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Abstract

Background: In genomics and proteomics, membrane protein analysis have shown
that such analyses are very important to support the understanding of complex
biological processes. In Genome-wide investigations of membrane proteins a large
number of short, distinct sequence motifs has been revealed. Such motifs found so far
support the understanding of the folded membrane protein in the membrane
environment. They provide important information about functional or stabilizing
properties. Recently several integrative approaches have been proposed to extract
meaningful information out of the membrane environment. However, many
information based approaches deliver results having deficits of visualisation outputs.
Outgoing from high-throughput protein data analysis, these outputs play an important
role in the evaluation of high-dimensional protein data, to establish a biological
relationship and ultimately to provide useful information for research.

Results: We have evaluated different resulting graphs generated from statistical
analysis of consecutive motifs in helical structures of the membrane environment. Our
results show that representative motifs with high occurrence in all investigated protein
families are responsible for the general importance in alpha-helical membrane
structure formation. Further, motifs which often occur with others in their function as
so called “hubs” lead to the assumption, that these motifs constitute as important
components in helical structures within the membrane. Otherwise, consecutive motifs
and hubs which show a high occurrence in certain families only can be classified as
important for family-specific functional characteristics. Summarized, we are able to
bridge our graphical results from high-throughput analysis of membrane proteins over
networking with databases to a biological context.

Conclusions: Our results and the corresponding graphical visualisation support the
understanding and interpretation of structure forming and functional motifs of
membrane proteins. Our results are useful to interpret and refine results of common
developed approaches. At last we show a simple way to visualise high-dimensional
protein data in context to biological relevant information.

Keywords: Membrane proteins, Motifs, Graph, Architecture

© 2013 Grunert and Labudde; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/2.0


Grunert and Labudde BioDataMining 2013, 6:21 Page 2 of 14
http://www.biodatamining.org/content/6/1/21

Introduction
Proteins are the main catalysts, structural elements, signalling messengers, molecular
machines of biological tissues and essential for many fundamental biological processes
within organisms [1]. Fundamental biological processes depend on membrane proteins.
Membrane proteins fall into a class of proteins whose molecules are attached to or are
associated with the membrane of a cell. A variety of biological functions are accomplished
by these membrane proteins, such as signal and energy transduction, nutrient transport,
the maintenance of ion concentration, ligand binding, and cell adhesion [2], thereby facil-
itating their functional importance in many biological processes [3]. Many fundamental
cellular processes involve protein–protein interactions, and membrane proteins are no
exception. Comprehensively identifying complexes is important to systematically defin-
ing protein function [1], and hints about the function of an unknown protein can be
obtained by investigating its interaction with other proteins of known function. Nervous
excitement, oxygen supply, energy balance, immune response and the transmission of
signals within cells and from cell to cell are the essential of membrane proteins. E.g. mem-
brane proteins form specific receptors on the cell surface and serve as the communication
interface between the cell’s external and internal environment [4]. Hormones and other
neurotransmitters can bind to these and thereby causing the cell to certain reactions.
They play a fundamental role within cellular and physiological processes. Membrane pro-
teins perform different tasks. They can be involved as transport proteins, compound
molecules, receptors or enzymes. As structure proteins they determine the cell’s design
and ultimately the quality of tissues and the whole body. The ion concentration regulation
in the cell and the excitability of nerves and muscles are functions of a membrane protein
as ion channel. As transport proteins, they handle vitally important substances like e.g.
glucose which is essential for the energy supply in the whole body. The identification of
such protein complexes and interactions is valuable, since, on the one hand, detailed infor-
mation of the function of an unknownmembrane protein can be obtained by analysing its
interactions with proteins of known function. On the other hand, biological processes can
be comprehended as a dynamically fluctuating system, whereby the biological role of the
unknownmembrane protein can be defined more precisely [1,5]. In summary, membrane
proteins convey the material and information transfer between cells and organ systems.
Functional intact membrane proteins are indispensable for human health. They are aim of
a large number of drugs and pharmacologically active substances. However, if they exhibit
specific defects, they lead to the formation of many known diseases like e.g. Alzheimer’s,
Parkinson’s, diabetes insipidus, hereditary deafness, cystic fibrosis, retinitis pigmentosa
or cancer [6-8].
In conjunction with genome-wide investigations, previous works have been engaged in

analysing of classified poly-topic membrane protein families. For example the research
of Y. Liu, D. M. Engelman and M. Gerstein observed the amino acid distribution of TM
helices in their work of computational genomic analysis of membrane protein families [9].
The abundance of conserved motifs in the transmembrane helix regions in these fami-
lies has been carried out. The structural analyses in terms of patterns of protein folding
have been useful in revealing functional and evolutionary relationships and supporting
the understanding how a protein folds in the membrane environment. Here, Liu and
colleagues studied the most widely discussed GxxxG and GxxxxxxG motif, and found
that they tend to be associated and relatively conserved within transporter/channel-like
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membrane proteins [9]. Structural studies confirmed that the GxxxG motif plays an
important part in mediating helix-helix interactions [9-13]. Eventually, information about
discriminative motifs can be statistically interpreted in a membrane protein sequence
[9,11]. Besides, a logOdd-profile generation approach by Grunert and colleagues [14]
addresses the separation task of discriminative sequence motifs by determination of the
residue conservation at each variable motif position. Based on such logOdd-profiles a
currently yet unpublished approach addresses the prediction of helical ranges of mem-
brane proteins by a given protein sequence. This confirms and includes information about
that a specific three-dimensional protein structure depends on the information stored
in the corresponding amino acid sequence. Thus sequence motif analysis can be help-
ful in a number of approaches and applications, e.g. the investigation of mutant proteins
and potential effects of mutagens. Independent of their functionality and possible struc-
ture forming properties, different motif examples are illustrated in Figure 1, which shows
seven motifs in the bacteriorhodopsin trimer (PDB-Id: 1brr).
The unsolved problem how a protein folds and sequence homology are related can be

better understood by sequence motif analyses. Thus, the enormous increase of mem-
brane protein data and protein structures requires the handling of such high-dimensional
biological data. In this work, our novel statistical approach shows which motifs con-
tribute fundamentally to be involved as structural or functional sequence parts. Useful
graph visualisations will fill the lack of high-throughput protein data analysis and eval-
uation. Here, we will reveal functional and structural relationships of sequence motifs.

Figure 1 Motif Examples. In the bacteriorhodopsin trimer (PDB-Id: 1brr), seven motif examples are present.
Each motif can be written in a regular-expression like XYn, where X and Y are amino acids separated by n−1
highly variable positions. For example the LG5 motif occurrence (highlighted in red) corresponds to a pair of
leucine (Leu) and glycine (Gly) residues which are separated by four amino acids.
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Summarized, we inspect structural and functional aspects of sequence motifs within the
field of membrane proteins, largely from a computational point of view.

Materials andmethods
Usedmembrane protein family datasets

As first step of our analysis different datasets were obtained. Two of them were derived
from the Pfam database [15]. The first dataset (DS1) consists of 32 membrane protein
families which include 2511 proteins with domains of unknown functions (DUF) as listed
below.
[PF09767, PF09834, PF09842, PF09843, PF09852, PF09858, PF09874, PF09877,

PF09878, PF09879, PF09880, PF09881, PF09882, PF09900, PF09913, PF09925, PF09945,
PF09946, PF09971, PF09972, PF09973, PF09980, PF09990, PF09991, PF09997, PF10002,
PF10011, PF10067, PF10080, PF10081, PF10097, PF10101]
The second dataset (DS2) consists of 11membrane protein families with 15644 proteins

and 160 known structures as listed below.
[PF00001, PF00002, PF00003, PF00664, PF00939, PF01490, PF02932, PF05602,

PF06472, PF06814, PF10192]
After the datasets have been obtained, non-redundant sequences from DS1 and DS2

were generated. To avoid generating misguiding statistics by including identical or highly
similar sequences, CD-HIT [16] and BlastClust [17] were applied using by a threshold
setting of 25% and 60% respectively. Further, we determined the helical structures in
transmembrane regions of the proteins to be investigated, using the TMHMM Server
v. 2.0 [18]. Basically, TMHMM performs a prediction of intra/extra-cellular regions and
integral membrane helices starting from sequence. Additionally, the probability of the
prediction is given for each residue as well. According to the obtained results from
TMHMM, a topological state was assigned to each residue. A residue was assigned as
‘TM’ if the posterior prediction probability of this residue being a part of a membrane
helix and has been found to be greater than 90%. If the posterior prediction probability
of the residue has been found to be greater 90% for extra/intra-cellular prediction, the
residue was assigned as ‘nTM’.

Sequence motif extraction

Generally, proteins are large biological molecules they fold into a three-dimensional struc-
ture, which is determined by the protein sequence (primary structure) which consists
of one or more chains of the 20 canonical amino acids. In the current work only
‘TM’ sequence information was used for our analysis. In this context, short sequence
motifs have been extracted which contribute to build the membrane protein structure
in the ‘TM’ environment. Each extracted motif can be written in a generalized, regular
expression-like form of XYn, where X and Y correspond to amino acids separated by n-1
highly variable positions.
A naive text search algorithm was applied for motif extraction (see Figure 2). Here the

algorithm is involved in a step by step window moving process. Beginning from start-
ing position, different defined window sizes lead to several sequence cutouts of matching
sizes. Each cutout has been transcribed into the regular expression XYn. More specifi-
cally this algorithm returns at each ‘TM’ sequence position i the starting X amino acid
and at i + n the ending amino acid Y of the corresponding extracted motif XYn. A
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Figure 2 Motif Extraction. The present pseudo code describes a naive algorithmic procedure of variable
word extraction from any string. We have applied this procedure to the context of motif extraction out of
different protein sequence information. Ultimately, this algorithm returns the starting X amino acid at each
protein sequence position i and the ending amino acid Y at i + n of the corresponding extracted word as
representative motif. A resulting list consists of motifs which are all written in the regular expression XYn by
n = {4 − 7}. A list without duplicate entries will be updated if the supplied current motif does not exist.

resulting list consists of motifs (without duplications) in regular expression XYn form by
n = {4 − 7}.

Topology separation and prediction of discriminative motifs

For later evaluation of our frequently occurring motif combinations, we have predicted
the topology state of all motifs extracted from ‘TM’ sequence information. About this
prediction task, we will figure out which motif is atypical for the ‘TM’ environment.
By using a new straight-forward approach of information extracting and clustering this
approach addresses the prediction task by determination of the residue conservation
at each variable motif position. At first, all single motif occurrences were identified in
the non-redundant DS1 and DS2. Including TMHMM predictions, each motif occur-
rence was assigned to a topology state as previous elucidated. Subsequently, all variable
positions within each motif occurrence were examined more closely. Ultimately for
each variable position the relative occurrence of each amino acid at the specified posi-
tion of each motif was calculated and set into relationship to nature occurrence. Like
described in [14], the significance of each resulting probability was applied in a log-
odd formula. Log-odd values of variable positions were transformed into a vector
which ultimately leads to generated logOdd-profiles (LOPs). Based on this LOPs we
are fundamentally able to separate each variable motif position to a topology state and
finally to predict the topology state of each motif. This approach is discussed in detail
in [14].

Information extraction and visualisation frommotif architectures

Furthermore, for our statistical analysis of highly occurring consecutive motifs in ‘TM’
regions, a statistical restrictive frame called “motif-architecture” (MA) was defined. In
this work aMA specifies that only four directly consecutive motifs are to be considered in
each statistical frame. The number of four consecutive motifs depends on the number of
‘TM’ environment occupied residues and the maximum length of a motif defined for this
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Figure 3 MA Extraction. Using of ‘TM’ helical information (red coloured) to create own statistical restrictive
frames called motif-architecture (MA). Each MA consists of four consecutive motifs where X and Y of a motif
XYn corresponds to one of the 20 canonical amino acids and n − 1 defines the length of highly variable
positions between X and Y by n = {4 − 7}. In the case of the bacteriorhodopsin trimer (PDB-Id: 1brr), seven
transmembrane alpha-helices have been predicted by TMHMM. ‘TM’ helical information was used to search
for MAs with strictly defined architecture size of four motifs.

Figure 4 Graph Creation. The present pseudo code describes different steps to transform
motif-architecture information into a graph structure in a suggestively way. The first step deals with the
creation of a parent-child relationship mapped by the common composite pattern. Here, each child is the
immediately consecutive motif of the previous within a sequence. The next step handles the final resulting
composite which has been traversed and returns all possible paths with our strictly defined size of four
consecutive motifs. A motif-architecture was born and transferred into a graph. A representative motif as
node will be inserted if the node does not exist or updated if it exists in the graph. The corresponding edge
of two nodes will be updated by increasing by one if this connection already exists. This leads to one graph
for each ‘TM’ region. All ‘TM’ sub-graphs will be merged into one main graph.
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work. In addition directly consecutive motifs means that a motif is ultimately following
the previously (Figure 3) without residue gaps between both. Followed by MA analysing
from ‘TM’ sequence information a result set with a number of MAs was created. A list of
MAs can be assigned to each investigated ‘TM’ region. Relating to further statistical anal-
ysis, the decision to apply useful and powerful graph-algorithms causes that each found
MA has been considered as a graph structure (see Figure 4). In general, a graph consists
of a number of nodes connected by edges. Related to our MA a motif can be considered
as a node connected to another node by a weighted edge. The edge weightiness between
two nodes depends on the occurrence of edges with same source and target node in all

Figure 5 TheWorkflow. The workflow for membrane environment information extraction and
transformation. A: For each membrane protein, all possible membrane helices have been predicted using
TMHMM. Predicted ‘TM’ sequence information is coloured in red and ‘nTM’ in blue. B: After deriving ‘TM’
sequence information all possible motifs with n-1 highly variable positions by n = {4 − 7} were determined
by using a common naive text search algorithm (Figure 2). Further, for each ‘TM’ sequence part, all possible
MAs consisting of four directly consecutive motifs have been detected. C: The later applying of useful and
powerful algorithms which are involved in the statistical information aggregation assumes, that each
detected (MAx , TMy ) is considered to be a graph structure. This leads to the transfer of each (MAx , TMy ) into a
graph where each motif can be considered as a node connected by a edge to the following node. D: Finally,
all ‘TM’ sequence part corresponding graphs were merged into one. The edge-weightiness of the already
existing source and target nodes were updated by increasing by one. Ultimately, a weighted graph exists for
each ‘TM’ sequence part which leads to the final merge process and the resulting graph.
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detected MAs. One main graph for each ‘TM’ region has been created by merging all
graphs out of the corresponding ‘TM’ list. This leads to the same number of graphs as they
are ‘TM’ regions to be analysed. The final step includes the same merging procedure of all
‘TM’-graph to one main-graph included by updating the edge weightiness. So the weight-
iness of already existing edges was updated by increasing by one. The final main graph
includes all motifs as representative nodes connected over weighted edges. By defining an
edge weight threshold we are able to reduce the graph by removing less weighted edges
and keeping stronger ones. These different steps were applied to DS1, DS2 and selected

Figure 6 Result Graph DS1. The result graph for DS1 generated from TMHMM transmembrane-helical
information. After removing less weighted edge connections, the graph is given more clearly. Different
nodes are given as representative motifs. Two possible node colours describe the predicted topology state
(TM = transmembrane, nTM = none-transmembrane) based on previous work by Grunert and colleagues [14]
for each motif closer. This distinguishes TM-typical from TM-non-typical graph present motifs. Coloured
weighted edges can be assigned to a occurrence value of the pendant colour-scale. Ultimately, the graph
makes clear how often different consecutive motifs occur. Highly occurring motifs are connected with red
coloured edges. It is shown that always the same residues are recovered at the starting and ending position
of a motif. Here alanine, leucine, glycine or valine are the most involved starting and ending residues which
get a great importance in structure forming motifs. Finally, often accrued motifs become apparent in their
function as “hub”-motif. For example LL3, LV3, VL3 and AL3 often occur within a MA with other motifs. This
leads to the indispensability for building helical regions within the membrane environment.
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protein families. This workflow for membrane environment information extraction and
transformation is shown in Figure 5.

Results and discussion
The high throughput analysis of membrane protein families obtained by previous
described steps returns different result graphs. Useful information about frequently
occurring consecutive motifs has been ascertained for all investigated membrane protein
families of DS1 and DS2. The resulting graphs of both datasets are shown in Figures 6 and
7. Edge colourations illustrate heavily or less weighted edge connections which arise from
high common occurrences of the edge ending source and target motif. Each edge colour
can be assigned to a colour-range of the graph pendant colour-scale. In the course of
this each range corresponds to a range of edge weight values. Removing of less weighted
edges minimizes the graphs to clearly arranged structures. Different motifs emerge to

Figure 7 Result Graph DS2. The reduced result graph for DS2 generated from TMHMM
transmembrane-helical information. After removing less weighted edge connections, the graph is given
more clearly. Different nodes are given as representative motifs. Two possible node colours describe the
predicted topology state (TM = transmembrane, nTM = none-transmembrane) based on previous work by
Grunert and colleagues [14] for each motif closer. This distinguishes TM-typical from TM-non-typical graph
present motifs. Coloured weighted edges can be assigned to a occurrence of the pendant colour-scale.
Ultimately, the graph makes clear how often different consecutive motifs occur. Highly occurring motifs are
connected with red coloured edges. It is shown that always the same residues are recovered at the starting
and ending position of a motif. Typical motifs with alanine, leucine, glycine or valine starting and ending
residues are the representative structure forming motifs. Finally, often accrued motifs become apparent in
their function as “hub”-motif. For example LL3, LV3, VL3 and AL3 often occur within a MA with other motifs.
This leads to the indispensability to build helical regions within the membrane environment. The graph also
shows motifs atypical for membrane environment. E.g. the topology prediction of SN3 and PY3 to ‘nTM’ state
can be traced back to more ‘nTM’ conservation in evolution. This leads to the assumption, that these motifs
are functionally important and relevant for family-specific functional characteristics of DS2.
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structure forming components considered to all protein families of an investigated data
set. Also apparent is the positioning of graph centred motifs, they often occur together
with others (e.g. LL3, LV3, VL3, IL3 and AL3). This leads to the assumption that these
so called “hub”-motifs constitute important components within a MA and thus in heli-
cal regions. Depending on how a alpha-helical structure is constructed, these motifs
are required for filling the gaps in the physical and structural context. This hypothesis
confirms previous work of [19] and colleagues who dealt with the projections of three-
dimensional structures of alpha-helices into two-dimensional images which they called
helical wheels. Their results stating that Ala, Val, Leu or Ilu residues are important mem-
bers of helical wheels also relate to our representative hub-motifs. So both result graphs
(Figure 6 and 7) are showing residues which can always be recovered at X and Y of a
motif XYn.
Further, different coloured Nodes are recognizable. Here, red Nodes were predicted to

be part of ‘TM’ region and blue ones to be part of ‘nTM’ by determination of the residue
conservation at each variable motif position of the given data sets like described in section
“Topology separation and prediction of discriminative motifs”. Based on this, ‘TM’ non-
typical motifs have been predicted in both result graphs. Such motifs can indicate, that
they may be involved in special functions. On closer inspection of the DS2 result graph
(Figure 7), a highly weighted edge catches the eye. This edge represented by the SN3 and
PY3motif is to be silhouetted against all other edges. Here the motif building start residue
serine (S) consists of aliphatic hydroxy-groups and corresponds formal to a hydroxy-
lated alanine (A). By hydroxylation serine is more hydrophilic than alanine. The motif
end residue asparagine (N) as uncharged derivative of aspartate plays an important role
in covalent protein modifications because carbohydrate residues may be attached to this
amino acid. All these properties are not typical for helical structure building residues in
the membrane environment. On the one hand this suggests that SN3 in combination with
PY3 is involved in global characterization of all investigated membrane protein families of
DS2. On the other hand functional or structural characteristics accurately describe a fam-
ily closer.To evaluate this assumption our approach has been applied to each single protein
family of DS2. Out of the DS2 graph, information of two transmembrane receptor families
(Pfam-Ids: PF00001, PF00002) has been compared with the results of an entropy based
Profile HiddenMarkovModel (pHMM)-alignment approach by [20] and colleagues. They
present a visualization method that incorporates both emission and transition probabil-
ities of the pHMM, thus extending sequence logos. Each protein family specific graph
shows exactly the highly occurring motif combinations within the pHMM-alignments
logos (see Figures 8 and 9). Further, networking with existing biological databases like
PROSITE [21-24] delivers important information about protein domains, families and
functional sites as well as associated patterns and profiles to identify them. In relation
to PY3-SN3 (Pfam-Id: PF00001, Figure 10), supplied PROSITE information makes appar-
ent, that these motifs are involved in consensus pattern of retinal binding sites [21-24]
(PROSITE documentation PDOC00211) and thus are a significant figurehead for this
Pfam receptor family. Analogously to this, NQ3-GI3 are also involved in consensus pat-
tern of retinal binding sites [21-24] (PROSITE documentation PDOC00559) in Pfam
family with Pfam-Id: PF00002 (Figure 11).
In summary, we could show that membrane protein families are characterized by

individual motifs influenced by their structural and functional properties.
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Figure 8 WebLogo PF00001. Excerpt from a WebLogo for 7tm_2 (PF00001) transmembrane receptor
rhodopsin family, derived from an entropy based Profile Hidden Markov Model (pHMM)-alignment approach
by [20] and colleagues. FL4-AD3 and SN3-PY3 are examples of consecutive motifs which are also present in
the DS1-graph (Figure 10).

Finally, on consideration of all data processing steps including by final visualising and
under networking with biological databases, we are able to build a bridge between graph
information in conjunction with a biological context.

Conclusion
Generally, in this work it could have been shown how to visualize high-dimensional
membrane protein data in form of graph structures and how to fill the lack between
high-throughput protein data analyses and evaluation. 32 poly-topic membrane protein
families with domains of unknown functions and 11 membrane protein families con-
sisting of receptor, transporter and neurotransmitter-gated ion-channel proteins were
analysed. Transmembrane and non-transmembrane sequence regions were predicted
using the TMHMM method. Possible sequence motifs of variable lengths have been
extracted out of predicted ‘TM’ regions, by using a naive text extracting algorithm.
Four immediately consecutive sequence motifs were defined as a statistical frame called
“motif-architecture”. Subsequently, multiple numbers of motif-architectures have been

Figure 9 WebLogo PF00002. Excerpt from a WebLogo for 7tm_2 (PF00002) transmembrane receptor
rhodopsin family, derived from an entropy based Profile Hidden Markov Model (pHMM)-alignment approach
by [20] and colleagues. GL3-SL4, WE4-GL3, LL4, LT3 and NQ3-GI3 are examples of consecutive motifs which
are also present in the DS2-graph (Figure 11).
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Figure 10 Result Graph PF00001. The reduced result graph for 7tm_1 (PF00001) transmembrane receptor
rhodopsin family generated from TMHMM transmembrane-helical information. After removing less weighted
edge connections, the graph is given more clearly. Different nodes are given as representative motifs. Two
possible node colours describe the predicted topology state (TM = transmembrane, nTM = none-
transmembrane) based on previous work by Grunert and colleagues [14] for each motif closer. This
distinguishes TM-typical from TM-non-typical graph present motifs. Coloured weighted edges can be
assigned to a occurrence of the graph pendant colour-scale. Ultimately, the graph makes clear how often
different consecutive motifs occur. Highly occurring motifs are connected with red coloured edges. Here,
SN3-PY3 are the most common consecutive motifs. This occurrence is specific for this family and can be
responsible for possible functional or structural protein features. Networking with existing biological
databases like PROSITE [21-24] delivers important information about protein domains, families and functional
sites as well as associated patterns and profiles to identify them. In relation to SN3-PY3, these motifs are
involved in the consensus pattern of retinal binding sites. Retinal binding site matching PDB structures are
e.g. 1BOJ, 1BOK, 1F88, 1GZM.

extracted out of all ‘TM’ regions, followed by information transformation into graph
structures. Motifs as representative nodes connected by weighted edges to other nodes
form a graph. All result graphs support the understanding and evaluation of high occur-
ring consecutive motifs of the investigated protein families. This high occurrence of
architecture-motifs points to the general importance that these motifs within the respec-
tive protein structure are significantly relevant for the membrane protein folding. ‘TM’
region atypical motifs have emerged which point to the general importance as being
involved in defining a protein’s function. Here in special, motifs which are involved in
the consensus pattern of retinal binding sites of Pfam receptor families. Finally, hub-
motifs which often occur together with others point out to indispensable motifs in helical
regions.
Because of the stronger protein structure conservation in evolution than the sequen-

tial composition of the folded protein chains, there are individual motifs or characteristic



Grunert and Labudde BioDataMining 2013, 6:21 Page 13 of 14
http://www.biodatamining.org/content/6/1/21

Figure 11 Result Graph PF00002. The reduced result graph for 7tm_2 (PF00002) transmembrane receptor
rhodopsin family generated from TMHMM transmembrane-helical information. After removing less weighted
edge connections, the graph is given more clearly. Different nodes are given as representative motifs. Two
possible node colours describe the predicted topology state (TM = transmembrane, nTM = none-
transmembrane) based on previous work by Grunert and colleagues [14] for each motif closer. This
distinguishes TM-typical from TM-non-typical graph present motifs. Coloured weighted edges can be
assigned to a occurrence of the graph pendant colour-scale. Ultimately, the graph makes clear how often
different consecutive motifs occur. Highly occurring motifs are connected with red coloured edges. Here,
NQ3-GI3 are the most common consecutive motifs. This occurrence is specific for this family and can be
responsible for possible functional or structural protein features. Networking with existing biological
databases like PROSITE [21-24] delivers important information about protein domains, families and functional
sites as well as associated patterns and profiles to identify them. In relation to NQ3-GI3, these motifs are
involved in the consensus pattern of retinal binding sites. Retinal binding site matching PDB structures are
e.g. 1ET2, 1ET3.

sequence parts which expose a certain biochemical function of proteins. This means
that membrane protein families are characterized by structural and functional motifs.
Thus, it is possible to compare such families by the inclusion of individual sequence
motifs.
Conclusive evaluation of our results with biological databases confirms this fact and

shows a simple way bridging visualisation of membrane protein data to biological context.
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