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Abstract

Background: Using a collection of different terminal nodesize constructed random
forests, each generating a synthetic feature, a synthetic random forest is defined as a
kind of hyperforest, calculated using the new input synthetic features, along with the
original features.

Results: Using a large collection of regression and multiclass datasets we show that
synthetic random forests outperforms both conventional random forests and the
optimized forest from the regresssion portfolio.

Conclusions: Synthetic forests removes the need for tuning random forests with no
additional effort on the part of the researcher. Importantly, the synthetic forest does this
with evidently no loss in prediction compared to a well-optimized single random forest.
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Background
Earlier work has shown how to optimally combine a set of predictors?classifier or
probability machines?into a so-called regression collective [1]. Consider, for example, a
collection of statistical learning machines chosen by the researcher, from subject matter
knowledge or with statistical aspirations. It could contain versions of SVMs [2] with dif-
ferent kernels, variants of the lasso [3], a group of neural nets [4], a collection of k-nearest
neighbors [5] with varying k, along with several random forests [6]. The thought here is
that each or several of these machines might be optimal for the data at hand, but tuning
each and adjudicating the multiple outcomes and performances introduces a second layer
of statistical and data analytic overhead. Instead, a prefered way to proceed is to use a
regression collective which optimally combines machines, thus avoiding the difficulty of
individual machine tuning.
This new method [1], whose R code is abbreviated COBRA (for COmBined Regres-

sion Alternative), is just this kind of combining method. It has the property, that in the
limit of large data, it is at least as good as the best predictor in the collection, and gen-
erates its prediction without having to declare which of the individual predictors might
be optimal for the data at hand. For example, on a given data set one method might
be Bayes optimal for classification given enough data, and on another data set another
machine might be optimal. In all cases the regression collective, given enough data, is
Bayes optimal if any one machine is so, and where this unnamed optimal machine in the
portfolio of the collective can vary over data sets. The method achieves this optimality
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for any data, with a possibly large number of features with mixed category or contin-
uous features and arbitrary correlation structure. As a practical matter the regression
collective requires no tuning of the individual machines on the part of the researcher:
the method is entirely nonparametric and model-free. As one detail, there is no require-
ment for specific and correct interaction terms, however defined, as input for the method.
Instead, machines that include such interaction terms can be added to the portfolio of the
collective.
The COBRAmethod is not a committee or ensemble method, nor is it a voting method.

It is closer to a k-nearest neighbor scheme. However the distance function, or metric, for
measuring closeness in the collective is not Euclidean distance or any weighting thereof,
but a method that uses the multiple predictions of the several component machines to
access closeness of a test data point to the training data. For each training data point,
one checks if its predicted value under a given machine is close to the predicted value of
the test data point under that same machine, and if closeness holds for a majority of the
machines, then that training point is deemed close to the target test data point, otherwise
it is deemed distant. The final prediction for the test data point is a sum of the training
data outcomes using only those data points that are close. In particular this means pre-
dictions from the several machines are not averaged to make the prediction on the test
case, but rather the predicted value is a weighted average of the original outcomes. That
is, COBRA is a type of locally weighted averaged estimator.
While the example above of a regression collective over a set of learning machines was

themotivation for COBRA [1], it has also lead to increased scrutiny of analytic approaches
using collections of features, biologically grounded networks or pathways each as new
inputs to other machines. Here the separate networks are used as inputs to the various
machines within the collective [7]. Then, using the machines built from these networks
as synthetic features, they can be sent to a suitable learning machine for which it is then
possible to compare and evaluate the predictive capacity and interactions between the
networks: Are some networks better than others in the portfolio? In what subset of the
data might that be true?
The approach described here links these two methods, that of a regression collective

and the introduction of synthetic features. We describe a synthetic machine approach, in
particular an approach we call synthetic random forests. Using a collection of differently
tuned random forests, each generating a synthetic feature, a synthetic random forest is
defined as a secondary random forest, a kind of hyperforest, calculated using the new
input synthetic features, along with all the original features. The motivation for using
random forests as a combiner is motivated by the COBRA approach. Like COBRA, a ran-
dom forest can be described as a locally weighted averaged estimator, however it differs
from COBRA in that the weights used to average training outcomes are arbitrary convex
weights, whereas COBRA weights are either zero or one values. It is the greater flexibil-
ity afforded by convex weights that is the rationale for considering random forests as a
combiner. We study the properties of this new synthetic forest method using large scale
simulations involving both real and synthetic data. We find the method has the simi-
lar property to COBRA that it appears to be as universally as good, across all our test
data sets, as the optimal machine in the portfolio of its collective. But not only that, our
empirical findings also suggest that the synthetic random forest outperforms the orginal
COBRA regression collective scheme.
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Methods
Random Forests [6] (hereafter abbreviated as RF), is an ensemble learning method which
calculates ensemble predicted value by aggregating a collection of ntree ≥ 1 randomly
grown trees. In multiclass problems, averaging the terminal node relative frequency of
class labels over a forest of random classification trees yields ensemble predicted prob-
abilities for each class label, while in regression problems, averaging the terminal node
mean value yields ensemble predicted values for the Y -response. Equivalently, one can
show that the resulting ensemble predicted value of a RF can be written as weighted
convex combination of outcomes. Thus, RF is a locally weighted averaging estimator. A
unique feature of RF trees are that they are random in the following sense: a) Each tree
is grown using an independent bootstrap sample (i.e. a sample drawn with replacement
from the original data set, of size n equal to the original sample size); (b) Random fea-
ture selection is employed in which at each node of the tree during the tree growing
process, a random subset of 1 ≤ mtry ≤ p features are selected, where p equals the
total number of features, and the node is split using the variable from the mtry candi-
date variables having the best split. Splitting of a RF tree is repeated recursively, with the
tree grown as far as possible until it is no longer possible to identify groups that differ on
the outcome, or the sample size at that node is too small. Terminal node sizes (the ends
of the tree) satisfy the condition that they contain a minimum of nodesize ≥ 1 unique
cases.
Of the three tuning parameters used by RF, (ntree,mtry, nodesize), optimal tuning of

nodesize has the greatest potential to improve prediction performance. This is because
nodesize acts as a type of bandwidth parameter that controls the level of smoothing
of the RF predictor. It has now become apparent to the machine learning community
that the optimal choice for nodesize depends heavily on the underyling data. In large
n sample settings for example, it is generally believed that nodesize should be large to
ensure good performance. Rationale for this comes from large sample asymptotics which
require nodesize to increase to ∞ in order to ensure consistency. Results of this nature
have for example been used to establish Bayes-risk consistency for RF classification [8].
On the other hand, in high-dimensional problems involving a large number of features,
the opposite has been observed, with performance generally improving with decreasing
nodesize [9]. In studying lower bounds for the rate of convergence in RF regression, it has
been shown that rates of convergence improve when nodesize is small when the number
of features p exceeds the sample size n [10].
It is not hard to imagine settings where the underlying target function f of interest

has curvature that varies over the feature space. Therefore, given that nodesize func-
tions as a type of bandwidth smoothing parameter, it stands to reason that an adaptive
nodesize value that becomes large or small depending upon the flatness or wiggliness
of f will yield a RF that has the potential to outperform a conventional forest con-
structed using a single fixed nodesize value. In order to allow RF to achieve this type
of local adaptivity, our idea is to create synthetic features, which themselves are con-
structed from forests calculated using different nodesize values. This then allows node
splits of a synthetic RF tree to make local and adaptive decisions about nodesize by select-
ing from features constructed from different nodesize values. It is this key observation
that forms the basis of the synthetic random forest (SRF) method described below in
Algorithm 1.
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Algorithm 1 Synthetic Random Forests (SRF)
1: Choose a set of candidate nodesize values N = {n1, n2, . . . , nD}.
2: Fit a RF with nodesize = nj for j = 1, . . . ,D. Use the same ntree and mtry value for

each forest. Denote the resulting forests by RF1, . . . , RFD.
3: Calculate the predicted value for each random forest RFj, j = 1, . . . ,D. We call the

predicted value the synthetic feature.
4: Fit a RF using for features both the newly created synthetic features and the original p

features (using the same ntree andmtry value as before). We call this the synthetic RF.

Remarks

Implementing SRF conveniently involves doing nothingmore than fitting a RF to a slightly
expanded set of features, which includes in addition to the original p features, a new col-
lection of synthetic features obtained by fitting RF under different nodesize values. While
conceptually straightforward, there are some important points to keep in mind when
implementing SRF:

1. The dimension of a synthetic feature can be one or greater. In regression, the
synthetic feature is the predicted value of the Y -response, which is
one-dimensional, however in multiclass problems, the synthetic feature is the
predicted probability of the class label. If there are J classes, this yields a
J-dimensional synthetic feature. Note that since the predicted probabilities are
linearly dependent as they sum to 1, we discard by convention the last coordinate
and use only the first J ? 1 predicted probabilities.

2. To avoid overfitting, when constructing the synthetic feature, we use out-of-bag
(OOB) predicted values. In a bootstrap sample only 63.2% of the data is used on
average (due to sampling with replacement), leaving 36.7% of the data untouched.
This latter data is termed OOB because it is out of sample and can be used to
calculate OOB ensemble predicted values. The OOB predicted value for each data
point X does not use the Y -response for X and therefore represents a
cross-validated out-of-sample estimate.

3. The values of ntree and mtry are kept fixed throughout. Selecting a reasonable
value for ntree is not difficult and performance is robust to its choice?as long as its
value is kept reasonably large, say 250 or more. Optimizing over mtry can improve
RF but we have found that creating synthetic features by varying both mtry and
nodesize values can sometimes negatively impact performance of SRF. We find
keeping mtry fixed at default values and constructing synthetic features by varying
nodesize works very well.

4. Another reason for favoring optimization of nodesize rather than mtry is its
granularity. For nodesize, regardless of n or p, it suffices to consider a handful of
small values, a few intermediate values, and a few large values in the optimization
(in the case of large n, the rate at which nodesize converges to ∞, required for
consistency, can be far slower than n; thus relatively small values of nodesize can be
used even when n is relatively large). In contrast, optimization over mtry depends
upon p, which creates not only an expensive optimization problem in
high-dimensions, but also the potential for overfitting due to the addition of a large
number of synthetic features.
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Results
We compared the performance of four methods, RF, RFopt, SRF, and COBRA over a col-
lection of regression and multiclass benchmark datasets. The four methods were defined
as follows:

1. SRF denotes Synthetic Random Forests described in Algorithm 1. Values for
nodesize were set at N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 50, 100}. The synthetic
RF of line 4 was calculated using nodesize = 5. While this value can be included as
a user parameter for SRF, we found that changing its value did not alter our
findings very much. Thus we chose not to cloud our findings and instead opted for
a fixed value of nodesize = 5 throughout our simulations.

2. RF denotes a standard forest calculated using nodesize = 5. The same nodesize
value was used as for the synthetic forest in SRF in order to assess the efficacy of
the synthetic features. If the synthetic features are not used in node splitting of a
synthetic forest, the resulting forest should closely approximate a regular forest,
and thus performance of SRF should closely approximate performance of RF.

3. RFopt denotes the forest calculated using the optimal nodesize from N .
Specifically: the optimal nodesize was defined as the nodesize value nj from the RFj
forest with the smallest OOB error in SRF. We include RFopt to assess whether a
globally nodesize-optimized forest can compete with the locally
nodesize-optimized synthetic forest.

4. COBRA implements the aggregation method described in [1]. For regression
machines required as input to COBRA we used the same {RFj}D1 machines used by
SRF. Using the same synthetic features as SRF allows us to assess the effectiveness
of arbitrary convex combination weighting used by RF compared with zero-one
weighting used by COBRA. As a side note, we also tried implementing COBRA
using the default machines that comes with its code (lasso, ridge regression, SVM
and random forests) to assess whether a generic COBRA implementation
compared favorably to SRF. However, the results were so unfavorable that we
excluded them from our findings.

All forests were calculated using ntree = 500 and mtry =[ p/3] where [ z] denotes the
first integer greater than z. Forest computations were implemented using the R-package
randomForestSRC [11] which has been extended to include the function rfsrcSyn

which implements the Synthetic Random Forests described in Algorithm 1. We note that
while forest calculations could have been implemented using other random forest pack-
ages, such as randomForest [1], we prefer to use randomForestSRC as it has many
useful features for reducing computational times, such as parallel processing using the
OpenMP protocol (which we employed), and non-deterministic random splitting via its
nsplit option (however while this option is available in the rfsrcSyn function, it was
not used here to avoid clouding the issue of tuning parameters). COBRA was imple-
mented using the R-package COBRA [13]. Calibration of the COBRA ε-parameter which
is recommended to improve performance was implemented by selecting a grid consist-
ing of 200 points. Note that because the COBRA package has not yet been extended to
encompass multiclass problems, the COBRA method was excluded from our multiclass
experiment.
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Regression results

A large collection of regression datasets was used to assess the performance of each
method (Table 1). Datasets with a capital identify real data while those in lower case

Table 1 Regression benchmark performance

n p COBRA RF RFopt SRF

Air 111 5 27.24 28.68 27.53 28.14

Air2 111 5 28.40 30.72 28.85 28.36

Automobile 193 29 9.83 8.94 6.79 7.52

Bodyfat 252 13 31.36 32.02 31.67 32.19

BostonHousing 506 13 18.88 14.64 12.39 12.80

BostonHousing2 506 16 17.44 13.57 11.32 11.61

CMB 899 4 96.33 100.90 90.32 89.86

Crime 47 15 61.74 59.99 59.51 59.03

Diabetes 442 10 57.58 53.22 53.14 55.20

DiabetesI 442 64 57.05 54.42 54.61 55.92

Fitness 31 6 83.34 66.48 59.61 57.76

Highway 39 11 38.84 43.67 33.95 32.18

Iowa 33 9 62.60 62.16 50.03 50.22

Ozone 203 12 26.90 26.19 26.20 26.42

OzoneI 203 134 27.42 26.14 26.32 26.08

Pollute 60 15 49.64 51.36 49.52 46.74

Prostate 97 8 87.32 46.02 46.95 50.12

Servo 167 19 15.22 21.47 11.27 11.99

ServoFactor 167 16 43.24 34.65 32.54 31.44

Tecator 215 22 13.84 16.11 13.48 6.19

Tecator2 215 100 31.24 34.21 30.64 27.94

Windmill 1114 12 31.64 31.39 31.31 32.15

expon 250 2 47.76 46.04 46.48 47.60

expon.noise 250 17 62.13 67.49 66.44 53.04

mlb.friedman1 250 10 21.46 26.11 24.15 19.04

mlb.friedman1.noise 250 10 30.91 34.77 33.13 30.48

mlb.friedman1.bigp 250 250 37.67 44.14 43.81 31.99

mlb.friedman2 250 4 13.94 14.75 14.24 14.04

mlb.friedman2.noise 250 4 37.19 36.77 36.80 38.58

mlb.friedman2.bigp 250 254 22.92 29.01 28.10 17.73

mlb.friedman3 250 4 19.21 22.01 19.87 15.59

mlb.friedman3.noise 250 4 37.47 39.38 38.53 36.97

mlb.friedman3.bigp 250 254 37.19 46.72 45.47 26.78

mlb.peak 250 20 14.75 17.24 16.28 6.21

mlb.peak.bigp 250 20 14.75 17.24 16.28 6.21

mlb.noise 250 500 101.69 100.75 100.47 100.29

sine 250 2 35.92 37.79 35.95 34.72

sine.noise 250 5 56.64 66.07 61.14 54.71

syn.ex1 250 50 20.69 30.87 28.57 8.54

syn.ex2 250 20 88.60 89.66 89.59 92.68

syn.ex3 250 50 43.88 47.88 47.50 43.04

syn.ex4 250 50 34.75 37.78 36.90 30.40

syn.ex5 250 20 62.50 65.07 64.82 62.80

syn.ex6 250 30 102.30 100.58 103.16

syn.ex7 250 300 55.13 61.68 61.38 52.41

syn.ex8 250 50 117.93 58.11 57.76 52.01

Cross-validated and test-set standardized mean-squared error (MSE) performance over 100 independent replications.
Standardized MSE obtained by dividing MSE by the variance of the Y-response and multiplying by 100.
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are synthetic data. Many of the synthetic data were obtained from the mlbench R-
package [14] and are labeled starting with ?mlb?. In total, 46 datasets were used with
sample sizes varying from n = 31 to n = 1114; number of features varied from p = 2 to
p = 500. Sample sizes for synthetic data were set at n = 250.
Performance was assessed using standardized mean-squared error (MSE) defined as

MSE divided by the variance of the Y -response and multiplied by 100. Standarized MSE
facilitates comparison across datasets: a value of 100 can be used as a benchmark value.
For real data, MSE was calculated using 10-fold cross-validation. For synthetic data, MSE
was evaluated by using an independent test-set of size n = 5000. The entire process was
repeated independently 100 times. Table 1 reports the averaged standardized MSE from
the 100 replicates. Figure 1 displays the 95% confidence regions of standardized MSE.
Table 1 and Figure 1 show clear superiority of SRF, especially over synthetic data. To

formally assess performance differences we used univariate and multivariate nonpara-
metric statistical tests [15]. To compare two methods we used the Wilcoxon signed rank
test applied to the difference of their standardized MSE values. The exact p-value for
the Wilcoxon signed rank test are recorded along the upper diagonals of Table 2. The
lower diagonal values record the corresponding test statistic where small values indicate a
difference. To test for an overall difference among procedures we used the Iman and Dav-
enport modified Friedman test [15]. For each dataset, the performance of each method
was ranked from 1 through 4, and the average of these ranks over all datasets for each
procedure calculated. The diagonal values of the table record this average rank which
was used for the Friedman test. This latter test yielded a near-zero p-value, thus provid-
ing strong evidence of difference between methods. Overall, SRF is ranked first, followed
by RFopt, COBRA, and then RF. Wilcoxon p-values provide strong evidence supporting
superiority of SRF to each of the three other methods.

Multiclass results

To further assess the performance of SRF, a total of 38 multiclass benchmark datasets
were used. Sample sizes ranged from n = 29 to n = 6435; features varied from p = 2
to p = 8740; and number of classes J varied from J = 2 to J = 15 (Table 3). The same
nomenclature was adopted as in our regression experiment. Real datasets are indicated
with capitals and synthetic data from mlbench are labeled starting with ?mlb?. Datasets
?aging?, ?brain?, ?colon?, ?leukemia?, ?lymphoma? and ?srbct? are well-known benchmark
microarray datasets (note how p � n in each of these).
Note first that if a nonparametric regression scheme of any type, learning machine or

otherwise, is consistent for the expectation of the outcome, then in a binary or multiclass
group membership prediction problem, it necessarily and automatically returns a consis-
tent estimate for the true conditional probability of group membership. Hence, it makes
sense to apply a standard measure of probability estimation, so performance was assessed
using the classical Brier score (multiplied by 100). The Brier score directly measures accu-
racy in estimating the true conditional probability, and this is the task of any regression
scheme given binary or multiclass group membership. As calibration, we note that a Brier
score of 25 represents a procedure with performance no better than random guessing. As
in the regression experiment, 10-fold validation was used to estimate performance over
real datasets and for synthetic data an independent test-set of size n = 5000 was used.
The entire process was repeated independently 100 times.
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Figure 1 Regression benchmark results. Cross-validated and test-set standardized mean-squared error
(MSE) performance over 100 independent replications. Boxplots display results from the 100 replications for
COBRA (gray square symbol), RF (red square symbol), optimized random forests RFopt (blue square symbol),
and synthetic random forests SRF (�). Standardized MSE obtained by dividing MSE by the variance of the
Y-response and multiplying by 100.
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Table 2 Regression benchmark performance

COBRA RF RFopt SRF

COBRA 2.7 0.0968 0.3703 0.0000
RF 388 3.3 0.0000 0.0000
RFopt 623 1029 2.3 0.0018
SRF 1005 966 827 1.7

Upper diagonal values are Wilcoxon signed rank p-values comparing two procedures; lower diagonal values are the
corresponding test statistic. Diagonal values (in bold) record the overall rank of a procedure.

Table 3 and Figure 2 show superiority of SRF to the three other methods. As in
the regression experiment, performance differences are especially noticeable over syn-
thetic data. Noticeable performance differences are also observed over certain microarray
datasets (srbct, prostate, and leukemia). Table 4 displays results of nonparametric tests
comparing procedures. The results parallel those of Table 2: SRF has best overall rank
and there is strong evidence of its superiority. The modified Friedman test of equality

Table 3Multiclass benchmark performance

n p J RF RFopt SRF

BreastCancer 683 10 2 2.59 2.50 2.28
DNA 3186 180 3 3.03 2.79 2.34
Esophagus 3127 28 2 18.33 17.81 18.27
Glass 214 9 6 6.16 6.20 5.78
HouseVotes84 232 16 2 5.85 4.82 4.41
Hypothyroid 2000 24 2 1.20 1.18 1.14
Ionosphere 351 34 2 5.76 5.28 5.14
PimaIndiansDiabetes 768 8 2 15.69 15.66 16.21
Prostate 158 20 2 15.81 15.83 16.02
Satellite 6435 36 6 2.30 1.98 1.92
SickEuthyroid 2000 24 2 2.51 2.35 2.30
Sonar 208 60 2 12.91 12.46 9.73
SouthAfricanHeart 462 9 2 19.69 19.34 19.86
Soybean 562 35 15 0.82 0.71 0.77
Spam 4601 57 2 4.39 4.18 3.74
Vehicle 846 18 4 7.51 8.81 6.82
Vowel 990 10 11 2.66 1.81 1.09
WisconsinBreast 699 10 2 3.13 3.05 3.07
Zoo 101 16 7 1.53 0.51 1.30
aging 29 8740 3 16.64 16.96 16.54
brain 42 5597 5 8.32 7.07 7.99
colon 62 2000 2 12.88 12.78 12.78
leukemia 72 3571 2 4.06 3.95 2.45
lymphoma 62 4026 3 2.71 2.62 2.31
prostate 102 6033 2 8.36 8.25 5.85
srbct 63 2308 4 3.62 3.70 2.45
mlb.cassini 250 2 3 0.92 0.55 0.62
mlb.circle 250 2 2 5.27 4.59 4.26
mlb.cuboids 250 3 4 0.66 0.53 0.57
mlb.dnormals 250 2 2 6.24 6.30 6.31
mlb.ringnorm 250 20 2 10.71 10.17 4.83
mlb.shapes 250 2 4 0.87 0.70 0.52
mlb.smiley 250 2 4 0.51 0.26 0.58
mlb.spirals 250 2 2 1.66 0.72 0.18
mlb.threenorm 250 20 2 15.62 15.34 12.98
mlb.twonorm 250 20 2 8.50 7.87 4.31
mlb.waveform 250 21 3 9.34 9.47 7.83
mlb.xor 250 2 2 3.61 2.50 1.30

Cross-validated and test-set Brier score performance (? 100) over 100 independent replications.
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Figure 2 Multiclass benchmark results. Cross-validated and test-set Brier score performance (? 100) over
100 independent replications. Boxplots display results from the 100 replications for RF (red square symbol),
optimized random forests RFopt (blue square symbol), and synthetic random forests SRF (�).
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Table 4Multiclass benchmark performance

RF RFopt SRF

RF 2.68 0.0000 0.0000

RFopt 648 1.86 0.0045

SRF 688 563 1.45

Upper diagonal values are Wilcoxon signed rank p-values comparing two procedures; lower diagonal values are the
corresponding test statistic. Diagonal values (in bold) record the overall rank of a procedure.

of procedures yielded a near zero p-value, further confirming evidence of SRF?s superior
performance.

Conclusions
Peering more closely at synthetic forests it is possible to discern a reason for the generally
good performance of any RF. That is, a single RF is acting as a synthetic machine across
all the features, where each original feature is effectively a stand-alone synthetic feature.
The manner in which RF synthesizes its features also plays a vital role in its success. RF
forms its predictor by taking a locally weighted convex combination of the outcomes.
Importantly, this differs from the COBRA method, which locally weights the outcomes
using zero-one weights. The superior performance of synthetic forests to COBRA found
in our experiments, even when using the same synthetic features as individual, separate
constituents in the collective portfolio, suggests that the use of convex, locally determined
weights may play a key role in its success, and where these weights are chosen by the
refined cells in the data space that are given by the terminal nodes in each tree in each
forest.
Performance gains for synthetic forests were most noticeable among the simulated data

in our benchmark experiments. We believe the reason for this is that these particular data
structures have high signal and sparse solutions. The synthetic random forest, by vary-
ing the synthetic inputs over a wide range of user-specified terminal node sizes, acts as a
local smoothing optimizer. Our results suggest such tuning is better able to handle high
signal, sparse data. Indeed, especially noteworthy given this outcome, is that such data
are known to be especially challenging and are likely to constitute a significant fraction of
increasingly available big data sets. Another important practical implication of synthetic
forests is that the number of RF user tuning parameters are greatly minimized. Most
importantly, the synthetic forest does this with evidently no loss in prediction compared
to a well-optimized single random forest.
Finally, and more comprehensively, the results here suggest that any statistical learning

machine, Super X say, that has user tuning parameters, or indeed required parameter
estimation, can be deployed as a Synthetic Super X using RF, with less overhead and likely
no real loss in predictive capacity over the fully optimized Super X on the given data.

Abbreviations
COBRA: COmBined regression alternative; RF: Random forests; RFopt: Nodesize optimized random forests; SRF: Synthetic
random forests.
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