
SOFTWARE ARTICLE Open Access

DNA microarray integromics analysis
platform
Tomasz Waller1,2*, Tomasz Gubała2, Krzysztof Sarapata3, Monika Piwowar4 and Wiktor Jurkowski5

* Correspondence: t.waller@biobyte.pl
1Institute of Computer Science,
Division of Biomedical Computer
Systems, University of Silesia,
Katowice, Poland
2Academic Computer Centre
CYFRONET, AGH University of
Science and Technology, Kraków,
Poland
Full list of author information is
available at the end of the article

Abstract

Background: The study of interactions between molecules belonging to different
biochemical families (such as lipids and nucleic acids) requires specialized data analysis
methods. This article describes the DNA Microarray Integromics Analysis Platform, a
unique web application that focuses on computational integration and analysis of
“multi-omics” data. Our tool supports a range of complex analyses, including – among
others – low- and high-level analyses of DNA microarray data, integrated analysis of
transcriptomics and lipidomics data and the ability to infer miRNA-mRNA interactions.

Results: We demonstrate the characteristics and benefits of the DNA Microarray
Integromics Analysis Platform using two different test cases. The first test case
involves the analysis of the nutrimouse dataset, which contains measurements of
the expression of genes involved in nutritional problems and the concentrations of
hepatic fatty acids. The second test case involves the analysis of miRNA-mRNA
interactions in polysaccharide-stimulated human dermal fibroblasts infected with
porcine endogenous retroviruses.

Conclusions: The DNA Microarray Integromics Analysis Platform is a web-based
graphical user interface for “multi-omics” data management and analysis. Its intuitive
nature and wide range of available workflows make it an effective tool for molecular
biology research. The platform is hosted at https://lifescience.plgrid.pl/.

Background
Transcriptomics, lipidomics and other molecular techniques produce enormous volumes

of data that must be stored, analysed and interpreted using various methods. The integra-

tion of “multi-omics” data displays the potential to fully expose the molecular mechanisms

occurring in an organism. A holistic approach to biomedical research may help identify

new biomarkers for disease diagnostics and improve the sensitivity and specificity of the

existing biomarkers [1]. The inclusion of temporal and spatial parameters enables mathem-

atical modelling (often referred to as “systems biology”), which may produce new insights

into the mechanisms of pathogenesis and support the development of novel therapies [1].

Comprehensively cataloguing the interactions between genes, lipids and other

biological molecules is a highly complex task. Although the human genome contains

just over 25,000 genes, the human metabolome – given the multitude of post-

translational modifications – is composed of millions of different molecules. Genomes,

transcriptomes, and proteomes are fundamental to the functional integrity of the

organism. These metabolites reflect the important functions of gene and protein regu-

lation; thus, genomics, transcriptomics and proteomics may provide vital information
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regarding the biological status of the system. Modelling and studying the interactions

between molecules belonging to different biochemical families (proteins, nucleic acids,

lipids, and carbohydrates) requires large-scale computing power and specialized data

analysis methods.

DNA microarrays represent a high-throughput measurement technology that is

widely used in biological research, especially gene expression experiments. This tech-

nology revolutionized biological research by enabling the discovery of a large set of

genes whose expression levels reflect a given cell type, treatment, disease or develop-

mental stage [2]. In the first quarter of 2014 alone more than 1600 experiments based

on DNA microarrays were uploaded to the functional genomics experiment database

operated by the European Bioinformatics Institute (termed ArrayExpress [3]). Integrat-

ing DNA microarray data with datasets from external sources may improve the identifi-

cation of significant biomarkers [4].

The analysis of environmental and hereditary factors begins with a snapshot of the

transcriptome using a set of probes. The lipidome and the microRNAome can guide

the exploration of gene-level mechanisms. Integrating the transcriptomics and lipido-

mics data with microRNA (miRNA)-mRNA interaction data may reveal new informa-

tion about the underlying cellular processes that cannot be directly derived from any of

the individual datasets.

At the heart of mRNA-miRNA interaction analysis is the correct identification of

miRNA-corresponding targets. This identification is facilitated by various computa-

tional algorithms and laboratory experiments. However, the gene regulation processes

involving miRNA are poorly understood, resulting in low specificity and poor accuracy

of the targets identified using the available prediction methods [5]. To improve target

site recognition we should exploit additional information: expression level measure-

ments of both miRNA and mRNA, evaluation of targets obtained using other predic-

tion methods, sequence-based information, contextual information, phylogenetics and

experimentally validated databases. To integrate these sources of information scientists

use regression [6, 7] and correlation methods [8–10].

Although several web-based DNA microarray analysis platforms have already been

developed [11–13], most do not support integration of “multi-omics” data. In

contrast, the DNA Microarray Integromics Analysis Platform permits integrated

analysis of transcriptomics and lipidomics data, along with analysis of miRNA-mRNA

interactions.

Implementation
The platform (see Fig. 1) is provided to users in the form of a web application. To

ensure a powerful, stable and sustainable foundation for the presented system, the

PL-Grid Infrastructure [14] was selected as the underlying hardware layer. Any user

data uploaded to the platform is stored in a secure disk array based on Lustre technol-

ogy, which is important from the point of view of efficient computation (i.e., rapid

parsing and analysis of microarray data). All user data is periodically backed up using

an efficient synchronization protocol (rsync) to a redundant storage system. This

additional system is located on a physically separate rack server at an offsite location,

providing further fault tolerance and user data safety.
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The most important function of the system is to provide a rich set of available

algorithms for gene expression analysis. To sustain efficient user interfaces in the web

application portion (the frontend), the platform offloads all heavy-duty analytical tasks

to background processes. All user analysis tasks are managed by a standalone queuing

system that the main platform uses to schedule new analysis jobs, monitor the execu-

tion status of existing jobs and notify the user when a job is complete. Such an asyn-

chronous mode of operation allows researchers to freely use the system while waiting

for scheduled tasks to complete. The queue functions in a FIFO mode for all user jobs

such that no user is privileged and all users share common computational resources

according to a fair share policy. Currently, our platform provides a set of analyses based

on R Bioconductor packages [15] and custom Java solutions. The web application

portion of the system was developed using the Ruby on Rails framework. The platform

is an open source project [16].

The DNA Microarray Integromics Analysis Platform supports a wide range of

analyses, including primary raw data processing and detection of differential expression,

as well as more advanced techniques, including data mining procedures explaining

gene expression-phenotype relationships (clustering, multidimensional scaling, and

construction of predictive models). The prime focus of the Analysis Platform is the

integration of various ‘omics’ data – accordingly, two specific features (integration of

lipidomics and transcriptomics data; integration of miRNA and mRNA data) are

described in more detail in the following sections.

Low-level analysis of DNA microarray data

Low-level analysis is the first step in the analysis of DNA microarray data. The DNA

Microarray Integromics Analysis Platform supports different types of Agilent (e.g.,

SurePrint G3 4 × 44 K or SurePrint G3 8 × 60 K) and Affymetrix (e.g., Mouse Gene 1.0

ST; Human Gene 1.0 ST; or U133A 2.0) one-channel DNA microarray data. The

Fig. 1 This diagram displays the setup of the DNA microarray analysis platform. The main web server
performs third-party authentication using PL-Grid OpenID, and subsequently serves authorized content.
Large-scale computations are performed asynchronously in a job queue and all user data is backed up to
secure secondary storage for additional fault tolerance
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platform is able to perform background adjustment, normalization and summarization

of raw DNA microarray data based on widely accepted methods and algorithms. There

are three options for background adjustment (no background correction, RMA [17], or

GCRMA [18]) and three options for data normalization (quantile [19], scaling and

variance stabilization [46]). Once the preprocessing step is complete, any differences

between the microarrays are confirmed to be due to differential expression rather than

printing, hybridization, or scanning artefacts.

Differential analysis of the gene expression and metabolite levels

To calculate differences in the transcript levels, the platform supplies two methods:

Significance Analysis of Microarray (SAM) and T-test statistical analysis. Significant

gene selection via SAM [21] calculates the relative differences in the transcript levels

based on statistical analysis of data permutations.

Both methods can be applied separately to miRNA and mRNA expression data. The

latter is also used to determine the differential levels of small-molecule concentrations

as measured by mass spectrometry experiments.

In addition to the aforementioned approaches which directly depend on comparisons

of individual transcript levels, the platform also enables the use of functional priors in

the form of Gene Set Enrichment Analysis (GSEA), which is commonly used to test for

statistically significant overrepresentation of particular groups of genes in the context

of the Gene Ontology Annotation Database [24].

Data clustering

Data structure can be investigated by performing cluster analysis which categorizes

unsupervised data into classes of relative similarity using various samples or experi-

ments (represented as a dendrogram) [20]. The platform supports clustering based on

samples or transcripts. The user may select different methods of distance measurement

and agglomeration. Cluster analysis can be used to identify novel sample clusters and

their associated transcripts, and to evaluate data quality by verifying that replicate

samples under similar conditions are clustered together.

The platform also includes Principal Component Analysis (PCA) to reduce the di-

mensionality of the data by extracting the variables (coordinates) displaying the highest

variance, which are assumed to account for the variability in the analysed dataset [23].

Phenotype classification

Conditional analysis of gene expression based on artificial neural networks (ANNs)

is capable of creating and training a neural model (a perceptron) and subsequently

using it to distinguish between healthy and abnormal tissue based on gene expres-

sion profile data [22]. This ANN analysis supports the simultaneous training of

thousands of network architectures, computing predictions from each network

architecture to pinpoint the single best network. Trained ANNs have been success-

fully applied to the analysis of various diseases, including the classification of

cardiovascular disease and the prediction of bacteria-antibiotic interactions and

colorectal cancer patient survival [22].
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Analysis of biological pathways

Biological pathways can be currently accessed using the Wikipathways [25], KEGG [51]

and Reactome [52] web services as an optional step following determination of the

differentially expressed genes. The platform scans the gene expression datasets and the

pathway repositories to identify the genes that participate in a genetic pathway. The

genes in the specified pathway are graphically represented as a color-coded diagram.

The discovered pathways are ranked by the percentage of genes affected.

Analysis of transcriptomics and lipidomics data

Although multivariate statistical techniques are the method of choice for studying

complex data relationships, classical methods such as canonical correlation analysis

(CCA) or partial least squares regression (PLS) [26] are not practical due to the specific

structure of the data obtained from high-throughput platforms. For example, gene ex-

pression data typically include tens of thousands of variables measured from a small

number of observations (samples taken under certain conditions). To cope with this

suboptimal data structure comprising many variables and few observations, the stand-

ard methods can be modified to restructure data either by performing feature selection

or introducing artificial variables. Sparse PLS (sPLS) reduces the number of variables

incorporated into the model [27, 28] and can be applied to both regression and

canonical correlation frameworks. Regularized canonical correlation analysis (rCCA)

increases the number of pseudo-observations in the regularization procedure of covari-

ance matrices [29, 30]. Finally, principal component regression (PCR) [31] represents

the class of multidimensional scaling techniques. Despite difficulties in estimating

statistical significance, appropriate application of these methods, including correctly

assuming the correlations between variables, provides an approximate interpretation of

heterogeneous data (e.g., metabolites and genes), which can be helpful for biological

data analysis and may yield clinically relevant results [32–34].

All statistical techniques included in the presented platform are implemented in R

and include classical CCA and rCCA (YACCA [35] and FRCCA [36]) and PLS [37], as

well as specialized packages dedicated to lipidomics data (mixOmics [38]).

Integration of data obtained from two independent platforms is based on three statis-

tical methods: classical canonical analysis (CCA; YACCA package in R), regularized

canonical analysis (rCCA; FRCCA package in R) and PLS (see Fig. 2).

Fig. 2 Integrated transcriptomics and lipidomics data analysis workflow
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Analysis of miRNA-mRNA target site recognition

The interactions between miRNAs and mRNAs play an important role in the process

of gene regulation. RNA interference (RNAi) depends on appropriately recognizing spe-

cific targets of the miRNA molecules that are integrated into an RNA-induced silencing

complex (RISC) [39]. RISC uses miRNA as a template for recognizing complementary

transcripts. However, in metazoans this complementarity is imperfect. Generally, a

miRNA-mRNA duplex occurs in the 3′UTR region, and complementarity applies only

to the first 7–8 nucleotides of the miRNA, also referred to as the seed. Such short

complementarity is a fundamental problem for correct recognition of the target site, as

its specificity is very low. As a consequence, it is possible for any miRNA-mRNA pair

to interfere. Additionally, mismatches may occur in the seed region of the miRNA

during the hybridization process.

We use TargetScan [40] to predict miRNA targets. The method considers the 3′UTR

regions of the transcriptome and calculates context score [41] from the type of seed

match (8mer, 7mer-m8, and 7mer-1A), 3′ pairing contribution (miRNA-target comple-

mentarity outside the seed region); preferentially conserved targeting (PCT) estimated

as described in [42] and [43]; and multiple additional parameters.

Effective expression differentiation and miRNA/mRNA interaction detection require

large sets of samples representing multiple cell types or conditions. As sufficiently large

sample sets are unfortunately not always available. The platform supports the inference

of miRNA-mRNA interactions using two complementary Bioconductor methods,

Roleswitch [44] and TargetScore [45], which account for these limitations.

Roleswitch is able to infer probabilities of miRNA-mRNA interactions from a single

sample. The Probabilities of MiRNA-mRNA Interaction Signature (ProMISe) are calcu-

lated from two paired expression vectors, M miRNA and N mRNA, and the N x M

seed match matrix containing the number of target sites for each miRNA-mRNA pair.

Notably, Roleswitch assumes that the total transcribed mRNA levels are higher than

the observed (equilibrium) mRNAs levels. An entire family of versatile preliminary seed

matrices (in which the source data is obtained from the TargetScan database) has been

prepared and is provided to platform users. The pre-calculated matrices differ with

respect to the following:

– conservation of miRNA: broadly conserved = conserved across most vertebrates,

typically up to zebrafish; conserved = conserved across most mammals, but typically

not beyond placental mammals; or poorly conserved = all others; and

– the threshold of the total context site, defined as the sum of context scores for the

most favourable (most negative) miRNA in this family. For highly conserved

miRNA families the total context site is complementary to preferential conservation

of the sites (aggregate PCT).

The user may select targets of interest, including the expected level of conservation.

The TargetScore approach assumes input data from the experimental transfection

procedure. Transfection relies on the introduction of miRNA molecules to cells

containing the reagent. By determining the expression levels of transcripts prior to and

following transfection one can infer the targets of the given miRNA molecule. In this

model, paired microarrays of mRNA and miRNA are generated from the same
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experiment to measure the cellular response to an environmental change (e.g., treat-

ment with endotoxin lipopolysaccharides (LPS)). When multiple miRNA samples are

examined a list of miRNA molecules is used as the input, as in the case of a transfec-

tion experiment, into a corresponding mRNA expression matrix in the log(FC) form.

Then, the miRNA-mRNA interactions are analysed using the TargetScore package and

the appropriate sequence-based information (including the context score and PCT) for

each selected miRNA sample.

TargetScore infers the posterior distributions of miRNA targets by probabilistically

modelling the likelihood of a fold-increase in mRNA expression and sequence-based

scores. The variational Bayesian Gaussian mixture model (VB-GMM) applies these

logarithmic fold-change and sequence scores to determine the posterior latent variables

(i.e., the miRNA targets). The sequence-based information, context score and PCT are

obtained from the previously mentioned TargetScan database. The author of TargetS-

corehave demonstrated that target prediction can be improved by simultaneously using

expression fold-change and sequence-based information. The advantages of Target-

Score include improved quality of target recognition via the use of sequence-based

information and its deployment as an unsupervised method operating on the entire

gene dataset to more closely model the overall interaction probability.

Using the presented DNA microarray analysis it is possible to investigate miRNA-mRNA

interactions based on the following: 1) a single sample; 2) differential expression; 3) differen-

tial expression and sequence-based scores; or 4) a combination of the above approaches.

Given a set of paired raw miRNA and mRNA microarray expression data from each

sample, the investigation workflow follows a typical normalization and expression-

calling procedure, as well as steps specific to integrated miRNA and mRNA analysis.

Predictions are summarized by listing the genes/transcripts ranked by the mRNA sam-

ples displaying the maximum probabilities of interaction with any miRNAs, the miRNA

samples displaying the maximum probabilities of interaction with any transcripts and the

maximum probabilities of interaction between specific miRNA-mRNA pairs.

The user is able to operate not only at the gene level but also at the transcript level.

Most R/Bioconductor microarray workflows function only at the gene level, by asso-

ciating a single gene with a set of probes and calculating the average expression for

multiple transcripts of the same gene. However, it is occasionally more effective to

focus on the transcripts, such as when investigating gene isoforms or alternative

splicing. When the user selects transcript-level analysis, the platform links the related

transcripts to the same gene in the analysis results. In the inverse case, in which a

single transcript is related to multiple genes, the system presents the user with a list of

such transcript-gene pairs.

Data management

The DNA Microarray Integromics Analysis Platform supports simple and efficient data

management in a variety of modalities.

No researcher works alone. To deliver experiment-sharing capabilities (an “experiment” is

defined as a set of connected raw data variables, analyses and their results), the platform

implements a team-based sharing mechanism. A user is able to share an experiment with

any team he/she belongs to (see Fig. 3).
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To accommodate both users who are in the middle of their experimentation and data

analysis process and those who have already published their results, the platform pro-

vides two important mechanisms, both of which are based on the Minimum Informa-

tion About a Microarray Experiment (MIAME) standard [47]. First, the system enables

its users to import preprocessed datasets by uploading a matrix of normalized tran-

script expression data containing rows representing individual transcripts and columns

representing samples (individual microarrays). Using an SDRF file prepared according

to the MIAME regulations, the user uploads both the preprocessed data and the experi-

mental metadata to the system. Once the experiment has been appropriately registered,

it is possible to conduct high-level analyses using the imported data.

When a user has already published his/her findings in a journal and uploaded the

data to the EBI ArrayExpress [3] database, the platform facilitates importing the entire

experiment directly from this database. Experimental data is downloaded in the back-

ground upon request – the users are not required to handle any files themselves. If the

experimental record in the ArrayExpress database contains all of the data necessary for

the system to process it and the microarray files are of a type recognized by the

platform, the experiment is downloaded, and the platform notifies the user when the

download process is complete. This feature is also useful for educational purposes, so

that a teacher and students do not need to supply their own data (which could be

cumbersome in the case of large microarray experiments), but rather can simply select

an interesting publicly accessible ArrayExpress experiment and rely on the platform to

download all of the necessary data for them. The system uses a high-throughput

backbone network that is a component of the PL-Grid Infrastructure, which ensures

rapid transfer between European laboratories and the disk array of the system.

The platform also helps export microarray experiments to the ArrayExpress database

by providing a facility to easily generate the required MAGE-TAB files (specifically,

Fig. 3 Sharing mechanism. Based on the dynamic definition of a team, the owner of an experiment (a set
of data, analyses and results) is able to share it with his/her collaborators. Each user may join any number of
teams. Within each team, membership is supervised by the team manager (often the PI of a research project).
Here, the owner shares experiment E1 with team TB and shares experiment E2 with team TA, resulting in the
access rights presented in the diagram
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Investigation Description Format (IDF) files and Sample and Data Relationship Format

(SDRF) files) according to the required MIAME data and formatting regulations. These

files are useful when registering one’s own microarray experiments in the ArrayExpress

database.

Results
Case study 1: functional links between gene products and metabolites

Publicly available lipidomics and transcriptomics data from a murine nutrigenomics

study [48] were used to demonstrate the performance of the proposed analytical proto-

col using two independent data sets. The data consist of the expression levels of 120

genes (X) and the concentrations of 21 fatty acids (Y), both spanning a total of 40

observations of several genotypes and diets.

Following data import, analytical procedures were executed using the Integromics

platform (Fig. 4). Depending on the number of observations compared to the number

of variables (dependent and independent), appropriate methods of canonical correlation

(i.e., classical canonical correlation, such as CCA or rCCA) may be applied.

CCA is appropriate for cases involving a relatively large number of observations and

a low number of correlated variables (dependent and independent) in the two datasets.

rCCA is a modification of the classical canonical correlation method that permits

analysis of a small number of observations and a large number of variables in both sets.

PLS is not restricted by the number of observations or highly correlated variables.

Case study using YACCA (canonical analysis) and FRCCA (regulated canonical analysis)

packages in R.

The canonical analysis procedure (CCA) generates specific data corresponding to the

analysed datasets. This case study focused on the most basic parameters of canonical

analysis and their interpretation. Conducting CCA initially requires the removal of

correlated predictors (independent variables, or the transcriptomics data (X)) and

responses (dependent variables, or the lipidomics data (Y)) as highly correlated

Fig. 4 The “Analysis Setup” panel enables the selection of analytical methods, such as canonical analysis
(CCA or rCCA) or PLS
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variables may significantly skew the results. The correlation threshold is set arbitrarily

and depends on the type of data. In the life sciences domain, the correlation coefficient

is considered to be greater than 0.7.

Once highly correlated data are removed from X and Y, the correlation between the

dependent and independent variables can be calculated. The Integromics platform

produces a correlation map for X and Y, identifying the variables that display strong

correlations (Fig. 5).

The appropriately prepared data sets were analysed using the canonical correlation

procedure which identifies linear combinations of variables in the analysed sets such

that the correlations between them are as high as possible. The results of the CCA

procedure are accessible as text (numerical data) or PNG (figures) files several seconds

after the analysis is complete.

Detailed information about the CCA results, such as the canonical correlations, the

X coefficients, the Y coefficients, the structural correlations (loadings) for variables X

and Y, and the aggregate redundancy coefficients (total variance explained) are access-

ible in the cca.fit-YACCA.txt file. Statistics that describe datasets X and Y are saved in

the summaryX-YACCA.txt and summaryY-YACCA.txt files respectively. The signifi-

cance of the calculated canonical correlation is performed using the F-test (Rao’s F

approximation), and these results are provided in the F_test_CCA.txt file.

The results obtained from the murine nutrigenomics datasets reveal high canonical

correlations (CV1:1, CV2:0.997, CV3:0.995). These canonical correlations were found

to be statistically significant at a significance level of 0.05. The calculated values of

aggregate redundancy were X | Y: 0.42 and Y | X: 0.89, indicating that Y explains X in

42 % of cases and that X explains Y in 89 % of cases.

The platform supplies graphical files which present the results of the analyses. For

example, a diagram of the impact loadings in both sets is presented in Fig. 6.

High canonical loading of a particular variable indicates the significance of that

variable in the interpretation of the canonical variate. In this case, among the gene

transcripts, the greatest impact on this model was obtained for genes PRG4 (−0.637),
Il2 (0.56), NR1I2 (−0.58), and RARB (0.59) and for fatty acids 28364 (−0.78), 28125
(−0.75), and 36023 (0.66). These results are reflected by the heights of the bars in the

graph.

As mentioned above, CCA should be performed for a large number of observations.

If the number of observations is lower than the number of transcriptomics or lipido-

mics variables, classical canonical analysis is not appropriate (the number of observa-

tions should be 10 times the number of variables). In the life sciences domain the

obtained data often displays a structure in which the number of observations (samples)

is small while the number of variables (e.g., transcripts of genes) is large. In such situa-

tions, a modified classical canonical analysis method (rCCA) should be used.

For the analysed dataset, CCA can be used when the correlation threshold is at least

0.7 for the transcriptomics andlipidomics data. When r = 0.8, CCA is not performed

due to the insufficient number of observations compared to the number of X and Y

variables. In such casesrCCA can be performed instead. The results of the rCCA calcu-

lation are available in a similar form to the CCA results.

The canonical correlation and the canonical weights and loadings for X and Y are

accessible in the my_res-FRCCA.txt file. Descriptive statistics are provided in the
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Fig. 5 Map of the Pearson correlations between two datasets: gene transcripts (X) and fatty acids (Y). The
radius of the circle indicate the strength of correlations. Negative correlations are marked in blue while
positive correlations are marked in red
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summaryX-FRCCA.txt and summaryY_FRCCA.txt files. In FRCCA the results do not

include information regarding the significance calculations. The values of the canonical

correlations for the first three sets of canonical variables are as follows: CV1: 0.99;

CV2: 0.98; and CV3: 0.98. The graphical representation depicts the variables as points

on a two-dimensional plane in which the axes represent the canonical loadings, as

shown in Fig. 7.

PLS procedure

For the integration of partially correlated transcriptomics and lipidomics data the PLS

procedure was used. The first step of the PLS procedure involves constructing a

predictive model. For this purpose the entire dataset was incorporated into the PLS

model.

To demonstrate the prediction values, a subset of murine nutrigenomics data were

used (50 transcriptomics and 10 lipidomics variables). The PLS model was fit to the 10

latent variables, followed by cross-validation. The root mean squared error of prediction

(RMSEP) parameters were calculated for the specific lipidomics variables (fit method:

kernelPLS; number of components considered: 10). This step yields information about the

quality of the fit of the model to particular components. In the analysed dataset, some

Fig. 6 Graphical representation of the canonical loadings of the X (gene transcript) and Y (fatty acids)
datasets for the first canonical variates (CV1)
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variables were classified as poor (RMSEP too high), such as ChEBI 16196, in which

RMSEP was >4.5 for ncomp = 8 and even higher for ncomp > 8 (Fig. 8). Other variables

remained good, such as ChEBI 15756, exhibiting the lowest RMSEP in 5 components.

To confirm the quality of the variables included in this model, cross-validated predic-

tions using 5 components (the components for which most of the variables displayed

the lowest RMSEP) were visually compared to the measured values (Fig. 9).

The charts of some of the variables exhibited poor alignment to the corresponding

target profiles – e.g., fatty acid ChEBI ID 36036 (Fig. 9). This result suggests that the X

variables did not appropriately describe the given lipidomics variable. Another graphical

representation of the results of the PLS procedure consists of a pairwise plot of score

values. Such plots help reveal patterns, groups and outliers. In our example (5 compo-

nents plotted), there was no clear indication of any grouping or outliers (Fig. 10).

The explained variances for each component in this example were as follows: Comp1 =

32 %, Comp2 = 19.5 %, Comp3 = 5.5 %, Comp4 = 13.2 %, Comp5 = 6.7 %, Comp6 = 4.2 %,

Comp7 = 3.6 %, Comp8 = 2.1 %, Comp9 = 1.4 %, and Comp10 = 1.1 %. The canonical

loadings are crucial for the interpretation step as higher loading values indicate greater

contribution of the given variable to the model. Figure 11 presents the top 10 genes,

ranked according to their loading values.

Case study 2: discovery of significant miRNA interactions

The other use case concerns the Normal Human Dermal Fibroblasts (NHDF) experi-

ment [49]. This study compared the differential expression of the entire transcriptome,

including miRNAs, between different cell lines (12 samples): a control group of NHDF

cells (NHDF), NHDF cells treated with LPS (NHDF LPS), NHDF cells infected with

porcine endogenous retroviruses (PERVs) (NHDF PK15) and NHDF PERV-infected

Fig. 7 Canonical variable representation
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cells treated with LPS (NHDF LPS PK15). For each sample, the paired expression levels

of both mRNA and miRNA were measured using AffymetrixGeneChip miRNA 2.0 and

HGU133A2 microarrays. This study measured the changes in the expression levels of

both mRNAs and miRNAs between specific groups and, when changes were found,

attempted to establish which RNAi process regulated their expression in PERV-infected

cells either with or without LPS treatment.

Preliminary miRNA microarray data preparation was performed using the Affymetrix

miRNA QCTool [50]. The procedure included background detection, background

adjustment (BC-CG Adjust), quantile normalization, addition of small constants

(CVStab), and summarization using a median polishing approach. The presented

platform can be used to import such pre-normalized data for further analysis.

Normalization of the mRNA microarray data were performed using the presented

platform, including RMA background correction and quantile normalization.

The next step involved microarray significance analysis to calculate significant differ-

ences in the transcript levels. Statistically significant differences in the miRNA levels were

found for only two pairs of cell groups, NHDF PK15 (P) versus NHDF (K) giving hsa-let-

7e, hsa-miR-199a-5p, hsa-miR-99a and NHDF LPS PK15 (LP) versus NHDF LPS (L)

giving hsa-miR-3197. The resulting list of statistically significant miRNA subsets was

selected using a Median of False Discovery Rate (FDR) threshold of 0 (the threshold used

is relative, which means that genes are significantly different at a level greater than 0.05)

for the prediction of putative miRNA targets among the differentially expressed mRNAs.

Fig. 8 Cross-validated RMSEP curves for the murine nutrigenomics dataset (results for the first 9 lipidomics
variables). “CV” is the cross-validation estimate while“adjCV” (for RMSEP) is the bias-corrected cross-validation
estimate. They can only be calculated if the model has been cross-validated
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The Integromics platform supports two miRNA target prediction methods. The first

is based on a single expression sample (group). Due to the low diversity of the com-

pared groups we selected the most liberal settings for the conservation of miRNA and

target sites (Fig. 12). However, the results were found to be insignificant (Fig. 13).

The available parameters of this procedure include:

– the number of cells representing the highest probability. This parameter affects the

dimension of the output matrix; e.g., a value of 10 results in an output matrix with

diagonal length 10;

– the granularity level of the probe set (either transcript or gene);

– VB-GMM: the threshold that defines termination/convergence of the VB expectation

maximization (VB-EM) algorithm, which is used to optimize the parameters;

– the maximum number of EM iterations of VB-GMM.

The ProMISe output tables for NHDF PK15 (P), NHDF LPS (L) and NHDF LPS

PK15 (LP) were very similar to the NHDF results (see Fig. 13). The maximum probability

(approximately 0.2) was obtained for the same pair (TMSB10 and hsa-miR-1469) from

each sample.

Fig. 9 Cross-validated predictions for the murine nutrigenomics dataset (results for the first 9
lipidomics variables)
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The final component of the workflow used TargetScore for miRNA target prediction

based on the variability of the expression of the compared groups. Using the Target-

Score, our system prepares sequence-based information, the context score and PCT for

each miRNA in the selected list. The exact approach depends on the selected level of

analysis at either the gene or transcript level. The system informs the user whether

sequence-based information was obtained for a given miRNA sample.

The applied settings and parameters are presented above. We selected the transcript

analysis level and the default values for the remaining settings (convergence threshold

of the VB-EM algorithm and maximum number of EM iterations). The peak size of the

resulting matrix was set at 20 (Fig. 14).

As a result of the above steps, we expected to answer the following questions: 1)

which transcript (gene) displays the highest probability of being a target of any miR-

NAs; 2) which miRNA displays the highest probability of interfering with any

transcripts; and 3) which miRNA-transcript (gene) pair displays the highest probability

of interacting with each other?

The resulting tables present the peak probability values for the genes/transcripts. The

attached histograms help distinguish this limited “peak” dataset from the entire population

of results. If the “transcript” option is selected, the table also contains other transcripts

associated with a specific gene according to the described multi-transcript protocol.

Fig. 10 Score plot for the murine nutrigenomics dataset
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The full list of output files and miRNA target prediction charts based on the variability

of expression includes TargetScore probabilities calculated only for log(FC) input:

� list of miRNA samples that contain no sequence-based information (context score

or PCT) in the TargetScan database

� list of transcripts that are linked to more than one gene

� vector of the peak-probability genes computed only using log(FC)

� histogram of the TargetScore probabilities for the fold-change in expression and

TargetScore probabilities calculated using the sequence-based information:

� table of cell types displaying the greatest probabilities of miRNA-mRNA interaction

� histogram of the TargetScore-computed probabilities of miRNA-mRNA interaction

� table of rows (genes/transcripts) containing the maximum values of the sum of the

probabilities (see Fig. 15)

Fig. 11 Top 10 genes ranked by their loading values

Fig. 12 Selection panel for miRNA target prediction based on a single expression sample
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� histogram of the sums of the TargetScore probabilities for each row (gene/

transcript)

� table of columns (miRNAs) containing the maximum values of the sums of

probabilities

The output files support the following interpretation. Transcript NM_5824 (LRRC17

gene) exhibits the highest probability among mRNA/miRNA pairs (this conclusion is

Fig. 13 Section of the output table listing the ProMISe for the NHDF expression levels

Fig. 14 Selection panel for miRNA target prediction based on expression variability
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based on the full TargetScore results and the Table of Max Probability; see Fig. 15).

The distribution of probabilities shows that the highest value is not an outlier.

This suggests that we could expect many miRNA/mRNA pairs with slightly lower

probability values. We select the transcripts with the best miRNA interaction

probabilities from among the full TargetScore results and from the table of rows

listing maximum probability sums (see Fig. 15). The selected transcript,

NM_006122, is encoded by the MAN2A2 gene. The corresponding histogram

facilitates assessment of the specificity of each value. By analogy, we could assess

miRNAs by using maximum probability sum columns to select the highest

probability of interference with any transcripts. The resulting miRNAs, arranged

in the order of decreasing probability, are: hsa-miR-199a-5p, hsa-miR-99a and

hsa-let7e (see Fig. 15).

Fig. 15 The most important part of result of TargetScore analysis NHDF PK15 (P) compared to NHDF (K). (a)
The Table of Max Probabilities showing cells displaying the greatest probability of miRNA-mRNA interaction
with NM_5824 (LRRC17 gene) marked. This transcript exhibits the highest probability from among mRNA/
miRNA pairs (b) Table of rows with Max Sum of Probabilities containing rows (genes/transcripts) with the
maximum values of the sum of probabilities, with NM_006122 (MAN2A2 gene) and NM_18621 (the same
MAN2A2 gene) transcripts highlighted. (c) Table of columns with Max Sum of Probabilities containing columns
(miRNAs) with the maximum values of the sums of probabilities (arranged in the order of decreasing probability:
hsa-miR-199a-5p, hsa-miR-99a, hsa-let7e). (d) Histogram of TargetScores containing the TargetScore-computed
probabilities of miRNA-mRNA interaction. (e) Histogram of Sum of Rows containing the sums of the TargetScore
probabilities for each row (gene/transcript)
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Table 1 Comparison of the characteristics of popular microarray analysis tools

Platform characteristic WebArrayDB [11] ArrayMining [12] Babelomics [13] DNA Microarray integromics analysis
platform

miRNA-mRNA target site recognition - - - +

Integration of transcriptomics and lipidomics - - - +

Analysis of genetic variation - - +3 -

Functional profiling +1 +2

Conditional analysis of gene expression
based on ANN

- - - +

Imports and exports data to EBI databases - - - +

Teamwork and collaboration - - - +

License and source code availability GNU General Public
License

Free for academic and non-commercial
use; source code not available

Free; source
code available

Free for academic and non-commercial
use; source code available

1Includes text mining, knowledge- and network-based annotations and gene set enrichment analysis; 2includes knowledge- and network-based annotations and gene set enrichment analysis; 3includes association
analysis and genotype stratification
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Conclusions
The DNA Microarray Integromics Analysis Platform is a user-friendly, open-source

online system that provides a panoply of computational tools for biological data

analysis. Its web-based graphical user interface renders the platform more accessible to

non-IT experts, enabling domain scientists to interact with it at each step of the micro-

array data analysis, and to integrate biological data from other sources.

Several web-based DNA microarray data analysis platforms currently exist. However,

most of these platforms do not support the multi-omics approach as a means of enhan-

cing insight into molecular biology mechanisms. Table 1 compares selected characteris-

tics and features of the DNA Microarray Integromics Analysis Platform with those of

other web-based tools.

Only the Babelomics [13] platform includes any algorithms for integrative analysis of

transcriptomics, proteomics and genomics data. Integromics analyses for transcripto-

mics and lipidomics data or mRNA and miRNA data are available exclusively in the

DNA Microarray Integromics Analysis Platform.
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