themaxT algorithm
for multiple testing correction. The algorithm was implemented in software MBMDR-
4.2.2, as part of the MB-MDR framework to screen for SNP-SNP, SNP-environment or
SNP-SNP-environment interactions at a genome-wide level. In this context, we analyzed
a dataset composed of 106 SNPs and 1000 individuals within one day on a 256-core com-
puter cluster. The same analysis would take about 104 times longer with Van Lishout’s
implementation of maxT, which was already an improvement of the classic Westfall and
Young implementation [26]. These results are promising for future GWAIs. However,

Table 9 Observed FWER ofMBMDR-4.2.2

Set Amount datasets Observed FWER

S1 1000 4.5%

S2 1000 6.2%

S3 200 7%

S4 200 6.5%
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Table 10 Power comparison between the gammaMAXT and the MaxT algorithms

Heritability gammaMAXT MaxT

0.0100 3.7% 4.2%

0.0125 17.9% 19.4%

0.0150 50.3% 51.5%

0.0175 67.0% 68.7%

0.0200 86.6% 87.9%

0.0225 94.3% 94.7%

0.0250 97.5% 97.8%

0.0275 99.2% 99.3%

0.0300 99.6% 99.6%

the proposed gammaMAXT algorithm offers a general significance assessment and mul-
tiple testing approach, applicable to any context that requires performing hundreds of
thousands of tests. It offers new perspectives for fast and efficient permutation-based
significance assessment in large-scale (integrated) omics studies.

Availability
MBMDR-4.2.2 can be downloaded for free at http://www.statgen.ulg.ac.be.

Additional files

Additional file 1: Figure S1. Theoretical (green) versus predictedMi values for D2. 10% is again the optimal choice.
(EPS 64 kb)

Additional file 2: Figure S2. Theoretical (green) versus predictedMi values for D3. 20% is the optimal choice, but
10a low Kolmogorov-smirnov distance and remains a good choice. (EPS 64 kb)

Additional file 3: Figure S3. Theoretical (green) versus predictedMi values for D4. 10% is again the optimal choice.
(EPS 57 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FVL and JHM discussed the pros and cons of Van Lishout’s implementation of MaxT. This lead to the idea to try to predict
most of the computations. FVL first tried to base the predictions on a normal distribution without success. FG proved
that a gamma distribution is a much better choice than a poisson, a normal, an exponential or a Weibull distribution. FVL
and LW found the idea to focus on the top part of the distribution. KVS suggested to try to improve power by using
either an extreme value distribution or a generalized gamma distribution. FVL found that a shifted gamma distribution is
the best choice. KVS provided a lot of useful information for the background section. FVL carried out the analyses. KVS,
FVL and LW interpreted the results. FVL and FG are the main contributors of the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
This research was in part funded by the Fonds de la Recherche Scientifique (F.N.R.S.), in particular “Integrated complex
traits epistasis kit” (Convention 2.4609.11) [FVL, KVS]. We also acknowledge research opportunities offered by F.N.R.S.,
“Foresting in Integromics Inference” (Convention T.0180.13) [FG, KVS]. In addition, this paper presents research results of
the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction
Poles Programme, initiated by the Belgian State, Science Policy Office [FVL, FG, LW, KVS]. JHM was funded by National
Institutes of Health (USA) grant LM009012. The scientific responsibility rests with the authors.

Author details
1Systems and Modeling Unit, Montefiore Institute, University of Liège, Allée de la découverte 10, 4000 Liège, Belgium.
2Bioinformatics and Modeling, GIGA-R, Avenue de l’Hôpital 1, 4000 Sart-Tilman, Belgium. 3Institute for Biomedical
Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6021, USA.

Received: 7 June 2015 Accepted: 8 November 2015

http://www.statgen.ulg.ac.be
http://dx.doi.org/10.1186/s13040-015-0069-x
http://dx.doi.org/10.1186/s13040-015-0069-x
http://dx.doi.org/10.1186/s13040-015-0069-x
http://dx.doi.org/10.1186/s13040-015-0069-x
http://dx.doi.org/10.1186/s13040-015-0069-x
http://dx.doi.org/10.1186/s13040-015-0069-x


Van Lishout et al. BioDataMining  (2015) 8:36 Page 14 of 15

References
1. Shastry BS. Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J. 2006;6(1):16–21.
2. van’t Veer LJ, Bernards R. Enabling personalized cancer medicine through analysis of gene-expression patterns.

Nature. 2008;452(7187):564–70.
3. Galas DJ, Hood L. Systems biology and emerging technologies will catalyze the transition from reactive medicine to

predictive, personalized, preventive and participatory (p4) medicine. Interdisc Bio Central. 2009;1:1–4.
4. Beevers CG, McGeary JE. Therapygenetics: moving towards personalized psychotherapy treatment. Trends Cogn Sci.

2012;16(1):11–12.
5. Lester KJ, Eley TC. Therapygenetics: Using genetic markers to predict response to psychological treatment for mood

and anxiety disorders. Biology of mood and anxiety disorders. 2013;3(1):1–16.
6. Slatkin M. Epigenetic inheritance and the missing heritability problem. Genetics. 2009;182(3):845–50.
7. Eichler EE, Flint J, Gibson G, Kong A, Lean S, Moore JH, et al. Missing heritability and strategies for finding the

underlying causes of complex disease. Nat Rev Genet. 2010;11(6):446–50.
8. Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide

association studies. Am J Hum Genet. 2011;88(3):294.
9. Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: Genetic interactions create phantom

heritability. Proc Natl Acad Sci. 2012;109(4):1193–98.
10. Wan X, Yang C, Yang Q, Xue H, Fan X, Tang NL, et al. Boost: A fast approach to detecting gene-gene interactions

in genome-wide case-control studies. Am J Hum Genet. 2010;87:325–40.
11. Gyenesei A, Moody J, Semple CA, Haley CS, Wei WH. High-throughput analysis of epistasis in genome-wide

association studies with biforce. Bioinformatics. 2012;19:376–82.
12. Hemani G, Theocharidis A, Wei W, Haley C. epigpu: exhaustive pairwise epistasis scans parallelized on consumer

level graphics cards. Bioinformatics. 2011;27:1462–1465.
13. Kam-Thong T, Czamara D, Tsuda K, Borgwardt K, Lewis C, Erhardt-Lehmann A, et al. epiblaster-fast exhaustive

two-locus epistasis detection strategy using graphical pro- cessing units. Eur J Hum Genet. 2011;19:465–71.
14. Kam-Thong T, Azencott C, Cayton L, Putz B, Altmann A, Karbalai N, et al. Glide: Gpu-based linear regression for

detection of epistasis. Hum Hered. 2012;73:220–36.
15. Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction for detecting gene-gene

interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet
Epidemil. 2003;24(2):150–7.

16. Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene–gene and
gene–environment interactions. Bioinformatics. 2002;19(3):376–82.

17. Calle ML, Urrea V, Vellalta G, Malats N, Van Steen K. Improving strategies for detecting genetic patterns of disease
susceptibility in association studies. Stat Med. 2008;27:6532–546.

18. Cattaert T, Calle ML, Dudek SM, Mahachie John JM, Van Lishout F, Urrea V, et al. Model-based multifactor
dimensionality reduction for detecting epistasis in case-control data in the presence of noise. Ann Hum Genet.
2011;75:78–89.

19. Gusareva E, Van Steen K. Practical aspects of genome-wide association interaction analysis. Hum Genet.
2014;133(11):1343-58.

20. Wienbrandt L, Kässens JC, Gonzalez-Dominguez J, Schmidt B, Ellinghaus D, Schimmler M. FPGA-based
Acceleration of Detecting Statistical Epistasis in GWAS In: Science PC, editor. 14th International Conference on
Computational Science. Elsevier - Procedia Computer Science, vol 29; 2014. p. 220–30. http://www.sciencedirect.
com/science/article/pii/S1877050914001975.

21. Van Steen K. Traveling the world of gene-gene interactions. Brief Bioinform. 2011;13(1):1–19.
22. Mahachie John JM, Cattaert T, Van Lishout F, Gusareva E, Van Steen K. Lower-order effects adjustment in

quantitative traits model-based multifactor dimensionality reduction. PLoS ONE. 2012;7(1):29594–1013710029594.
23. Van Lishout F, Mahachie John JM, Gusareva ES, Urrea V, Cleynen I, Théâtre E, et al. An efficient algorithm to

perform multiple testing in epistasis screening. BMC Bioinforma. 2013;14(138). http://www.biomedcentral.com/
1471-2105/14/138.

24. Dunn OJ. Multiple comparisons among means. J Am Stat Assoc. 1961;56(293):52–64.
25. Ge Y, Dudoit S, Speed TP. Resampling-based multiple testing for microarray data analysis. Technical Report 633.

Berkley: Department of Statistics, University of California; 2003.
26. Westfall PH, Young SS. Resampling-base Multiple Testing. New York: Wiley; 1993.
27. Mahachie John JM, Van Lishout F, Van Steen K. Model-based multifactor dimensionality reduction to detect

epistasis for quantitative traits in the presence of error-free and noisy data. Eur J Hum Genet. 2011;19(6):696–703.
28. Calle ML, Urrea V, Malats N, Van Steen K. Mb-mdr: model-based multifactor dimensionality reduction for detecting

interactions in high-dimensional genomic data. Technical Report 24. 2008.
29. Mahachie John JM. Genomic association screening methodology for high-dimensional and complex data

structures: Detecting n-order interactions. 2012. http://orbi.ulg.ac.be/handle/2268/136086.
30. Kotz S, Balakrishnan N, Johnson N. Continuous Multivariate Distributions, Models and Applications: Wiley; 2000.
31. Hautsch N, Malec P, Schienle M. Capturing the zero: A new class of zero- augmented distributions and

multiplicative error processes. J Financ Econ. 2013;12(1):89.
32. Bickel P, Doksum K. Mathematical Statistics, Basic Ideas and Selected Topics: Prentice-Hall, Inc; 1977.
33. Allenby GM, Leone RP, Jen LC. A dynamic model of purchase timing with application to direct marketing. J Am Stat

Assoc. 1999;94:365–74.
34. Pattin KA, White BC, Barney N, Gui J, Nelson HH, Kelsey KT, et al. A computationally efficient hypothesis testing

method for epistasis analysis using multifactor dimensionality reduction. Genet Epidemiol. 2009;33(1):87–94.
35. Minka TP. Estimating a gamma distribution. 2002. http://research.microsoft.com/en-us/um/people/minka/papers/

minka-gamma.pdf.
36. Choi SC, Wette R. Maximum likelihood estimation of the parameters of the gamma distribution and their bias.

Technometrics. 1969;11(4):683–90.

http://www.sciencedirect.com/science/article/pii/S1877050914001975
http://www.sciencedirect.com/science/article/pii/S1877050914001975
http://www.biomedcentral.com/1471-2105/14/138
http://www.biomedcentral.com/1471-2105/14/138
http://orbi.ulg.ac.be/handle/2268/136086
http://research.microsoft.com/en-us/um/people/minka/papers/minka-gamma.pdf
http://research.microsoft.com/en-us/um/people/minka/papers/minka-gamma.pdf


Van Lishout et al. BioDataMining  (2015) 8:36 Page 15 of 15

37. Libioulle C, Louis E, Hansoul S, Sandor C, Farnir F, Franchimont D, et al. Novel crohn disease locus identified by
genome-wide association maps to a gene desert on 5p13.1 and modulates expression of ptger4. Plos Genetics.
2007;3(4):58.

38. Barett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30
distinct susceptibility loci for crohn’s disease. Nat Genet. 2008;40(8):955–62.

39. Urbanowicz RJ, Kiralis J, Sinnott-Armstrong NA, Heberling T, Fisher JM, Moore JH. Gametes: a fast, direct algorithm
for generating pure, strict, epistatic models with random architectures. BioData Mining. 2012;5(1):16. http://www.
ncbi.nlm.nih.gov/pubmed/23025260.

40. Bradley J. Robustness? Br J Math Stat Psychol. 1978;31:144–52.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.ncbi.nlm.nih.gov/pubmed/23025260
http://www.ncbi.nlm.nih.gov/pubmed/23025260

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Available software
	Multiple-testing correction
	Bottlenecks of Van Lishout's maxT

	Methods
	Distribution of MB-MDR statistics
	Assumption 1
	Assumption 2

	Estimating the parameters of the shifted gamma distribution
	Parallel workflow

	Results and discussion
	Results supporting assumption 1
	Results supporting assumption 2
	Computing-time of the gammaMAXT algorithm
	FWER of the gammaMAXT algorithm
	Power of the gammaMAXT algorithm

	Conclusion
	Availability
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References



