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Abstract

Background: Simple clustering methods such as hierarchical clustering and k-means
are widely used for gene expression data analysis; but they are unable to deal with
noise and high dimensionality associated with the microarray gene expression data.
Consensus clustering appears to improve the robustness and quality of clustering
results. Incorporating prior knowledge in clustering process (semi-supervised
clustering) has been shown to improve the consistency between the data partitioning
and domain knowledge.

Methods: We proposed semi-supervised consensus clustering (SSCC) to integrate the
consensus clustering with semi-supervised clustering for analyzing gene expression
data. We investigated the roles of consensus clustering and prior knowledge in
improving the quality of clustering. SSCC was compared with one semi-supervised
clustering algorithm, one consensus clustering algorithm, and k-means. Experiments
on eight gene expression datasets were performed using h-fold cross-validation.

Results: Using prior knowledge improved the clustering quality by reducing the
impact of noise and high dimensionality in microarray data. Integration of consensus
clustering with semi-supervised clustering improved performance as compared to
using consensus clustering or semi-supervised clustering separately. Our SSCC method
outperformed the others tested in this paper.

Keywords: Semi-supervised clustering, Consensus clustering, Semi-supervised
consensus clustering, Gene expression

Background
Simple clustering methods such as agglomerative hierarchical clustering and k-means
have been widely used on gene expression data analysis. However, individual clustering
algorithms have their limitations in dealing with different datasets. For example, k-means
is unable to capture clusters with complex structures, and selection of k value is somewhat
challenge without subjectivity. Therefore, many studies used consensus clustering (also
called cluster ensemble) to improve the robustness and quality of clustering results [1-4].
Consensus clustering solves a clustering problem in two steps. The first step, known

as base clustering, takes a dataset as input and outputs an ensemble of clustering solu-
tions. The second step takes the cluster ensemble as input and combines the solutions
through a consensus function, and then produces final partitioning as the final output,
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known as final clustering. The consensus clustering algorithms differ in chosen algo-
rithms for basic clustering, consensus function and final clustering. Monti et al. used
hierarchical clustering(HC) or self-organizing map (SOM) as the base clustering to gener-
ate consensus matrix and either HC or SOM for final clustering [1]. Yu et al. used k-means
as the base clustering on subspace datasets and graph-cut algorithms for the final clus-
tering [2]. Kim used k-means as the base algorithm with random multiple number of
clusters and applied a graph-cut algorithm for final clustering [3]. The base clustering
generates diverse clustering solutions through: 1) generating subspace datasets using gene
resampling [1,2,4]; 2) using a single clustering algorithm with random parameter initial-
izations such as selecting a random number of clusters [3,4]; 3) using different clustering
algorithms for each base clustering [5]. Some consensus clustering methods used a pair-
wise similarity matrix of instances to combine multiple clustering solutions [1,2], others
used associations between instances and clusters in the consensus matrix [4]. These con-
sensus clustering algorithms usually outperform single clustering algorithms on gene
expression datasets [1-4].
Consensus clustering has been used for clustering samples to discover and classify can-

cer types in cancer microarray data [1-4,6]. It achieved successes in capturing informative
patterns from microarray data [1-3]. A well known consensus clustering algorithm, link-
based cluster ensemble (LCE) was introduced in [4]. LCE outperforms 10 algorithms
tested in [4], specifically, four simple clustering algorithms, three pairwise similarity based
consensus clustering algorithms, and three graph-based cluster ensemble techniques.
Consensus clustering is also used for clustering genes to identify biologically informative
gene clusters [5].
Many studies used prior knowledge in clustering genes [7-13]. These methods are

referred as semi-supervised clustering approaches. The results showed that using small
amount of prior knowledge was able to significantly improve the clustering results; also
the more specific prior knowledge used the better in improving the quality of clustering.
Consensus clustering itself can be considered as unsupervised and improves the

robustness and quality of results. Semi-supervised clustering is partially supervised and
improves the quality of results in domain knowledge directed fashion. Although there
are many consensus clustering and semi-supervised clustering approaches, very few of
them used prior knowledge in the consensus clustering. Yu et al. used prior knowledge
in assessing the quality of each clustering solution and combining them in a consen-
sus matrix [14]. In this paper, we propose to integrate semi-supervised clustering and
consensus clustering, design a new semi-supervised consensus clustering algorithm, and
compare it with consensus clustering and semi-supervised clustering algorithms, respec-
tively. In our study, we evaluate the performance of semi-supervised consensus clustering,
consensus clustering, semi-supervised clustering and single clustering algorithms using
h-fold cross-validation. Prior knowledge was used on h-1 folds, but not in the testing
data. We compared the performance of semi-supervised consensus clustering with other
clustering methods.

Method
Our semi-supervised consensus clustering algorithm (SSCC) includes a base cluster-
ing, consensus function, and final clustering. We use semi-supervised spectral clustering
(SSC) as the base clustering, hybrid bipartite graph formulation (HBGF) as the consensus
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function, and spectral clustering (SC) as final clustering in the framework of consensus
clustering in SSCC.

Spectral clustering

The general idea of SC contains two steps: spectral representation and clustering. In spec-
tral representation, each data point is associated with a vertex in a weighted graph. The
clustering step is to find partitions in the graph. Given a dataset X = {xi|i = 1, . . . , n} and
similarity sij ≥ 0 between data points xi and xj, the clustering process first construct a
similarity graph G = (V , E), V = {vi}, E = {eij} to represent relationship among the data
points; where each node vi represents a data point xi, and each edge eij represents the con-
nection between two nodes vi and vj, if their similarity sij satisfies a given condition. The
edge between nodes is weighted by sij. The clustering process becomes a graph cutting
problem such that the edges within the group have high weights and those between differ-
ent groups have low weights. The weighted similarity graph can be fully connected graph
or t-nearest neighbor graph. In fully connected graph, the Gaussian similarity function is
usually used as the similarity function sij = exp(− ‖ xi − xj ‖2 /2σ 2), where parameter σ

controls the width of the neighbourhoods. In t-nearest neighbor graph, xi and xj are con-
nected with an undirected edge if xi is among the t-nearest neighbors of xj or vice versa.
We used the t-nearest neighbours graph for spectral representation for gene expression
data.

Semi-supervised spectral clustering

SSC uses prior knowledge in spectral clustering. It uses pairwise constraints from the
domain knowledge. Pairwise constraints between two data points can be represented as
must-links (in the same class) and cannot-links (in different classes). For each pair ofmust-
link (i, j), assign sij = sji = 1, For each pair of cannot-link (i, j), assign sij = sji = 0.
If we use SSC for clustering samples in gene expression data using t-nearest neighbor

graph representation, two samples with highly similar expression profiles are connected
in the graph. Using cannot-links means to change the similarity between the pairs of
samples into 0, which breaks edges between a pair of samples in the graph. Therefore,
only must-links are applied in our study. The details of SSC algorithm is described in
Algorithm 1. Given the data points x1, . . . , xn, l pairwise constraints of must-link
are generated. The similarity matrix S can be obtained using similarity function
sij = exp

(− ‖ xi − xj ‖2 /2σ 2). σ is the scaling parameter for measuring when two
points are considered similar, and was calculated according to [15]. Then S is modified
to be a sparse matrix, only t nearest neighbors are kept for each data point in S. Then,
l pairwise constraints are applied in S. Steps 5-10 follow normalized spectral clustering
algorithm [16,17].

Consensus function

We used LCE ensemble framework in our SSCC adopting HBGF as the consensus func-
tion. The cluster ensemble is represented as a graph that consists of vertices and weighted
edges. HBGF models both instances and clusters of the ensemble simultaneously as
vertices in the graph. This approach retains all information provided by a given ensemble,
allowing the similarities among instances and among clusters to be considered collectively
in forming the final clustering [18]. More details about LCE can be found in [4].
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Algorithm 1: Semi-supervised spectral clustering (SSC)
Input: Given n data points x1, . . . , xn, the number of clusters k, and the number
of pairwise constraints l.
Output: Group x1, . . . , xn into k clusters.

1. Generate lmust-link constraints from x1, . . . , xn.
2. Construct a similarity matrix S where sij ≥ 0 represents the similarity between

xi and xj.
3. Modify S to be a sparse matrix using t-nearest neighbor graph.
4. Apply l pairwise constraints on S, sij = sji = 1.
5. Compute the normalized Laplacian matrix L = I − D−1/2SD−1/2. The degree

matrix D is defined as the diagonal matrix with the degrees d1, . . . , dn on the
diagonal, di = ∑n

j=1 sij.
6. Compute the first k eigenvectors u1, . . . , uk of L.
7. U ∈ R

n×k to be matrix containing the vectors u1, . . . , uk as columns.
8. Form the matrix T ∈ R

n×k from U by normalizing the rows to norm 1.
tij = uij/(

∑
k u2ik)

1/2

9. For i = 1, . . . , n, let yi ∈ R
k be the vector corresponding to the i-th row of T .

10. Cluster of the points (yi)i=1,...,n with k-means algorithm into k clusters.

Semi-supervised consensus clustering

To make a consensus clustering into a semi-supervised consensus clustering algorithm,
prior knowledge can be applied in base clustering, consensus function, or final clustering.
Final clustering is usually applied on the consensus matrix generated from base clustering.
SSCC uses semi-supervised clustering algorithm SSC for base clustering, does not use
prior knowledge either in consensus function or final clustering. Our experiment was
performed using h-fold cross-validation. The dataset was split into training and testing
sets, and the prior knowledge was added to the h − 1 folds training set. After the final
clustering result was obtained, it was evaluated on the testing set alone. The influence of
prior knowledge could be assessed in a cross-validation framework.
Our semi-supervised consensus clustering algorithm is described in Algorithm 2. Simi-

lar to [4], for a given n×d dataset of n samples and d genes, a n×q data subspace (q < d)
is generated by

q = qmin + �α(qmax − qmin)� (1)

α ∈[0, 1] is a uniform random variable, qmin and qmax are the lower and upper bonds of
the subspace. qmin and qmax are set to 0.75d and 0.85d. Let

∏ = π1, . . . ,πm be a cluster
ensemble with m clustering solutions. SSC is applied on each subspace dataset to obtain
clustering results. We use the fixed number of clusters k, each πi = Ci

1, . . . ,C
i
k is one

clustering solution. A basic cluster-association matrix BM is generated at first based on
the crisp associations between samples and clusters using HBGF, in which there are n
samples and m × k clusters. If xi belongs to a cluster Cj, BM(xi ,Cj) = 1, i = 1, . . . , n;
j = 1, . . . , g, otherwise BM(xi,Cj) = 0. Next, a refined cluster-association matrix RM is
generated from BM by estimating new association values in RM(xi,Cj) if BM(xi ,Cj) = 0.
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RM(xi,Cj) is the similarity between Cj and other clusters to which xi probably belongs.
The similarity of any clusters in the cluster ensemble is obtained from a weighted graph
of clusters. Finally, spectral clustering is applied on RM to obtain the final clustering
solution.

Algorithm 2: Semi-supervised consensus clustering (SSCC)
Input: Given a gene expression n × d dataset x1, . . . , xn with n samples and d genes.
Set the number of clusters k, the number of pairwise constraints l, ensemble sizem,
and the number of folds h in cross-validation.
Output: Group x1, . . . , xn into k clusters.

1. In each run, split the data into h fold. In each fold, run steps 2-5.
2. Generate l pairwise constraints of must-link from the other h − 1 fold data points.
3. Generate a cluster ensemble

∏ = π1, . . . ,πm withm clustering solutions,
πi = Ci

1,C
i
2, . . .C

i
k .

(a) Generate m subspace datasets Bi,i=1,...,m, Bi ∈ R
n×q,q < d.

(b) Apply algorithm 1 SSC steps 2-10 on B1, . . . ,Bm with the fixed number
of clusters k, and get πi.

(c) Store πi in the cluster ensemble
∏
.

4. Generate a cluster-association matrix RM from
∏
.

5. Apply spectral clustering on RM and cluster the datasets into k clusters.

Results
Selected algorithms

We compared the performance of four algorithms: SSCC, SSC [19], LCE [4], and k-means
(Table 1). The performance of SSCC was influenced by amount of prior knowledge, con-
sensus function and base clustering. By increasing the amount of prior knowledge, we
observed the influence of prior knowledge on SSCC. SSCC uses SSC as the base clus-
tering. By comparing SSCC with SSC on the same amount of prior knowledge, we were
able to observe the influence of consensus clustering on SSCC. Same as LCE, SSCC uses
HBGF as the consensus function. SSCC became a consensus clustering algorithm when
it did not use prior knowledge. k-means was used as the baseline algorithm in this study.
In both SSCC and LCE, we used subspace and fixed number of clusters, ensemble size of
10, and nearest neighbor size of 5. We implemented SSCC in Matlab and adoptedMatlab
code of SSC [20], LCE [4] and k-means.

Table 1 Attributes of four clustering algorithms

Clustering Type Base Final Consensus Using prior
algorithms clustering clustering function knowledge

k-means Simple clustering k-means - - No

LCE Consensus clustering k-means SC HBGF No

SSC Semi-supervised clustering SC - - Yes

SSCC Semi-supervised consensus clustering SSC SC HBGF Yes
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Datasets

All four algorithms were tested with eight cancer gene expression datasets (Table 2).
These were processed datasets after removing the non-informative genes and obtained
from [21]. Prior knowledge was represented as pairwise constraints generated from class
labels. Prior knowledge in the eight datasets was derived from sample class labels. A pair
of samples share the same class were given amust-link prior knowledge. We used a small
amount of prior knowledge to test the effectiveness of SSCC (Table 2).

Performance measures

The performance was measured with normalized mutual information (NMI) [29] and
adjusted rand index (ARI) [30]. ARI is often used to assess the performance of clustering
samples in gene expression datasets [1-4]. The definition of NMI is described as follows.
Let X and Y be the random variables described by the cluster assignments and class labels.
I(X,Y ) denotes the mutual information between X and Y ; H(X) andH(Y ) the entropy of
X and Y . NMI is defined by

NMI(X,Y ) = I(X,Y )√
H(X)H(Y )

(2)

Experimental results

The experiments were performed by increasing number of pairwise constraints with 5
fold cross validation and 50 runs (Figures 1, 2).
Without prior knowledge, comparisons of SSCC, SSC, LCE and k-means was per-

formed by using one-way ANOVA with Bonferroni correction (p < 0.05) on NMI and
ARI (Table 3 and Additional file 1). We used paired t-test (p < 0.05) to compare SSCC
and SSC with prior knowledge on NMI and ARI, respectively. The null hypothesis was
that no difference existed between themean of SSCC and SSC.We used 20 pair-wise con-
straints for CNS, Leukemia1, Leukemia2 and Leukemia3, but 100 constraints for other 4
datasets (Table 4).
Our result clearly demonstrated that consensus clustering and using prior knowledge

both contribute to improving the quality of clustering and an integration of both per-
formed even better (Figures 1, 2 and Tables 3, 4). Without injection of prior knowledge,
performance of SSCC and SSC were more or less equivalent, but both were signifi-
cantly better than LCE and k-means (Table 3). On the other hand, with injection of prior
knowledge, SSCC significantly outperformed SSC (Table 4).

Table 2 Cancer gene expression datasets used in experiments

Dataset Samples Original Selected Classes Constraints Constraints
probes probes number % in total

CNS [22] 42 7129 1379 5 20 2.2%

Leukemia1 [23] 72 7129 1877 2 20 0.77%

Leukemia2 [23] 72 7129 1877 3 20 0.77%

Leukemia3 [24] 72 12582 2194 3 20 0.77%

LungCancer [25] 203 12600 1543 5 100 0.48%

St.Jude [26] 248 12625 2526 6 100 0.32%

Multi-Tissue1 [27] 174 12533 1571 10 100 0.66%

Multi-Tissue2 [28] 190 16063 1363 14 100 0.55%
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Figure 1 Normalizedmutual information with various numbers of constraints on (A) CNS
(B) Leukemia1 (C) Leukemia2 (D) Leukemia3 (E) LungCancer (F) St. Jude (G) Multi-Tissue1
(H) Multi-Tissues2 datasets (Error bars show 95% confidence interval).

Parameter analysis

Ensemble size was one of important parameters that influence SSCC and LCE (Figure 3).
SSCC significantly outperformed LCE in all ensemble size settings across the 8 datasets
excepting size 40 and 50 on Leukemia3. In some datasets, the performance of SSCC or
LCE is improved with the increase of ensemble size from 10 to 20. However, there is no
significant improvement in other datasets such as Multi-Tissue1 and Multi-Tissue2. In
such case we suggest a small ensemble size, such as 10.
Influence of ensemble type appeared to be more obvious (Figure 4). We compared the

performance of two ensemble types, “Fixed k + Subspace” and “Random k + Full-space”,
on SSCC and LCE. SSCC outperformed LCE with both ensemble types in majority of the
8 datasets. SSCC with “Fixed k + Subspace” appeared to be generally better than other
combinations.

Figure 2 Adjusted rand index with various numbers of constraints on (A) CNS (B) Leukemia1
(C) Leukemia2 (D) Leukemia3 (E) LungCancer (F) St. Jude (G) Multi-Tissue1 (H) Multi-Tissues2
datasets (Error bars show 95% confidence interval).
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Table 3Without prior knowledge, comparison among SSCC, SSC, LCE, and k-means

NMI ARI

SSC LCE k-means SSC LCE k-means

SSCC 4/4/0 7/1/0 8/0/0 4/3/1 7/1/0 8/0/0

SSC/SC - 6/2/0 8/0/0 - 6/2/0 6/2/0

LCE - - 6/2/0 - - 5/3/0

All results are summarized in w/t/l, i.e. the first algorithm wins w times, ties t times and loses l times.

Performance of both SSCC and SSC was significantly influenced by neighborhood size
(Figure 5). Without applying prior knowledge, we conducted paired two-tailed t-test
(p < 0.05) between SSCC and SSC under four different t values. In majority of the
datasets, both algorithms performed better with smaller neighborhood size. Generally,
SSCC outperformed SSC.

Discussion
We compared the performance of SSCC with SSC, LCE and k-means and each of our
pairwise comparison provides information of the effect of either semi-supervision or con-
sensus clustering. Specifically, comparing LCE with k-means reveals the effectiveness of
ensemble strategy since k-means is used as the base clustering in LCE. Similarly, in com-
paring SSC with SSCC, we used the same amount of prior knowledge, so actually we
compared spectral clustering with consensus clustering. The comparison between SSCC
and LCE reveals the effect of semi-supervision under the consensus clustering paradigm.
SSCC significantly outperforms SSC with or without prior knowledge. This clearly

shows that consensus clustering algorithms outperform single clustering algorithms in
the gene expression datasets. This observation is consistent with [1-4].
We compared SSCC with LCE using the same datasets and same parameter settings.

Without considering prior knowledge, the difference between SSCC and LCE is in base
clustering, SSCC uses spectral clustering but LCE uses k-means. They both use spec-
tral clustering for final clustering (Table 1). Without prior knowledge, SSC becomes SC,
and SC outperforms k-means in all 8 datasets (Figures 1, 2 and Table 3). This indicates

Table 4 With prior knowledge, paired t-test for themean differencebetweenSSCC and SSC

NMI ARI

CNS 0.041* 0.097*

Leukemia1 0.056* 0.053*

Leukemia2 0.094* 0.143*

Leukemia3 0.024* 0.031*

Lungcancer 0.018* -0.037*

St.Jude 0.009* 0.0144*

MultiTissue1 0.002 0.007

MultiTissue2 0.012* 0.035*

SSCC vs. SSC SSCC vs. SSC

w/t/l 7/1/0 6/1/1

*The mean difference (SSCC - SSC) is significant at p < 0.05 level. The results are summarized in w/t/l, i.e. the first algorithm
wins w times, ties t times and loses l times.
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Figure 3 Normalizedmutual information of SSCC and LCE with the change of ensemble size on eight
datasets.

the performance of base clustering has significant influence on results of consensus
clustering.
SSCC consists of spectral clustering and LCE. The majority of computational time of

spectral clustering spends on finding t nearest neighbors [20]. The time complexity of
obtaining t nearest neighbor sparse matrix isO(n2d)+O(n2 log t), where n is the number
of samples, d is the number of genes in the graph of spectral clustering. We use the fixed
number of cluster k in LCE, the time complexity of generating a cluster-associationmatrix
R is O(m2k2 + nmk) + O(m2k2t′ + nmk), wherem is ensemble size, and t′ is the average
number of neighbors connecting to one cluster in a network of clusters in final clustering.
In SSCC, the complexity of generating l pairwise constraints is O(l). The overall time
complexity of SSCC using “Fixed k + subspace” ensemble type is

O(l) + O
(
mn2d

) + O
(
mn2 log t

) + O
(
m2k2 + nmk

) + O
(
m2k2t′ + nmk

)

Figure 4 Normalizedmutual information of SSCC and LCE with two ensemble types on eight datasets.
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Figure 5 Normalizedmutual information of SSC and SSCC with various numbers of neighbor size on
eight datasets.

Since n > m, n > k, d > n, d > l, and d > t in our experiments, the bottle neck of SSCC
is to find t nearest neighbors with computational time O(mn2d). The implementation of
spectral clustering is a parallel algorithm [20], so the majority of computational time of
SSCC can be reduce to O

(
mn2d
p′

)
, where p′ is the number of parallel threads. SSCC is

limited to large data set due to the computational complexity of spectral clustering. SSCC
can be improved by adopting faster spectral clustering algorithms, which are applicable
for data sets with thousands of instances.
Our study provided an insight into the contribution of consensus clustering and semi-

supervised clustering to the clustering results. To our knowledge, the Knowledge based
Cluster Ensemble (KCE) [14] is the only algorithm using prior knowledge in consensus
clustering paradigm for gene expression datasets. Unfortunately, we are unable to directly
compare SSCC with KCE because of the unavailability of the software.
Our study uses SSCC for clustering samples. Since the optimal number of clusters (k

in k-means algorithm) and the class label of each sample are known, the prior knowl-
edge is derived from the given class structure. A must-link constraint is given to a pair
of samples if they are from the same class. For many real applications, we might not
know the whole class structure, but most likely we know whether some of samples are
in the same class (cluster). We can generate must-links between these samples, and prior
knowledge is derived from these samples. In these cancer gene expression datasets, we
validate the performance of SSCC with the labeled data. The next step would be to apply
SSCC for clustering genes for gene function prediction. However, the performance on
clustering genes might vary due to two reasons: the quality of prior knowledge and the
optimal number of clusters. Pairwise constraints in this study have been generated from
class labels of samples in the cancer gene expression datasets and they are true prior
knowledge. Prior knowledge in clustering of genes will be known gene functions, and
they are partial domain knowledge. A gene may have multiple functions; some func-
tions are inclusive to others as well. For example, a level 6 gene ontology term apoptotic
process (GO:0006915) has over ten thousands of gene products and under which at
level 7, there are 21 GO terms. Our earlier work shows that more specific (higher level)
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GO term contribute better to semi-supervised clustering result [13]. Also the descrip-
tion of a certain gene function is based on current knowledge in the domain field. Such
domain knowledge is often subject to change. For example, current knowledge of cer-
tain existing gene is limited and will gradually be enriched. Therefore, the generated
prior knowledge from a pair of genes most likely contains certain noise and subsequently
influence the results. The optimal number of clusters is often unknown and a differ-
ent distance measure would generate a different optimum number of clusters. Therefore,
for comparison of semi-supervised clustering algorithms, it is better to use defined
prior knowledge, such as the sample labels we used in this paper. When an algorithm
considered to be superior over the others, such an algorithm can be used to cluster
genes.
In reality, obtaining large amount of prior knowledge for gene expression datasets is

difficult. Designing algorithms which work best with a small amount of prior knowledge,
such as less than 20 pairwise constraints, will be very useful for clusteringmicroarray data.
A study on semi-supervised clustering shows that with small amounts of prior knowledge,
search-based approach tends to outperform similarity-based [31]. With larger amounts
of labeled data, similarity-based tends to perform better. Combining both approaches
outperforms respective individual approaches. SSC is a similarity-based semi-supervised
clustering algorithm. The results in Figures 1, 2 show that the performance of SSCC and
SSC is slightly improved with small numbers of constraints and significantly improved
with increasing numbers of constraints. Our SSCC method presented in this paper is
applicable not only to gene expression data, but also to other types of data as long as prior
knowledge is provided.

Conclusions
In this study, we proposed a new semi-supervised consensus clustering method, designed
an algorithm, and compared it with another semi-supervised clustering algorithm, a
consensus clustering algorithm and a simple clustering algorithm on eight real cancer
gene expression datasets. In general, using prior knowledge improves the performance
of clustering in gene expression datasets. Consensus clustering is able to reach the
goal of maximizing intra-cluster similarity and minimizing inter-cluster similarity. Also,
using prior knowledge enhances the high consistency between data partitioning and
domain knowledge. A combination of both significantly improves the quality of clus-
tering. SSCC outperforms the semi-supervised clustering algorithm SSC and consensus
clustering algorithm LCE in most datasets over various parameter settings, ensem-
ble size and type, with or without prior knowledge. This study demonstrates that
SSCC is an effective and robust semi-supervised consensus clustering algorithm with
prior knowledge, and also a superior consensus clustering algorithm without prior
knowledge.

Additional file

Additional file 1: Table S1. Comparision between SSCC, SSC and LCE. Without prior knowledge, part of results of
one-way ANOVA with Bonferroni correction for comparison among SSCC, SSC, and LCE.
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