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Results: In this paper, we develop a normalization method based on iterating median
of M-values (IMM) for detecting the differentially expressed (DE) genes. Compared to a
previous approach TMM, the IMM method improves the accuracy of DE detection.
Simulation studies show that the IMM method outperforms other methods for the
sample normalization. We also look into the real data and find that the genes detected
by IMM but not by TMM are much more accurate than the genes detected by TMM but
not by IMM. What's more, we discovered that gene UNC5C is highly associated with
kidney cancer and so on.
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Introduction

Deep DNA sequencing methods (ChIP-seq and RNA-seq) offer distinct advantages in
increased specificity, sensitivity and genome-wide comprehensiveness that are leading
to their wider use. It has been showed that splicing variants [1,2] and single nucleotide
polymorphisms [3] can be detected through sequencing the transcriptome, opening up
the opportunity to interrogate allele-specific expression and RNA editing.

The reads produced by RNA-Seq are first mapped to the reference genome using
computer programs. Then, the output of RNA-Seq can be summarized by a sequence
of ‘counts’ That is, for each gene, it gives a count standing for the number of reads
whose mapping starts at that gene. As different libraries have different total read
counts, i.e., sequencing depths. In order to compare the genes expression and detect
distinction between libraries, we should normalize the libraries. The aim of normal-
ization is to remove systematic technical effects that occur in the data, and ensure
that technical bias has minimal impact on the results. Experience with microarray data
showed that normalization is a critical component of the processing pipeline, allowing
accurate estimate and detection of DE genes [4]. However, the procedure for gen-
erating RNA-seq data is fundamentally different from that for microarray data, the
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normalization methods used in microarray data are therefore not directly applicable in
RNA-seq data.

Current RNA-seq analysis methods typically standardize data between samples by scal-
ing the number of reads in a given library to a common value across all sequenced
libraries in the experiment. Several researchers have modeled the observed counts
for a gene with a mean that includes a factor for the total number of reads [5-7].
Similarly, for LONGSAGE- seq data, t Hoen et al. [8] used the square root of
scaled counts, Vencio et al. [9] proposed a beta-binomial model to normalization.
Mortazavi et al. [10] adjusted their counts to reads per kilobase per million mapped
(RPKM). Cloonan et al. [11] log-transformed the gene length-normalized count data and
applied standard microarray analysis techniques (quantile normalization and moderated
t-statistics).

Here, we search a better normalization procedure which focus on two main questions:
(1) Does the normalization improve DE detection (sensitivity) in reducing the false dis-
cover rate. (2) Does the normalization result in low technical variability across replicates
(specificity)? The standard procedure is to compute the proportion of each gene’s reads
relative to the total number of reads, and compare that across all libraries, either by trans-
forming the original data or by introducing a constant into a statistical model. Robinson
et al. [12] proposed a scale normalization (TMM) method which is two-side symmetry
trimmed log-fold-changes. Compared to the previous normalization, the method shows
improved results for inferring differential expression in simulated and real data. But the
TMM method can not normalize the data reasonable when the data are asymmetric, espe-
cially, when the proportion of DE genes is large (Additional file 1: Figure S1). Exclusion
of most of genes may lead to lost of too much information and the TMM normaliza-
tion scale is estimated by a symmetry trimmed will bring biased results when the data
are asymmetric. We develop a new method with an iteration median of M-values (IMM)
to normalize the samples of different sequence depths. The IMM method normalizes
the libraries without a symmetry trimmed. The aim of iteration process of IMM method
is to look for an invariant set of non-DE genes and use the invariant set to normalize
the samples.

The rest of this paper is organized as follows. In Section ‘Results and discussion’,
we introduce the TMM normalization method and propose an iteration normalization
method (IMM) for detecting DE genes. We carry out extensive simulation studies in
Section ‘Simulation studies’. In Section ‘Application to real dataset’, we illustrate our
method by analyzing a liver and kidney dataset. Finally, some conclusions are drawn.

Results and discussion

Sampling framework

The following framework is a formal explanation for the requirement of normalization.
Let Yy and pgi be the observed count summarized from the raw reads and true mean
expression level (number of transcripts) for gene g in library k, respectively. L, as the
length of gene g and Nj as the total number of reads for library k. We can model the
expected value of Yy as:

G
Ny, where S = Z MgkLg,
g=1

MgkLg

E [ng] =
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Sk represents the total RNA output of the kth sample. The underlying problem for the
analysis of RNA-seq data is that while N is known, Sy is unknown and may vary among
different samples, and depend on the RNA composition.

The trimmed mean of M-values normalization method

The total RNA production, Sg, cannot be estimated directly, since the expression levels
and true lengths of every gene is unknown. However, the relative RNA production of two
samples, fi, = %’ essentially a global fold change, can be easily determined. Define the
gene log-fold-changes for sample & relative to sample r for gene g;

YN,
M, = log,
g Yngk

and absolute expression levels;

1

Yor Yor
ro=21 & Y, #0.
% =3 ogZ(Nk N,) Jor Ye. #

A trimmed mean is the average value after removing the upper and lower x% of the
data. The TMM procedure is doubly trimmed, by log-fold-changes Mgk and by the abso-
lute expression level A;k. The suggested trimming proportion in Robinson et al. [12] is
M;k values trimmed by 30% and the A;k values by 5% is a robust TMM factor. After trim-
ming, the TMM method takes a weighted mean of M; , with weights as the inverse of
the approximate asymptotic variances (calculated using the delta method [13] ). Specif-
ically, the normalization scaling factor TMM,(:) for sample k using reference sample r is
calculated as:

My
logz(TMM/(:)) = TG Wy
deG* TQ(
N — Y, N, —Y,
where w;k ==k gk . &£, Yor, Ygr > 0.

Ni Y N, Ygr

The cases where Yo =0 or Yg = Oare trimmed in advance of this calculation since
log-fold-changes cannot be calculated; G* represents the set of genes with valid M;k and
A;k values after trimmed with the above percentages. Then Robinson et al. [12] apply

the TMM normalization factor TMM](:) to detect DE genes.The TMM normalization can
normalize the samples well when the log-fold-changes are symmetry (Additional file 1:
Figure S1). However, when the log-fold-changes are asymmetric, the two side symmetry
trimmed may be unreasonable (Additional file 1: Figure S2).

The iterated median of M-values normalization method
We propose a robust normalization procedure that reduces the bias of estimation without
introducing additional noises. We propose computing the log-fold-changes by excluding
the DE genes. In this paper, we complete the normalization with hypothesis test, and
search a normalization factor by iterating, then use the normalization factor to detect the
DE genes.

Under two conditions, if DE genes do not exist, the expression level of gene will be
equal between libraries (1141 = p1g2) across all genes and the log-fold-changes (M;k) are
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concentrated around zero. Hence we should use all genes to calculate the normalization
factor. However, when DE genes exist, it is unreasonable if we still use all genes to normal-
ize the libraries. The DE genes confuse the log-fold-changes of the non-DE genes when
the count of DE genes are used in the total number of reads. Ideally, we should use only
non-DE genes for normalization. The IMM normalization factor is the median of fold

changes of remaining genes.
(1) Stepone

a.  Define Yy as the observed count for gene g in library k. In this step, all
genes are used for normalization. We use the median of log-fold-changes
(M; «) as the normalization scaling factor of sample k using reference

sample r, which is calculated as
logy(IMMy,) = mediangegM; ,

where IMMj, is the initial normalization scaling factor. G represents the
set of genes excluding these with Yy = 0 or Y, = 0. It should be clear
that IMMY,. = 1. For a two-library comparison, the scaling factor is a
one-dimensional scale. But for technical replicates, normalization factors
across several libraries can be calculated by selecting one sample as a
reference and calculating the IMM factor for each non-reference library,
and then obtain a scale vector IMMo = (IMMy,, IMM,, . . ., IMM, ).

b.  We use the normalization scaling factor IMM) to calculate P — values of
all genes. For two libraries, we use an amended sage.test function from
the CRAN statmod package [14] to compute a Fisher exact P — value for
each gene. We replace the original total number of reads for library with
the ‘effective’ total number of reads. The effective total number of reads
for library is calculated by multiplying/dividing the square root of the
estimated normalization factor with the sum count of remain genes of
library. For technical replicates, we follow the analysis procedure used in
the Marioni et al. study [5]. We use following two methods to calculate the
P — values of genes. The first method is an exact Poisson statistic. Assume
that the counts mapping to a gene are Poisson-distributed. That is,

Yo ~ Pois(hgy IMM},),

where z; is the experimental condition of library k and A4, represents
the fraction of total reads for gene g in experimental condition zg. The
total and group total counts are all Poisson distributed. Then the
two-sided P — value is the sum of all the probabilities that are less than or
equal to the observed probability. The second method is LR testing [5].
We fitted the Poisson GLM model first, computing the maximum
likelihood estimates under both the null and alternative hypothesis. The
standard likelihood ratio statistic, was computed, and P — values were
obtained using the fact that, under the null hypothesis, this statistic has a
x? distribution with 1 degree of freedom.
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c.  Following Benjamini and Hochberg [15], we adjust P — values to correct
for multiple testing. All the genes that are tested for significance are
ranked by their P — values. Then for each gene, the Q — value is given by

count

Q — value = P — value x
rank

where count is the total number of genes tested and rank is the rank of
the P — values. If Q — value is less than 0.005, note this is only a threshold
and it does not represent the FDR for overall procedure, we call the genes
difference. We determine genes go1, o2, - - - » £0i, @s DE.

(2) Steptwo
We exclude the genes go1, 202, - - - »£oi, which are determined DE in Step one,
normalize the samples with the remaining genes, and obtain the normalizing
scaling factor IMM;. Repeat b and c in Step one with the remaining genes and the
scaling factor IMM], and determine DE genes g11, 812, . - -, 81i; -

(3) Step three
Repeat Step two until IMMZ. Lk = IMM;k = [MM. Then
ZG+1)1,&(+1)2s - - - §(j+1)ij4,, are treated as the final set of DE genes, and IMM is
our estimated scaling factor.

(4)  Step four
We apply the final scaling factor IMM to the samples and use the same test
method in 1.b to calculate p — values of all genes. Then same as in 1.c, we use the
BH procedure to claim DE genes at a given FDR level.

The IMM use the median fold-changes as the normalization scaling factor which
is more robust than the weighted mean of log-fold-change. What’s more, the iterated
excluding the DE genes may be more reasonable than the two side symmetry trimmed the
log-fold-changes when the log-fold-changes are biased and the rate of DE genes is large.

Simulation studies

To investigate the performance of the IMM normalization method, we run simulations to
study the effects of RNA composition on DE analysis of RNA-seq data and compare with
the TMM method. We include parameters for the number of genes expressed uniquely
to each sample, and parameters for the proportion, magnitude and direction of differen-
tially expressed genes between samples. The simulation is set up to sample a dataset from
a given empirical distribution of read counts (that is, from a distribution of observed Yj).
The mean is calculated from the sampled read counts divided by the sum S; and multi-
plied by a specified library size Nj (according to the model). The simulated data are then
randomly sampled from a Poisson distribution with a given mean. Since we have inserted
known differentially expressed genes, we can rank genes according to various statistics
and plot the number of false discoveries as a function of the ranking.

To start, we simulate from just two libraries. We introduce two libraries data with 10%
unique-to-group expression for the first condition, 5% or 50% DE at a 4-fold level, 90%
of which is higher under the first condition. (Additional file 1: Figure S1) and (Additional
file 1: Figure S2) show M versus A plots for a typical simulation including unique genes
and DE genes and indicate the normalization effects of the IMM normalization and the
TMM normalization. We consider different rates of DE genes, and compare the two
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normalization scales. As we can see that, TMM and IMM perform similarly when the
proportion of DE genes is about 10% (Additional file 1: Figure S1). However, when the
proportion increases to 50%, the IMM normalization is obviously closer to the center of
non-DE genes than the TMM normalization (Additional file 1: Figure S2).

Next, we compare the normalization and test methods by the false discovery rate (FDR)
curve of different numbers of selected genes. Additional file 1: Figure S3 ~ Additional
file 1: Figure S8 show false discovery plots amongst the genes that are common to
both conditions, where we have introduced 10% unique-to-group expression for the first
condition, and 5%, 10%, 20%, 30%, 40% and 50% of DE genes at a 4-fold level respec-
tively, 90% of which is higher in the first condition. We observe from Additional file 1:
Figure S3 ~ Additional file 1: Figure S8 that the FDR of IMM normalization method is
lower than that of the TMM normalization method as the rate and the bias of DE genes
increase. Obviously, the IMM normalization is more robust than TMM method.

To further compare the performance of the IMM normalization with the TMM method
and previously used methods in the context of the DE analysis of RNA-seq data, we extend
the above simulation to include replicate sequencing runs. Specifically, we compare seven
published methods: length-normalized count data that have been log transformed and
quantile normalized, as implemented by Cloonan et al. [11]; a Poisson regression [5] with
library size; a Poisson regression with TMM normalization [12]; a Poisson regression
with IMM normalization; a Poisson exact test [7] with library size; a Poisson exact test
with TMM normalization and a Poisson exact test with IMM normalization. We do not
directly compare the normalization to virtual length [1] or RPKM [10] normalization.
In this paper, the virtual length of genes is generally absorbed into the expression level
parameter and does not get used in the inference procedure. However, Sultan [1] used the
virtual length of gene to calculate the g — value of each gene. The formal of RPKM [10] is

RPKM = —% 109,
Lo Ni

where the define of Yy, LgrandNy are same as above. If the virtual length of gene Lg is
absorbed into RPKM, the normalization is the same as the total library size normalization.
The simulation condition is the same as the above simulation just with two replicates. We
made the simulation data Poisson-distributed to mimic technical replicates. Additional
file 1: Figure S9 and Additional file 1: Figure S10 show false discovery plots amongst
the genes with different rates of DE genes. Among the methods (Poisson likelihood ratio
statistic, Poisson exact statistic), the same normalization method performance is very sim-
ilar. It can be seen that the IMM normalization method has much lower false discovery
rate than other methods as the rate of DE genes increases.

In additional simulation studies, we fixed two of the three parameters and see the curve
of FDR versus to the rest parameter. The three parameters are the proportion, magnitude
(fold) and direction (offset) of differentially expressed genes between samples, respec-
tively. It is shown that if the DE genes are symmetry, the FDR of three normalization
methods are little different (Additional file 1: Figure S13). However, when there are obvi-
ously offset, the FDR of the IMM method is lower than the other methods (Additional
file 1: Figure S13). The Additional file 1: Figure S14 give a result that the IMM method
is better than the other methods with the proportion of differentially expressed genes
increasing. Additional file 1: Figure S15 ~ Additional file 1: Figure S18 show that the
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TMM and IMM methods are both much better than the library size normalization with
the fold of differentially expressed genes between samples increasing. As the proportion
increase, the IMM method preform better than the TMM method (Additional file 1:
Figure S18).

Application to real dataset

A liver versus kidney data set

In this section, we apply our method to a publicly available transcriptional profiling data
set comparing several technical replicates of a liver and kidney RNA source [5]. Human
housekeeping genes, as described in [16], were downloaded from [17] and matched to the
Ensembl gene identifiers using the Bioconductor [18] biomaRt package [19]. The real data
has been analyzed by Robinson et al. [12]. The distribution of M values (liver to kidney)
is skewed in the negative direction, therefore the library size normalization is not fit to
the real data. Since there obvious exist bias, the TMM normalization trim data symmetry
and remove most of genes including 421 of 538 housekeeping genes (Additional file 1:
Figure S11), it therefore may be unreasonable. On the contrary, the IMM normalization
may be more accurate which only removes 246 of 538 housekeeping genes. After the IMM
trimmed, the log-fold-changes of the remain genes is concentrated around zero, which
are calculated by the counts of genes divided by the total counts of the remain genes
(Additional file 1: Figure S11).

The application of IMM normalization to this pair of samples results in a normalization
factor of 0.989 (-0.016 on log, scale; shown by the red line in Additional file 1: Figure S12)
after excluding some genes. The IMM normalization is a robust method from the sim-
ulation studies and the factor is robust for bias data where more DE genes on one hand
may be expected. When the false discovery rate (g — value) is no more than 0.0001, we
call gene differentially expressed between liver and kidney. We use the exact Poisson test
to detect the DE genes with differential normalization method and obtain the number
of called DE genes in Table 1. We compare the IMM method with the TMM normaliza-
tion and the library size normalization. Using IMM normalization in a statistical test for
DE, the ratio of genes significantly higher in liver (or kidney) is similar to that using the
TMM normalization. The number of housekeeping genes called DE (329) with IMM nor-
malization is similar to that of TMM normalization (330). However, the number of total
genes called DE (8083) using the IMM method is more than that of the TMM method
(8069) (Table 1).

Table 1 Number of genes called differentially expressed between liver and kidney at a
false discovery rate <0.0001 using different normalization methods

Library size T™MM IMM Overlap
normalization normalization normalization
Higher in liver 2082 3759 3746 2082
Higher in kidney 7496 4310 4337 4292
Total 9578 8069 8083 6374
House keeping
genes (538)
Higher in liver 40 121 118 40
Higher in kidney 357 209 211 207

Total 397 330 329 247
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A thorough comparative evaluation of identified differentially expressed gene list is
challenging due to the difficulty of defining a gold standard. However, public RNA-seq
data set generated in the same tissues in other studies would provide some insights into
the performance of our method. Therefore, we downloaded lung and kidney RNA-seq
data form bodymap project [20]. DE genes (only protein coding genes were considered)
detected by IMM were intersected with DE genes detected by TMM and DE genes only
detected by one method were retrieved. Then, we compared the gene expression of these
genes in liver and kidney based on bodymap data. Of the 4 liver protein coding DE genes
identified only by IMM, 1 has higher expression level in liver than in kidney. Of the 42
kidney protein coding DE genes identified only by IMM, all 42 genes have higher or same
expression level in kidney than in liver.On the contrary, only 4 out of 26 TMM-specific
liver DE genes have higher expression in liver than in kidney and 16 out of 26 have higher
expression level in kidney. Of the 4 kidney DE identified only by TMM, 2 have higher
expression in kidney than in liver. Therefore, DE genes detected by IMM are more con-
sistent with gene expression level reported by bodymap data than DE genes detected by
IMM.

In addition, we examine the DE genes detected by IMM but not by TMM and their asso-
ciated diseases. The disease hypoproteinemiais is associated with gene B2M, which is one
of the 18 liver genes detect by IMM. A mutation in this gene has been shown to result in
hypercatabolic hypoproteinemia (provided by RefSeq, Sep 2009). We also investigate the
45 kidney genes with higher expression and find that gene UNC5C is highly related with
kidney cancer ([21-23]). UNC5C has a direct association with kidney cancer. Therefore,
IMM detects some important genes which not detected by TMM.

Other datasets

We also analysis other datasets with the different normalization methods. Here, we first
download the dataset [11] which is comparing mouse embryoid bodies versus embryonic
stem cells, sequenced on the SOLID system. The number of genes is 19005, and approx-
imately 500 “housekeeping” genes (using summaries from [24]) are used in the example.
There are only two samples which without technical replicates, hence we use the amended
sage.test function to calculate P — value for each gene. The estimated TMM scaling fac-
tor is 1.04 and the IMM scaling factor is 1.02. The TMM normalization trim 365 of
495 housekeeping genes, but the IMM normalization only trim 178 of 495 housekeeping
genes. (Additional file 1: Table S1) and (Additional file 1: Table S2) take the false discov-
ery rate (¢ — value) is no more than 0.0001 and 0.000001, respectively. In Additional file 1:
Table S1, both TMM and IMM methods better than Library size normalization method
with ¢ — value no more than 0.0001. When the FDR threshold reduced to 0.000001, the
number of genes called DE using the IMM method is same as that of the TMM method
in housekeeping genes (Additional file 1: Table S2). However, the IMM method discov-
ers 8347 DE genes of all genes, which is more than 8243 of the TMM method (Additional
file 1: Table S2).

Another example concerns human embryonic kidney (HEK) and Ramos B cells RNA
source [2]. These samples are also without technical replicates. The total number of DE
and housekeeping genes are in Additional file 1: Table S3, with g-value no more than
0.0001. Additional file 1: Table S3 shows that the IMM method is better than the TMM
method, but worse than the library size normalization method.
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Conclusions

Normalization will be crucial in many other applications of high throughput sequencing
where the DNA or RNA populations being compared differ in their composition. Sim-
ilar to previous high throughput technologies such as microarrays, normalization is an
essential step for inferring true differences in expression between samples. The number
of reads for a gene is dependent not only on the gene’s expression level and length, but
also on the population of RNA from which it originates. We present a straightforward and
effective empirical method for normalization of RNA-seq data.

The IMM normalization is an effective and robust method for estimating relative RNA
production levels from RNA-seq data. The IMM method estimates scale factors between
samples that can be incorporated into currently used statistical test methods for DE anal-
ysis. In our experience, the iterate will converge in no more than five steps. In essence,
both microarray and TMM normalization assume that the majority of genes, common
to both samples, are not differentially expressed. Our simulation studies indicate that
the IMM method is robust under the assumption that the rate of DE genes is no more
than 0.5.

The IMM use the median fold-changes as the normalization scaling factor is a robust
method. As the TMM normalization method, the IMM also trim some genes as DE
genes. But the IMM method is not just simply symmetry trimmed up and down side
log-fold-changes. The iterated excluding the DE genes may be more reasonable than
the TMM method when the log-fold-changes are biased and the rate of DE genes is
large.

From the simulation results, IMM normalization is more robust than TMM. In order
to investigate IMM normalization in real data, we use different normalization methods
while the same test method to detect DE genes. And we find that DE genes detected
by IMM are more consistent with gene expression level reported by bodymap data
than DE genes detected by IMM. What’s more, we find DE genes identified only by
IMM are more likely related to liver or kidney tissue than DE genes detected by TMM.
Therefore, IMM normalization method is a useful method in RNA-seq data analysis for
biologists.

Code
Scripts for our analysis have been wrote in R, which should install the edgeR package [25]
in version 2.5 of Bioconductor [18] before running code.
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Additional file 1: Supplementary tables and figures.
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