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Abstract

Background: Microbial communities adapt to environmental conditions for optimizing
metabolic flux. Such adaption may include cooperative mechanisms eventually
resulting in phenotypic observables as emergent properties that cannot be attributed
to an individual species alone. Understanding the molecular basis of cross-species
cooperation adds to utilization of microbial communities in industrial applications
including metal bioleaching and bioremediation processes. With significant
advancements in metagenomics the composition of microbial communities
became amenable for integrative analysis on the level of entangled molecular
processes involving more than one species, in turn offering a data matrix for
analyzing the molecular basis of cooperative phenomena.

Methods: We present an analysis framework aligned with a dynamical hierarchies
concept for unraveling emergent properties in microbial communities, and exemplify
this approach for a co-culture setting of At. ferrooxidans and At. thiooxidans. This
minimum microbial community demonstrates a significant increase in bioleaching
efficiency compared to the activity of individual species, involving mechanisms of
the thiosulfate, the polysulfide and the iron oxidation pathway.

Results: Populating gene-centric data structures holding rich functional annotation
and interaction information allows deriving network models at the functional level
coupling energy production and transport processes of both microbial species.
Applying a network segmentation approach on the interaction network of ortholog
genes covering energy production and transport proposes a set of specific molecular
processes of relevance in bioleaching. The resulting molecular process model
essentially involves functionalities such as iron oxidation, nitrogen metabolism and
proton transport, complemented by sulfur oxidation and nitrogen metabolism, as
well as a set of ion transporter functionalities. At. ferrooxidans-specific genes embedded
in the molecular model representation hold gene functions supportive for ammonia
utilization as well as for biofilm formation, resembling key elements for effective
chalcopyrite bioleaching as emergent property in the co-culture situation.

Conclusions: Analyzing the entangled molecular processes of a microbial community
on the level of segmented, gene-centric interaction networks allows identification of
core molecular processes and functionalities adding to our mechanistic understanding
of emergent properties of microbial consortia.

Keywords: Network biology, Microbial cooperation, Bioleaching, Chalcopyrite,
Acidithiobacillus, Emergence
© 2015 Bosse et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-015-0054-4&domain=pdf
mailto:bernd.mayer@emergentec.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Bosse et al. BioData Mining  (2015) 8:21 Page 2 of 17
Background
Microorganisms populate their environment not necessarily as solitude metabolic en-

tities but may form metabolic communities comprising of several species. Such micro-

bial communities are under synergistic and cooperative control with further constraints

imposed by environmental factors. Under certain conditions such communities may ex-

hibit emergent properties, i.e. phenotypic observables not being attributable to any sin-

gle species but only to the community as such. The observation of mutual dependence

of some species on the services and/or products of other community members is

widely observed, but in many cases hampers comprehensive investigation at the level of

an integrated molecular process analysis [1].

Metagenomics as core technology for species identification [2], further combined

with omics on the transcript, protein and metabolite level allow to study molecular

superpathways as a composite of the entire underlying molecular network contributed

by each individual species. Such combined omics has provided unprecedented insights

into the functioning, ecology and evolution of microbial communities [3–5]. Proper

handling and integrative analysis of such molecular data space characterizing microbial

communities has allowed embedding phenotypic observables into various theoretical

frameworks as the evolutionary selection for cooperation [6], the public goods dilemma

in consortia [7], or avoidance of evolutionary traps [8].

Further experimental advancements have boosted resolution of microbial commu-

nity research, including procedures offering improved sensitivity to capture also low-

abundant species [9], or an approach for allowing profiling novel microorganisms

without being limited by gene/protein data available in reference sequences, in conse-

quence significantly expanding the scope of metagenomics research [10]. Together,

such technologies have popularized metagenomics techniques finding applications in

diverse areas such as human health, nutrition, industrial production, or environment

remediation [11].

A number of industrial processes are based on utilization of microbial consortia. One

prominent example is extraction of base metals from mineral ores, termed bioleaching,

where the potential of bacteria-enabled biotechnologies has been successfully demon-

strated [12–14]. In such systems, consortia of bacteria enhance the rate of metal recov-

ery from ores containing valuable metals in the form of mineral sulfides, e.g. sphalerite

(ZnS) or chalcopyrite (CuFeS2), or for recovery of gold encapsulated in pyrite (FeS2).

The communities are composed of specialized, mostly mesoacidophilic and chemo-

lithotrophic bacteria. Community composition is dynamic in response to changes in

temperature, pH, concentration of ferric iron or toxic metals, or salinity [15].

Extraction of the metal from sulfide occurs spontaneously by cleavage of the mineral’s

Fe-S2 bond (through ferric ions, oxidative attack) as well as via protons (hydrolytic at-

tack) according to the general reactions [16]:

MSþ Fe3þ þ 2 Hþ → M2þ þ 0:5 H2Sn þ Fe2þ n ≥ 2ð Þ ð1Þ

0:5 H2Sn þ Fe3þ → S0 þ Fe2þ þHþ ð2Þ

Bioleaching bacteria are not directly involved in mobilization of metals from minerals
via an enzymatic process. Rather, they accelerate metal solubilization indirectly by pro-

viding ferric ions (iron oxidation; (3)) as well as protons (sulfur oxidation; (4)) [17]:
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4 Fe2þ þO2 þ 4 Hþ → 4 Fe3þ þ 2 H2O ð3Þ

2 S8 þ 3 O2 þ 2 H2O→ 2 SO4
2− þ 4 Hþ ð4Þ

At an industrial scale, bioleaching systems are used in recovery of metal ores (e.g.
gold and silver) or to leach base metals such as copper, cobalt, nickel and zinc, as well

as low-grade uranium ores. Extending the approach to non-base metals is not yet com-

mercially attractive. The main reasons for the lack of commercial bioleaching opera-

tions are seen in efficiency constraints, costs associated with the construction of

suitable bioreactors as well as in logistic issues related to vast volume of material to be

processed [13]. Recently, mining companies are confronted with a set of drivers that

affect the economics of mining. Among those is a growing global demand for raw

metals as well as tightening environmental legislation. Efficiency gains can be expected

through the adoption and/or optimization of bioleaching processes [17].

Metagenomic data sets generated during the last decade have massively expanded the

knowledge base on bioleaching consortia. First level analyses mainly focused on deter-

mining community composition and species population dynamics. Further analysis

aimed at understanding key metabolic pathways involved in energy production, fixation

of carbon and nitrogen, or bacterial survival in highly acidic and/or toxic environments

[12, 18–20].

Still, from a systems biology perspective it is desirable to go beyond a parts-based ap-

proach and focus on cooperation from an entangled molecular process point of view

[12, 21]. This approach is particularly important in view of lacking efficient genetic en-

gineering platforms for major bioleaching microbes next to regulatory constraints [12].

One promising option for achieving a more comprehensive understanding of collabora-

tive functionalities is to approach bioleaching consortia like single ‘superorganisms’. For

executing such approach, data are frequently organized in a network context, resem-

bling molecular features as nodes and molecular interactions as edges. Such networks

then undergo functional category- or topology-based analysis aimed at identifying mo-

lecular processes associated with phenotypic readouts of interest (utilized in various

systems biology examples e.g. in human health [22, 23]). Functional insights at the mo-

lecular process level are to be expected if metadata on the various omics levels are inte-

grated in a way that allows the linkage of specific community molecular processes to

phenotypic observables becoming apparent only at the superorganism level. Such ap-

proach represents a shift from a species/individual molecular component point of view

towards structuring of information across species boundaries. This approach retrieves

molecular processes integrating molecular features from more than one species, by this

providing molecular process models underlying cooperative phenomena.

From a formal perspective such phenomena have been described by Baas et al. as dy-

namical hierarchies [24], already applied in diverse chemical [25] and biological systems

[26]. The concept starts with first order objects (e.g. protein coding genes), based on

interaction forming higher order structures (functional categories, pathways), which in

turn exhibit properties not identified on any lower order level. As practical example

serves biofilm formation, if combined further with thiosulfate, the polysulfide and the

iron oxidation pathways resulting in yet another phenotypic readout, or emergent

property as efficient leaching of minerals. Still, specific functional properties may be
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contributed from individual species of a microbial community, and a network repre-

sentation of community functional properties in contrast to analysis on the level of

individual species is deemed necessary for identification of community properties.

Romo et al. [27] described a bioleaching system which (i) exhibits an emergent com-

munity effect in terms of mineral leaching efficiency, (ii) is composed of a minimum

number of species which (iii) have rich annotation at the gene and protein level. The

authors investigated the efficiency of chalcopyrite (CuFeS2) bioleaching in a controlled

setting with pure cultures of Gram-negative gamma-proteobacteria Acidithiobacillus

ferrooxidans and At. thiooxidans compared to a co-culture of both bacteria, where the

latter about doubled recovery rate of copper. Similar observations were reported in

studies conducted by Fu et al. [28] and – albeit in an overall much less efficient system,

by Qui et al. [29]. A striking observation with these minimal systems is the fact that

one of the species, At. ferrooxidans, alone possesses both sulfur and iron oxidizing

properties deemed essential for bioleaching [13, 30]. Yet, a co-culture with At. thiooxi-

dans, a sulfur- but not iron-oxidizer [31], results in a significant increase in leaching

rate, raising the question about the nature of the cooperation of the two microbes.

In this work we implement a network biology methodology resting on functional an-

notation and interaction information of the protein coding gene space of both organ-

isms aimed at identification of cooperation with significant increase in bioleaching as

emergent property. We exemplify the approach on core molecular processes executed

by At. thiooxidans and At. ferrooxidans in chalcopyrite bioleaching.
Methods
Gene annotation

Gene-centric annotation on a species level utilized publicly available databases. As pri-

mary data source for annotation of At. ferrooxidans (ATCC 53993) and At. thiooxidans

(ATCC 19377) the Pathosystems Resource Integration Center (PATRIC, [32]) with the

respective PATRIC organism identifiers 6930 and 52187 was used. Further data re-

trieval utilized the Integrated Microbial Genomes database (IMG, [33]) using IMG

taxon object identifiers 642788233 and 2510461056 for At. ferrooxidans and At. thioox-

idans, respectively. In addition to gene annotation sourced from PATRIC and IMG,

data from the Expasy family of gene/protein resources (HAMAP, [34]; Prosite [35];

PSORT [36]) as well as the EBI-EMBL resources InterPro [37] and UniProt [38] were

obtained using the online tools provided on the respective sites.

According to PATRIC At. ferrooxidans holds 2,872 protein coding genes, the number

for At. thiooxidans is 3,076. Mapping of annotation across PATRIC and IMG identifiers

was done automatically for At. ferrooxidans using the UniProt ID mapping tool [39],

and due to minor coverage provided by UniProt via manual assignment for At. thiooxi-

dans. Gene-centric annotation details harvested from the various sources are provided

in Table 1A.

Interaction annotation data (Table 1B) were sourced from STRING [40], MetaCyc

[41] and KEGG [42]. MetaCyc interactions were inferred based on co-membership in

MetaCyc pathways restricted to genes holding an Enzyme Commission number [43].

To obtain KEGG interaction data KGML+ files containing KEGG pathway maps for

At. ferrooxidans were downloaded from the KEGG website, and interactions were



Table 1 Gene annotation and interaction details

Annotation item source gene coverage,
At. thiooxidans

gene coverage,
At. ferrooxidans

A: gene annotation

Gene/protein identifiers

PATRIC database ID PATRIC 100.00 100.00

RefSeq gene ID PATRIC 100.00 100.00

Uniprot gene name PATRIC 88.62 91.43

IMG database ID IMG 88.62 54.18

RefSeq protein ID PATRIC 0.00 91.43

Uniprot ID UniProt 0.97 83.88

Protein name & function

Protein name PATRIC 100.00 100.00

Protein function HAMAP 26.17 29.84

Enzyme Commission nomenclature PATRIC 17.55 19.74

IMG TERM IMG 19.90 25.90

COG category IMG 69.25 70.40

COG entry IMG 69.25 70.40

Protein domains/families

Prosite domain Prosite 30.92 33.50

FIGfam protein family ID PATRIC 66.29 99.02

Pfam protein family IMG 72.79 77.61

Protein similarity (HAMAP) HAMAP 28.41 33.04

Protein function & location

Interpro database entry InterPro 4.48 33.11

GO function HAMAP 3.71 29.07

GO process HAMAP 25.68 29.49

GO cellular component HAMAP 17.65 20.26

PSORT subcellular location PSORT 100.00 100.00

Pathway assignment

KEGG pathway PATRIC 17.56 19.74

KEGG orthology IMG 44.90 51.36

KEGG module IMG 17.13 20.44

Metacyc pathway IMG 17.04 19.50

IMG pathway IMG 7.87 9.96

B: interaction information

pathway relations KEGG 13.00* 16.47

pathway relations Metacyc 11.05* 12.99

inferred interactions STRING 51.07* 91.16

Annotation on gene (A) and interaction level (B) for At. ferrooxidans and At. thiooxidans. Data sources are grouped in
content categories. Annotation coverage refers to the percentage of protein coding genes holding a valid entry in the
respective data sections for gene annotation, and at least one interaction to another gene as derived from interaction
sources. *For At. thiooxidans interactions were assigned based on ortholog assignment
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extracted using the Bioconductor KEGGraph package [44]. STRING interaction data

(At. ferrooxidans) were directly retrieved from the STRING web server. As no inter-

action data source hosts specific data for At. thiooxidans, interactions were assigned to

At. thiooxidans genes based on ortholog mapping to At. ferrooxidans utilizing the
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Needle algorithm from the EMBOSS package [45]. In case of multiple assignments the

top scoring ortholog was selected. In total 1,661 ortholog genes are identified for the

two species, allowing the imputation of interactions for the subset of orthologs identi-

fied on the At. thiooxidans side.

Further annotation specifically in the context of microbial consortia and bioleaching

was performed via mining of NCBI Pubmed [46]. A keyword catalog was applied for

covering scientific publications on cooperative aspects (synergism, consortium, commu-

nity, cooperation) and specific utilization (bioleaching, biomining, chalcopyrite). The

query term included the gene name together with a respective catalog entry.
Analysis procedures

Gene annotation and interaction information as provided in Table 1 allows designing a

gene-centric data structure for each of the At. ferrooxidans and At. thiooxidans genes

using the PATRIC ID as unique structure identifier. The core data structure represents

the protein coding gene annotation of both organisms, and further defines aggregate

nodes by e.g. grouping genes according to gene assignment to clusters of orthologous

groups (COG) [47]. By this the set of gene-centric data structures is traversed into a set

of COG-based data structures.

On the protein coding gene level, as well as on an aggregate level of COG terms

interaction networks can be derived (Fig. 1).

On the level of COG terms such networks represent co-annotation of genes in more

than one COG term. Reciprocal assignment of genes to two COG terms infers func-

tional closeness of such terms, expressed by an interaction. On a gene level interaction

networks are derived by making use of gene interaction information. First, a network is

built including all ortholog genes together with interaction information according to

annotation. For identifying network segments with high inner connectivity segmenta-

tion was performed using MCODE with default settings [48]. With a given network

structure as start MCODE identifies most densely connected subgraphs, from there

expanding to neighborhood network nodes with a cutoff criterion for stopping expan-

sion according to the connectivity of such neighboring nodes. Specifically, starting with

a given set of genes (input set) and given interaction information the induced subgraph

is derived, eliminating all genes with a connectivity of zero. Network segments (units)

are derived from this induced graph via MCODE, where each such unit is interpreted

as functional context (molecular process). Utilizing interaction information of features

across identified segments allows approximating functional dependencies between mo-

lecular processes, finally leading to a molecular process model representation of the in-

put gene set. For segmentation and visualization of networks the MCODE plugin of

Cytoscape was used (version 3.1.1, [49]).
Results
Dynamical hierarchies in microbial communities

According to annotation on gene and interaction level a data structure is populated for

each protein coding gene of At. ferrooxidans and At. thiooxidans. Each structure en-

codes different levels of hierarchy, namely each gene as first order object (further char-

acterized by a property space including among others domain and function details), as



Fig. 1 From annotation data to interaction networks. Public domain repositories are utilized for gene-centric
annotation as well as for retrieving protein coding gene interaction information. Data structures holding the
PATRIC ID as central identified are populated with annotation and interaction information, including ortholog
mapping for adding to comprehensiveness in annotation. Cross-species interaction networks are built
deductively resting on gene functional category assignments (as COG terms) and inductively by utilizing gene
interaction information
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well as aggregate assignments on the level of gene ontology, pathway and COG terms.

Such aggregate (higher order) objects are per construction resulting of the properties of

first order elements together with interactions. Assignment of a first order object to

specific higher order terms reduces the degrees of freedom of the first order object, i.e.

forming a dynamical hierarchy exhibiting up- and downward causalities (Fig. 2).

On this basis we assume explicit encoding of molecular functional properties of the

microbial co-culture M (a set of microbial species mi). In addition, we detect a signifi-

cant bioleaching efficiency increase in the co-culture situation, which in the following

is denoted as observable O3
M. Such observable rests on properties of individual genes

(O1) and properties of aggregate states observed on the level of molecular pathways

(O2). Our analysis goal is identification of the set of first order objects, being the pro-

tein coding genes gi, in synthesis (interactome) leading to the phenotypic readout O3
M.

As in our specific scenario such readout is observable in the specific co-culture situ-

ation we assume involvement of first order objects (protein coding genes) from both,

At. ferrooxidans and At. thiooxidans.

We know O3
M := M, being a mapping of the set of two species (or n species in a gen-

eral metagenomics setting). This mapping does not reveal any type of context structure,



Fig. 2 Formal representation of a microbial community. Starting with a microbial community M composed of
individual species mi and the set of protein coding genes G observables become apparent on the individual
gene level (O1), on the pathway level for each species (O2), and on the level of inter-species molecular processes
finally generating a community observable O3. Integrative analysis aims at deriving a model on the level of
individual genes gi explaining an emergent property O3

M
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hence no functional f(M) allowing us to model O3
M. This status is equivalent to the first

result of a metagenomics analysis, i.e. the list of distinct species involved. M is a com-

position of a set of individual species mi, where each mi itself exhibits observables, O2
m
i ,

i.e. a readout of a species-specific pathway. Such observables are the consequence of

the total set of molecular components gij of m
i. Describing O2

m
i as f(gij) having just a

context-free listing of gji provides no better system representation, as we end up with

the mapping O2
m
i := gij. When including interactions for allowing modeling of pathways

such observable may reflect the capacity of At. ferrooxidans to oxidize both sulfur and

iron, whereas At. thiooxidans shows sulfur oxidation only.

We further see G as the total set of molecular components of M. With G we break

up the boundaries to individual mi, and obtain a mapping of O3
M := G, which allows de-

scribing the community observable as a function of the community genome [50]. Con-

sequently, the observable of interest results from a functional f(G), where G is the

superset of molecular constituents of both organisms, gij, and when adding interaction

information G becomes the superpathway. We postulate that the molecular process

leading to our emergent property of interest is identified at the level of such

superpathway.

According to our goal definition we seek O3
M := f(gi) out of G. Such (gi) denotes a de-

fined subset of G in a specific context, in a biological interpretation being individual
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molecular processes pi out of the total set of processes P. Consequently, the phenotype

O3
M of interest results from a functional f(P). Making use of the data structures centered

around genes gij specific pi leading to O3
M may be derived on some aggregate level,

e.g. COG categories resembling O2
m
i , or may be derived bottom up on the level of G.
Bioleaching model

Background knowledge proposes key molecular pathways of each individual species,

At. ferrooxidans and At. thiooxidans involved in chalcopyrite leaching. Such given

process information on the level of O2
m
i identifies a principal mechanism for chalcopyr-

ite leaching (Fig. 3). A main cooperative effect is located in the oxidative recycling of

ferrous iron and elemental sulfur, respectively [16]. While iron oxidation is only medi-

ated by At. ferrooxidans, sulfur oxidation is a capability shared by both species. Two

such pathways are identified, the Polysulfide pathway seen in both Acidithiobacilli, and

a Thiosulfide pathway unique to At. thiooxidans [30, 31, 51]. This additional sulfur oxi-

dation pathway is believed to address a leaching bottleneck by increasing the oxidation

rate of sulfur, thereby (i) providing additional protons to attack the mineral directly

[52], (ii) removing an inhibitory sulfur layer precipitating at the mineral surface [53]

and (iii) reducing ambient pH low enough to prevent formation of jarosite, a basic hy-

drous sulfate of potassium and iron [28, 54]. Jarosite is known to reduce At. ferrooxi-

dans bioleaching efficiency [55].

Molecular processes embedded in pathway nomenclature allow deriving a model add-

ing to understanding of improved bioleaching efficiency in the co-culture situation.

However, such annotation is species-specific, i.e. on the level of O2
m
i , hence not provid-

ing an integrated representation of collaboration at a molecular process level.
Coupled molecular processes, aggregate mode

For obtaining a representation of core molecular processes according to Fig. 3 across

species boundaries an aggregate representation, e.g. at the level of COG terms, can be
Fig. 3 Pathway-centric bioleaching model. Pathway model for cooperation of At. ferrooxidans and At. thiooxidans
in chalcopyrite bioleaching. Species-specific molecular processes pi (schematic subgraphs represent protein coding
genes and interactions) assigned to the thiosulfate, the polysulfide and the iron oxidation pathway cooperate in
mineral dissolution from chalcopyrite. Mechanisms deemed responsible for increased leaching efficiency in a
co-culture setting at the interface with the mineral surface as indicated by arrows include (1) proton availability,
(2) sulfur layer removal, (3) hindering jarosite formation
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used. Such approach further takes advantage of increased annotation coverage compared

to a pathway representation (see Table 1 for functional category versus specific pathway

coverage). Assigning genes included in the thiosulfate (9 genes of At. thiooxidans), poly-

sulfide (both species, 11 genes) and iron oxidation pathway (At. ferrooxidans, 18 genes) to

COG categories maps to four such categories, namely inorganic ion transport and metab-

olism, energy production and conversion, posttranslational modification and translation,

and ribosomal structure and biogenesis (Fig. 4a).

The COG category holding the highest number of non-ortholog genes is energy pro-

duction and conversion, with 28 such genes on the At. ferrooxidans side, and 32 genes

with At. thiooxidans, essentially resembling specific functions of iron oxidation and

thiosulfate pathway.

Expanding ortholog screening for the core COG category energy production and

conversion (with in total 289 genes for At. ferrooxidans and 290 genes for At. thiooxi-

dans) to all COG categories identifies five additional COG terms holding orthologs at

varying degree (Fig. 4b), including secondary metabolite biosynthesis, inorganic ion

transport, coenzyme transport, amino acid transport, and posttranslational modifi-

cation. Ortholog assignment results in linking of specific transport-associated function-

alities which may well add to the cooperative phenomenon as outlined in Fig. 3. Such

additional categories hold further a number of species-specific genes, with in total 221

genes on the At. ferrooxidans side, and 151 genes for At. thiooxidans. For deciphering

if members of this gene set prone to being involved in key aspects of chalcopyrite

leaching processes as presented in Fig. 3 are already identified in the cooperation con-

text or in the specific bioleaching utilization context keyword-base literature screening

was performed, with results presented in Table 2.
Fig. 4 Comparative species analysis, COG level. a COG categories (nodes) relevant in At. ferrooxidans (red)
and At. thiooxidans (blue) according to thiosulfate, polysulfide and iron oxidation pathway assignment. Each
node holds COG category name, number of genes assigned, number of genes also holding orthologs in the
respective COG for the other species, and total number of orthologs, i.e. also indicating multiple ortholog
assignments. Edge scaling and numbers represent the percentage of ortholog genes calculated normalized to
the species holding the lower number of genes in the respective category. b graph construction as in (A), but
the ortholog network is based on the entire gene sets of both species. The graph focuses on the COG category
Energy production and conversion and further COG categories holding orthologs



Table 2 COG terms and annotation details in microbial cooperation and bioleaching

COG term At. ferrooxidans At. thiooxidans

#genes cooperation utilization #genes cooperation utilization

(C) Energy production & conversion 66 7 3 68 6 1

(E) Amino acid transport & metabolism 25 4 0 18 2 0

(H) Coenzyme transport & metabolism 24 0 0 6 0 0

(O) Posttranslational modification,
protein turnover & chaperones

32 0 0 26 0 0

(P) Inorganic ion transport & metabolism 62 0 0 29 0 0

(Q) Secondary metabolites biosynthesis,
transport & catabolism

12 0 0 9 0 0

Number of species-specific genes for At. ferrooxidans and At. thiooxidans regarding COG terms coupling on an ortholog level
with the COG term energy production and conversion, and number of such genes reported in scientific literature in the
context of cooperation (synergism, consortium, community, cooperation) or specific utilization (leaching,
bioleaching, chalcopyrite)
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A fraction of non-ortholog genes are reported in the context of cooperative function,

and to a lesser degree also in the very specific context of bioleaching. In the COG term

energy production and conversion, both Acidithiobacilli hold Cytochrome B561 and

NADH dehydrogenase in respect to cooperation. At. ferrooxidans further reports Aldo-

keto reductase, Ferredoxin reductase, Ferredoxin-like protein, Ferredoxin and Aldehyde

dehydrogenase. In the specific context of bioleaching Cytochrome C4 and Hydroxyl-

amine reductase are found. In respect to COG term amino acid transport &

metabolism Serine acetyltransferase, Homocitrate synthase, Cysteine desulfurase and

Chorismate mutase record for cooperation. For At. thiooxidans Acetate kinase, Glycerol

kinase, Oxidoreductase list for the COG term energy production and conversion in a

cooperative context, the latter protein also in a specific utilization context. For the

COG term amino acid transport and metabolism Glutamate decarboxylase and Trans-

glutaminase-like protein are found in the context of cooperation.
Coupled molecular processes, first order mode

Leaching of chalcopyrite involves as main term energy production and conversion, on a

pathway level expressed as thiosulfate, the polysulfide and the iron oxidation pathway

being attributable on the individual species level mi. Exploring the involved gene sets

on an aggregate mode of COG terms identifies via ortholog mapping further potential

mechanisms of relevance in cooperative effects, specifically transport of e.g. coenzymes

and amino acids. Ortholog analysis identified a set of species-specific genes gi, to some

extend already holding annotation in the context of collaborative effects and bioleach-

ing. According to our concept we aim for identifying O3
M := f(gi) out of G, where such

gi constitute a molecular process pi seeing contributions from both species.

Focusing on the COG term energy production and conversion, additionally taking

transport categories into account (secondary metabolites biosynthesis, transport and ca-

tabolism; inorganic ion transport and metabolism; coenzyme transport and metabolism;

amino acid transport and metabolism) results in 386 ortholog genes of At. ferrooxidans

and At. thiooxidans, and 195 genes specifically with At. ferrooxidans and 168 genes

specifically with At. thiooxidans. Utilizing interaction data from STRING an ortholog
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network can be derived, i.e. a graph with nodes encoding the ortholog genes and edges

representing the gene-specific interaction information. This ortholog graph holds 385

genes (1 gene of the input gene set had no single interaction information in STRING

and is omitted from further analysis) and an Index of Aggregation of 1.0, i.e. each node

holds a path to all other nodes of the network.

Forwarding this induced subgraph to MCODE segmentation results in 9 molecular

units, with the largest unit holding 65 genes, the smallest 3. In total 295 genes of the

input feature set are part of the unit set. Using STRING interaction information, an ag-

gregate interaction can be computed across units scaling with the sum of interactions

of individual unit members to members of other units, thereby generating a molecular

process model. STRING further provides specific interaction information for At. fer-

rooxidans, allowing linking non-ortholog genes to features embedded in units, hence

adding specific functionality to the molecular model (Fig. 5).

We consider the molecular units presented in Fig. 5 as individual molecular pro-

cesses pi sharing genes across species boundaries, allowing us to postulate a mapping

of O3
M := f(pi). In the given analysis the ortholog model involving COG terms energy

production and conversion together with specific transport terms is used as core

structure, adding molecular functionality coming from At. ferrooxidans only (lack of

At. thiooxidans-specific interaction data).

Of specific interest are molecular processes integrating energy production and con-

version and transport terms, hence, specifically molecular process units 1, 3 and 4. Unit

1 aggregates genes associated with proton transport, nitrogen metabolism and iron oxi-

dation (e.g. NADH ubiquinone oxidoreductase and Glutamate synthase). Generally

enriched in energy production is unit 3 hosting several Cytochrome O ubiquinol oxi-

dases, ATP synthases as well as dehydrogenases such as Malate, Isocitrate and Pyruvate
Fig. 5 Molecular model of cooperation. Ortholog molecular model on energy production and conversion
together with selected transport categories. Nodes represent molecular units, with the node diameter scaling
with the number of features included. Edges across units indicate significant dependencies of molecular
features across units. Color-coding represents the number of interactions of At. ferrooxidans-specific genes
linkable to ortholog genes embedded in units. Numbers in brackets below each node indicate genes assigned
to energy production and conversion and number of genes assigned to transport categories (secondary
metabolites biosynthesis, transport and catabolism; inorganic ion transport and metabolism; coenzyme
transport and metabolism; amino acid transport and metabolism)
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dehydrogenases. Functional links to sulfur oxidation is provided in unit 4 (Rhodanese-

like protein, Cytochrome D and O ubiquinol odixases). Unit 6 exclusively covers aspects

of nitrogen metabolism (Nitrogen regulating protein P-II, Ammonium transporter). In

the context of bioleaching, metal ion transporters are of particular importance. Those

are mainly embedded in unit 2 (magnesium and cobalt transport proteins as well as

lead, cadmium, zinc and copper transport ATPases) and unit 7 (zinc transporters, ferric

iron uptake regulators, ferrous iron transporters). Given interaction data result in mul-

tiple assignments of genes to process units. One major representative seeing such mul-

tiple assignments is Carbonic anhydrase, an enzyme involved in the sulfur cycle.

Discussion
Integrative analysis on the grounds of omics data promises improved characterization

of molecular processes mediated by microbial communities. Of particular interest are

processes involving direct dependencies across species boundaries resembling a major

driver for exhibiting emergent properties. A formal concept allowing representation of

such phenomena is dynamical hierarchies, which are composed of individual objects

holding a data structure encoding properties and interactions. In a composition individ-

ual objects form higher order structures which may direct to emergent properties

(phenotypic observables) that are not amenable at any lower level hierarchy, and specif-

ically not reducible to a single object. In the context of molecular systems this concept

can be applied to sets of genes as first order objects, potentially leading to an emergent

property based on a molecular process, which in turn is composed of a specific set of

genes. This concept is directly applicable to microbial communities showing synergistic

readout, with the example of significantly increased mineral leaching in a co-culture of

At. ferrooxidans and At. thiooxidans.

A necessary prerequisite for implementing such approach is rich gene annotation

covering from domain and function assignment to aggregate properties as functional

category or pathway membership. A second prerequisite is interaction information im-

plicating dependencies for executing molecular processes, which in combination with

gene annotation allows setting up a data structure for building interaction networks on

the gene level or any aggregate level as COG terms.

Utilizing species-specific pathway information allows deriving a first mechanistic

model aimed at describing phenomena adding to improved bioleaching in the co-

culture situation, essentially involving the thiosulfate, the polysulfide and the iron oxi-

dation pathway. These constituents improve mineral dissolution from chalcopyrite via

proton attack, sulfur layer removal, and hindrance of jarosite formation. Analyzing in-

volved genes on the level of COG terms and ortholog mapping links the central term

energy production and conversion with specific transport processes, namely secondary

metabolites biosynthesis, transport and catabolism, inorganic ion transport and metab-

olism, coenzyme transport and metabolism, and amino acid transport and metabolism.

This term set includes a number of non-ortholog genes from both species, a subset be-

ing already discussed in the context of microbial communities and bioleaching.

Certainly, a description at the level of COG terms does not allow delineation of inte-

grated molecular processes. Building gene-centric interaction networks followed by seg-

mentation according to topological criteria provides means for approximating such

processes. Executing this procedure for the ortholog network of At. ferrooxidans and
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At. thiooxidans with focus on energy production and conversion coupled with identi-

fied transport terms results in a molecular process model bridging energy production

and transport processes in shared molecular units. Integrated processes identified in-

clude iron oxidation, nitrogen metabolism and proton transport, segments covering

sulfur oxidation and nitrogen metabolism, and a set of ion transporter functionalities.

Including At. ferrooxidans-specific genes in this network results in a composite repre-

sentation of shared community functionality and specific add-ons of one species. Of

particular interest is Carbonic anhydrase, described as a constituent to the polysulfide

pathway [56]. This gene has been found as associated with biofilm formation in a very

recent proteomics study [57]. While the exact contributions of Carbonic anhydrase to a

bioleaching process are unknown, three mechanisms can be conceived, including (i)

positive impact on ammonia utilization of other consortia members by removal of en-

vironmental carbon disulfide (CS2) [58], (ii) enabling At. ferrooxidans to utilize CS2 as

alternative energy source and (iii) contributing to inorganic carbon fixation [59]. A sec-

ond gene, Homocitrate synthase, is described as an essential component of lysine bio-

synthesis and has been found upregulated in a screen searching for quorum-sensing-

related molecules [60], suggesting a role in cell-density-dependent processes implicated

in the formation of biofilms.

Taken together, the additional genes contributed by At. ferrooxidans enable a corner-

stone role in the establishment and perpetuation of a chalcopyrite leaching consortium.

This is consistent with the results of a recently conducted metabolomic study using a

laboratory community composed of At. thiooxidans and ferrooxidans strains. This

study identified biofilm formation via At. ferrooxidans, suggesting a central role in

community establishment, as consequence fostering increased bioleaching activity as

emergent property [61].
Conclusions
A set of genes is identified on a common mechanistic background of At. ferrooxidans

and At. thiooxidans, as these are components of molecular processes delineated from

the ortholog network covering energy production and conversion together with trans-

port processes. Recalling the concept of dynamical hierarchies such processes provide

an integrated perspective of the superpathway composed of the individual constituents

of both species together with their interactions.

The approach presented in this work allows deriving hypotheses on coupled molecular

processes, providing an alternative perspective of synergistic effects and community-based

emergent properties. With the concept of dynamical hierarchies established, availability of

annotation and interaction information in the public domain, and open source libraries

for computing networks and segments this approach is of general applicability. A major

present pitfall is consolidated availability of molecular data needed to populate the data

structures. Necessary gene annotation is distributed across numerous individual sources,

hampering integration for given annotation beyond the challenge of adding annotation to

novel species identified in metagenomics. Utilizing orthology for annotation imputation

naturally results in biases, becoming even more pronounced when going to a larger set of

species composing the community. Of equal relevance, and with even less coverage pre-

sents interaction information, being either generic on a pathway level, or only covering
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selected species. For fully leveraging on the power of integrative, network-based analysis

procedures realizing common grounds on annotation and interaction information repre-

sents a major challenge ahead in the field, partly addressed by hybrid approaches in

approximating interactions as done with STRING.

Delineation of coupled molecular processes associated with emergent properties,

as synergistic increase in bioleaching efficiency, offers improved understanding of

microbial community dynamics. Further, such molecular process knowledge pro-

vides the basis for selection of molecular biomarker candidates indicative for such

community molecular function. Biomarkers in their definition serve as proxy for

monitoring the status of a molecular process, in a microbial community needing

to capture molecular processes established across individual species. Segmented,

cross-species interaction networks provide coupled process sets as basis for selec-

tion of biomarker candidate panels. Such panels in turn can be utilized as tool

for screening microbial communities prone to exhibiting an emergent property of

interest.
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