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Abstract

A network motif is a recurring subnetwork within a network, and it takes on certain
functions in practical biological macromolecule applications. Previous algorithms have
focused on the computational efficiency of network motif detection, but some
problems in storage space and searching time manifested during earlier studies.
The considerable computational and spacial complexity also presents a significant
challenge. In this paper, we provide a new approach for motif mining based on
compressing the searching space. According to the characteristic of the parity
nodes, we cut down the searching space and storage space in real graphs and
random graphs, thereby reducing the computational cost of verifying the isomorphism
of sub-graphs. We obtain a new network with smaller size after removing parity nodes
and the “repeated edges” connected with the parity nodes. Random graph structure
and sub-graph searching are based on the Back Tracking Method; all sub-graphs can be
searched for by adding edges progressively. Experimental results show that this
algorithm has higher speed and better stability than its alternatives.
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Background
Researchers have discovered that the human genome is a complex network system.

With the Human Genome Project (HGP), we step into a post-genome era. The network

motif [1,2] is generally represented as the smallest unit in a network. Motif analysis is

increasingly recognized as a powerful approach to identify the function structure of a net-

work, its organizational principle and species evolution.

The network motif was first defined systematically in Escherichia coli. After this,

algorithms regarding network motif mining were developed. Kashtan, Itzkovita, Milo

and Alon [3] proposed the Edge Sampling Algorithm (ESA), which unfortunately leads

to sampling deviation and causes error. Wernicke [4] described an algorithm for enu-

merating sub-graphs, named Enumerating Subgraph (ESU for short), which allows for a

faster detection of network motifs and offers useful additional features. Considerable

work has been made concerning subgraph searching, and we select the RAND-ESU

method for its performance and unbiased estimation [5,6]. Meanwhile, the generating

random network model is a key to identifying motifs. We adopt the standard null

model [7,8], in which the degree of every node is not allowed to change, such that sin-

gle node properties are fixed. Lau and So. [9] proposed the Markov Chain Algorithm
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to generate random networks [10], and we use it to construct the random networks

for this paper. In addition, sub-graphs are another key to finding motifs because sub-

graph isomorphism is an NP-complete problem [11,12]. In order to solve this prob-

lem, a method aimed at reducing the searching size was introduced by Ding and

Huang [13]. An algorithm to reduce the complexity of matching two graphs was pro-

posed by Knossow,Sharma, Mateus and Horaud [14]. Another algorithm that opti-

mizes the one-to-many matching problem was introduced by Ogras and Marculescu

[15]. Moreover, some more recent algorithms have been developed [16], based on the

G-trie method to list all stored subgraphs and the implicit tree method [17] to finding

motifs of a size greater than eight. Liao and Chen [18] presented the Depth-First

Spelling algorithm for mining sequential patterns of biological sequences with Gap

constraints (termed DFSG). Zhang and Lu [19] employed a network stratification

strategy to investigate the validity of the current network analysis of conglomerate

PPI networks, finding that network stratification may help to resolve many contro-

versies in the current research of systems biology. Srinivasan,Vural, King and Guda

[20] presented a new substitution-based scoring function for identifying discri-

minative lower denominations that are highly specific to a class. Unfortunately, some

of these methods, designed for both directed and undirected graphs, proved to be

time-consuming. The aim of this paper is to achieve a method for reducing the sear-

ching time storage space required for a motif mining algorithm, while storing all

sub-graphs.

We enumerate all sub-graphs that meet the requirements of a given graph by way of

reducing the searching space. Then, the associated matrices of these sub-graphs are

normalized and the isomorphic sub-graphs are uniquely marked. Through experiment,

we verify the accuracy and extensive applicability of our algorithm, and improve the

searching speed of sub-graphs enumeration.

In the following, we give some definitions:

Definition 1

The Network motif is generally represented as a topological pattern that occurs

more often in a given network than in random networks, and takes on a certain

function in practical biological applications. We utilize graph theory to research net-

work. A sub-graph is considered as a Network Motif when the following conditions

are met [1,2]:

1) The frequency P < 0.01, from 1000 randomized networks.

2) The number of sub-graph in the input graph Nreal is larger than four.

3) SetNreal as the number of sub-graphs in the input graph, Nrand as the mathematical

expectation of the random graphs, the following inequality should be satisfied:

Nreal −Nrand > 0.1Nrand.

Definition 2

A Network is considered to be a large graph consisting of vertices and edges. A directed

graph (or network) is usually indicated as G = (V, E), where V stands for a finite set of

nodes in the graph and E the edges. Edge e = (u, v)⊆ E represents an edge starting from

the node u (the source) to the node v (the target).
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Definition 3

In a graph G = (V, E), any two nodes Vi and Vj that meet the following requirement are

called Parity nodes [21].

i) Both in-degree and out-degree of Vi and Vj are the same, stated as < di
in;

di
out >¼< dj

in; d
j
out > :

Definition 4

The frequency partition of a graph (simple graph) is a partition of its vertices grouped

by their degree [22].

Definition 5

Two sub-graphs G = (V1, E1) and G/(V2, E2) are Sub-graph isomorphic [12] if there

is a one-to-one correspondence between their vertices, stated as f: v1→ v2, and also

there is an edge correspondence g: e1→ e2, directed from one node to another

node within one sub-graph. e1 ∈ E1, Ψ1(e) = < u, v > if and only if there is another

edge with the same direction between the corresponding vertices in the other sub-

graph Ψ2(g(e)) = < f(u), f(v) > .

Figure 1 is an example of parity nodes and Figure 2 shows the isomorphism visually.

Methods
In this paper, we provide a new approach for motif mining based on compressing the

searching space. Firstly, we use the associated matrices to store directed graphs, and

then utilize parity nodes to compress searching space. Secondly, we use Back Tracking

to enumerate all sub-graphs of a given size that occur in the input graph which are

obtained from real graphs and random graphs. Thirdly, we normalize the associated

matrix and mark isomorphism sub-graphs uniquely, by using the Symmetric Ternary

to simulate the elements (−1, 0,1) in the associated matrix. And finally, we distinguish

motifs among all the sub-graphs found on the basis of statistical parameters to iden-

tify it whether or not.
Figure 1 An example of parity nodes.



Figure 2 An illustration of isomorphic graphs.
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Store graphs

The storage of graphs is the first step in the process of solving the motif-mining prob-

lem. The associated matrix is easy to compress and thus it is easy to know the size of a

sub-graph, so we use the associated matrix to store real graphs and random graphs.

An associated matrix M(G) shows the connection between the nodes and edges of

G. It is usually not a square matrix, shown as Figure 3

M Gð Þ ¼

e1 e2 e3 e4
v1 1 1 0 1
V2 −1 0 0 0
v3 0 −1 1 1
v4 0 0 −1 −1

In this matrix, a row represents nodes, a column edges, and the algebraic sum of all ele-

ments is zero in M(G). In the matrix M(G), the sum of out-degree and in-degree are both

equal to the number of edges, stated as
Xn

i¼1

Xm

j¼1

mij ¼ 1
� � ¼ m ¼ −

Xn

i¼1

Xm

j¼1

mij ¼ −1
� �

.

Figure 3 An example of an associate matrix, showing the corresponding relationship between a
graph and a form of storage.



Zhang and Xu BioData Mining 2014, 7:29 Page 5 of 13
http://www.biodatamining.org/content/7/1/29
Sub-graph mark and isomorphism

As is well known, the sub-graph isomorphism is an NP-complete [12] problem among

the different types of graph matching algorithms. The required time increases exponen-

tially with the size of the input sub-graphs. For an N-vertex sub-graph, the number of

the node label permutation is N!. In addition, there is a difficult problem using the

associated matrix to store graphs, because an element represents both the connection

relationship and orientation directly, such as “-1”. Therefore, we need to adopt the con-

cept of symmetrical three hexadecimal to extracting the matrix row by row for get se-

quence of symmetric ternary, and the symmetric ternary sequence is a Code number

that is unique for each isomorphic class. In order to mark each graph uniquely, we

need to standardize the associated matrix, which is useful for sub-graph isomorphism

as it can reduce the complexity of sub-graph isomorphism and improve the efficiency

of the searching. The detailed process of the standardization of the associated matrix

can be referred to as [23].
e1 e2 e3 e4
v1 1 0 0 −1
v2 0 −1 1 0
v3 −1 1 0 0
v4 0 0 −1 1

⇔

e1 e2 e3 e4
v1 1 0 0 −1
v3 −1 1 0 0
v2 0 −1 1 0
v4 0 0 −1 1

⇔ 100‐1‐11000‐11000‐11ð ÞSymmetric Ternary ¼ 13698880

From this example, we know that after two similar matrices get elementarily trans-
formed; we can get the same matrix and a unique Code. One Code marks an isomorphic

class. We just have to count the same values of the Codes to detect the motif. We confirm

the sufficiency and necessity of this unique mark theoretically, this being outlined below:

The sufficiency

If isomorphism exists, their associated matrix is similar matrix. According to the pro-

perties of the elementary transformation of matrix, similar matrices will become the

same matrix after elementary transformation, and so their Code values are the same,

and the mark the isomorphism class is the only.

The necessity

If the following conditions are met between two matrices, we can say that the two ma-

trices are equal: the sizes (the row and column of matrix) of sub-graphs are the same;

both the numbers of out-degree and that of in-degree are respectively equal; and so the

matrices have the same Code value, and furthermore the corresponding symmetrical

ternary number are the same. Under this condition, all the corresponding elements of

these matrices are the same. Therefore, we can conclude that these matrices are equal

and so they satisfy the requirement of uniqueness.
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Space compression

It appears that there is more than one parity node in a graph. The structure and func-

tion of these nodes are similar, and the topological network characteristics of these

nodes are completely the same. According to the features of the parity nodes, exchan-

ging two nodes doesn’t affect the topological structure of the whole network. This

means that the corresponding associated matrices are similar after exchanging the par-

ity nodes, as can be seen in Figure 4.

e1 e2 e3 e4 e5 e6
1 −1 0 0 −1 0 0
2 1 1 0 0 −1 0
3 0 −1 −1 0 0 0
4 0 0 1 1 0 −1
5 0 0 0 0 1 1

⇒
change

e1 e2 e3 e4 e5 e6
1 −1 0 0 −1 0 0
4 0 0 1 1 0 −1
3 0 −1 −1 0 0 0
2 1 1 0 0 −1 0
5 0 0 0 0 1 1

We perform a pre-treatment of the searching space before enumerating the sub-
graphs. In this pre-treatment, we first identify the parity nodes. In a group of parity

nodes, we remove all except the node with the minimum mark number such that the

network has no pairs of parity nodes, and then search directly into the network. Finally,

we determine the network motifs.

In Figure 5, v1, v2 represent vertex 1 and 2, respectively, and they are the remaining

vertex after compression, e1 is the edge linking v1 and v2. Gr, Gp, Gcv represent the

nodes and edges that remain after compression, the parity nodes that are removed and

the vertex and edges connected with the parity nodes, respectively. Upon finishing the

compression, we conduct a sub-graph search. At this point, we shall see that the space

we need to search is considerably reduced. If we want to search a sub-graph with a

specific topological structure, for instance (1,2,5), we need not go through the whole

graph to find all sub-graphs with this topology, meaning that searching for sub-

graphs like (2,3,5), (1,2,2), (1,4,5), (3,4,5), (1,3,4) is unnecessary. The aforementioned

sub-graphs can be stored in Gcv and Gp. What we need to do is replace the parity
Figure 4 The nodes 2 and 4 are parity nodes. After exchanging their positions, the associated matrices
remain similar and these two matrices can get into the same form by elementary transformation, thus
possessing the same Code.



Figure 5 Two groups of nodes: 2, 4 and 1, 3, 5. The tablet is storage format of network after compression.
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nodes correspondingly and make sure there is no repeating. In this way the searching

time is reduced.
Enumerating Sub-graphs

Back Tracking [24] is often used to search the optimal solutions of complex problems.

It enumerates a set of partial candidates, in which we keep just the initial and the end

node of a path. We also reduce the space complexity using the method of saving

storage space.

We aim to enumerate all sub-graphs of a given size that occur in the real graph, and

then we combine the method for enumerating all sub-graphs (Back Tracking) with that

for compressing space. The hybrid algorithm can reduce the complexity of the sub-

graphs enumeration and the searching time. The process of enumerating sub-graphs

[23] can be read for reference.
Results and discussion
In this section, we will apply our method to some real networks in order to verify the

validity. We evaluate our method on the metabolic pathway of the bacteria E. coli, the

transcription network of Yeast, the Sea Urchin network, and an electronic network.

These can be freely obtained online at http://www.weizmann.ac.il/UriAlon/groupNet

worksData.html [25].
Effectiveness of the algorithm

Table 1 shows the numbers and structures of motifs with different sizes observed in

some different networks, and in this table, we enumerate the number of the sub-graphs

that occurred in the real network and the Code that marks them with different num-

bers of edge in these networks.

In Table 1, the different numbers of edges and nodes embody the differences between

networks. Most motifs are similar in the different networks, but small parts are differ-

ent. If motifs have the same topological structure, their Codes shall be the same. This

proves the accuracy of the unique mark of isomorphic sub-graphs, and also that of our

http://www.weizmann.ac.il/UriAlon/groupNetworksData.html
http://www.weizmann.ac.il/UriAlon/groupNetworksData.html


Table 1 [23] A summary of Code values and the topological structures in different
networks

Network Nodes Edges Size-N Code Motif

E coli 423 519 3 8528

4 12925664

236808

S208 122 189 3 5668

4 13698880

12925664

S420 252 399 3 5668

4 12925664

13698880

S838 512 819 3 5668
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Table 1 [23] A summary of Code values and the topological structures in different
networks (Continued)

4 12925664

13698880

In this table, the fourth column contains the numbers of motifs in the real network.
The fifth column contains the unique Code values that represent the isomorphic class, and the sixth column has the
topological structures of these motifs.
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algorithm. In addition, our method achieves the motif mining in different kinds of net-

works, and it proves that our method is both valid and extensively applicable.
The results of compression

In order to judge the performance of our method, we carry out a series of experiments

on a set of testing data. The performance of the method is evaluated by the consump-

tion time. We enumerate all sizes of sub-graphs for testing, and then compare them

with method [26]. There are no parity nodes in the electronic circuit network, so the

searching time remains unchanged. However, we can compress the searching space in

the network based on the properties of parity nodes.

In a network, the searching time is different when the size of the sub-graph is differ-

ent. For instance as can be seen in Table 2, the S208 network costs 0.001 seconds when

there are three nodes in the sub-graph, and 2.9 seconds when there are eight nodes.

With increasing size, the searching time is amplified tenfold. It shows that the search-

ing time is directly proportional to the size of the sub-graph. We will now compare the

results displayed in Table 3.

After compressing the searching space, we list the searching time in different net-

works with different sizes in Table 3. To avoid repeated searching, we only search one

of the parity nodes and remove the edges connected with the with parity nodes which

were abandoned. In this way we obtain a compressed network; the random network

shall be compressed in the same way, which ensures that the random network can be
Table 2 List of searching times for different networks before compression

Time(s) Size 3 Size 4 Size 5 Size 6 Size7 Size 8 N(edges) before
compression

N(nodes) before
compressionNetworks

Yeast 0.013 1.860 31.281 1079 688

E coli 0.031 0.469 8.844 519 423

S208 0.001 0.002 0.031 0.125 0.579 2.953 189 122

S420 0.001 0.031 0.110 0.563 3.141 17.734 399 252

S838 0.063 0.110 0.500 2.843 17.204 819 512

The first column contains the names of different networks; the 2 through 8 columns contain the sizes of sub-graphs, and
consumption time.



Table 3 List of searching times for different networks after compression

Time(s) Size 3 Size 4 Size 5 Size 6 Size7 Size 8 N(edges) after
compression

N(nodes) after
compressionNetworks

Yeast 0.031 0.344 4.031 615 345

E coli 0.016 0.266 4.141 320 256

S208 0.001 0.002 0.031 0.125 0.579 2.953 189 122

S420 0.001 0.031 0.110 0.563 3.141 17.734 399 252

S838 0.063 0.110 0.500 2.843 17.204 819 512

The last two columns in this table contain the sizes of networks after reducing the parity nodes and the “repeated
edges” connected with the parity nodes.
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used as a reference. This approach also ensures consistency of a sub-graph regardless

of whether it is a network motif.

By comparing Table 3 with Table 2, it can be seen that there are no parity nodes in

the electronic circuit networks, such as S208, S420, or S838. Therefore, the time for

searching sub-graphs with different nodes is the same before and after compression.

The subtle gaps between the results and the original results can be neglected. As for

the biological networks with parity nodes, however, the more parity nodes that exist

the more obvious the effect of compression is. In the example of the yeast network, the

number of the parity nodes is 343, half the number of total nodes. The time for search-

ing sub-graphs is greatly reduced after compression. With increasing numbers of sub-

graphs, the efficiency of searching increases up to 10 times for 4-node sub-graphs. Of

course, the efficiency of searching depends on the size of the network as well as the size

of the sub-graph searched for, and the current hardware environment. In any network,

the searching time is different when the size of sub-graph is different.

Through comparison of Tables 2 and 3, we confirm that the method of compressing

the searching space based on the property of parity nodes is feasible, and the effi-

ciency of searching is greatly improved by saving storage space. The advantage is par-

ticularly evident for a network with many parity nodes. This is a new attempt that

ensures the identification of network motifs correctly while also improving the effi-

ciency of searching.

Comparison of searching times

In the previous sections, we have confirmed the effectiveness, accuracy and extensive

applicability of our method. We have also confirmed the smaller search space and stor-

age space obtained through the compression of parity nodes. In this section, we will

compare the results obtained with our algorithm with those from alternative methods

[5,7,17,26]. Due to the limitations of the Feature compression for clustering graphs

(FCGI) algorithm [26], we only tested and compared the Yeast network, and due to the

limitations of network data just the results obtained for the E. coli network were com-

pared to the other algorithms [5,7,17]. The comparison results are displayed in Figure 6

and Table 4.

The comparison between our method and the FCGI method was performed on the

same computer environment: Intel (R)Core(TM) i3 CPU, 2.53 GHZ work station, 1.8 G

RAM, Windows XP operating system, and Visual C++ 6.0. This ensures that the com-

parison is meaningful.



Figure 6 Comparison of results from different algorithms. The height of the blue cuboid is the
consumption time before compressing the network, while the green cuboid is the consumption time after
compressing the network. They are compared with the red cuboid (Rand-ESU in paper [26]). The x-coordinate
denotes the size of sub-graph, the y-coordinate denotes the searching time.
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In Figure 6, algorithm performance is evaluated with the consumption time, using

the yeast network as a testing data. Searching for sub-graphs in a network is the most

important part of the motif mining process. The efficiency of sub-graph enumeration

is, therefore, an important standard with which to measure the quality of an algorithm.

In reference [26], the sub-graphs are enumerated by the Rand-ESU algorithm. When

there are only three and four nodes, there is only a subtle difference between the

time spent on enumerating sub-graphs by Back Tracking algorithm compared with

Rand-ESU; this gap is negligible and can be ignored. However, with more than five

nodes, the time spent even before compressing the searching space is considerably

shorter than that by Rand-ESU, with an improvement of 27 seconds. Most striking

is that after compressing the searching space the time needed is a lot shorter than

Rand-ESU, with an improvement of 15 times (our algorithm’s consumption time is

about one twelfth of the time in Rand-ESU).

The algorithm of Mfinder can only search a small range of sizes, and its computa-

tional cost is the highest. The FANMOD algorithm, able to find sub-graphs and iso-

morphic groups of sizes up to eight, results in the identification of the same numbers
Table 4 Computational cost for different algorithms on the E. coli network

Time(s) Size 3 Size 4 Size 5 Size 6 Size 7 Size 8

Algorithms

Before compression 0.031 0.469 8.844

After compression 0.016 0.266 4.141

Kavosh 0.300 1.840 14.910 141.98 1374.01 13173.74

Fanmod 0.810 2.530 15.710 132.24 1205.97 9256.61

Mfinder 31.000 297.000 23671.80

Rows indicate different sizes of sub-graph and columns are related to different algorithms, times are in seconds.
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as Kavosh. The searching time of the Kavosh is less than that of FANMOD. With our

algorithm, while the size of sub-graphs is limited to a maximum of five, the searching

time is shortest.

The references [5,7,17], are performed on superior computer hardware than our

algorithm: Intel (R)Core(TM) 2 Quad CPU, 3.2 GHZ work station, 8 G RAM. This

means that the increase in speed obtained with our algorithm may be even higher.

Conclusion
In this paper, we presented a method for mining network motifs based on space com-

pression. All sub-graphs can be enumerated by adding edges and nodes progressively in

a Back Tracking algorithm, which saves storage space and reduces space complexity as

only the initial and end nodes of the path are counted. By taking advantages of the par-

ity nodes, a much more efficient solution for enumerating sub-graphs during the motif

mining is provided. Particularly for networks with high ratio of parity nodes, the time

spent on enumerating the sub-graphs is reduced significantly compared with other

common algorithms. From the results obtained, we have proved the accuracy and ef-

fectiveness of our method. By comparing the results of our method with others, we can

conclude that our approach has considerably shorter searching times and more exten-

sive applicability.
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