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Abstract

Background: Algorithms designed to detect complex genetic disease associations are
initially evaluated using simulated datasets. Typical evaluations vary constraints that
influence the correct detection of underlying models (i.e. number of loci, heritability,
and minor allele frequency). Such studies neglect to account for model architecture (i.e.
the unique specification and arrangement of penetrance values comprising the
genetic model), which alone can influence the detectability of a model. In order to
design a simulation study which efficiently takes architecture into account, a reliable
metric is needed for model selection.

Results: We evaluate three metrics as predictors of relative model detection difficulty
derived from previous works: (1) Penetrance table variance (PTV), (2) customized odds
ratio (COR), and (3) our own Ease of Detection Measure (EDM), calculated from the
penetrance values and respective genotype frequencies of each simulated genetic
model. We evaluate the reliability of these metrics across three very different data
search algorithms, each with the capacity to detect epistatic interactions. We find that a
model’s EDM and COR are each stronger predictors of model detection success than
heritability.

Conclusions: This study formally identifies and evaluates metrics which quantify
model detection difficulty. We utilize these metrics to intelligently select models from a
population of potential architectures. This allows for an improved simulation study
design which accounts for differences in detection difficulty attributed to model
architecture. We implement the calculation and utilization of EDM and COR into
GAMETES, an algorithm which rapidly and precisely generates pure, strict, n-locus
epistatic models.
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Genetics

Background
The complexity of common disease continues to drive the development of new compu-
tational strategies for the detection of complex multi-locus associations. In particular,
the detection of gene-gene interactions (i.e. epistasis) is a significant challenge driving
bioinformatic development [1-4]. The term epistasis was coined to describe a genetic
“masking” effect, viewed as a multi-locus extension of the dominance phenomenon,
where a variant at one locus prevents the variant at another locus from manifesting its
effect [5]. More specifically, statistical epistasis describes the phenomenon as it would be
observed in genetic association studies. Statistical epistasis is traditionally defined as a
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deviation from additivity in a mathematical model summarizing the relationship between
multi-locus genotypes and phenotypic variation in a population [6]. In order to evalu-
ate an algorithm’s ability to detect epistasis, simulation studies are employed. Simulation
studies typically involve the generation of a disease model (i.e. a penetrance function)
that is subsequently used to simulate the samples of a dataset. However, the generation of
realistic complex disease models constitutes a key challenge.
Over the last decade, several strategies for either the generation, characterization, or

classification of complex disease models have been proposed. For example, [7] charac-
terized all fully penetrant two-locus models, where genotype disease probabilities were
restricted to zero and one. [8] later expanded this characterization to include models with
continuous penetrance values. Additionally, they generated a population of random two-
locus models within which they characterized “shape-based” classes of epistatic models.
They observed that the shape of a model (1) reveals information about the type of gene
interaction present, and (2) impacts the ability to detect the underlying epistasis. The term
shape is used as a generalized conceptualization of model architecture where architecture
references the unique composition of a model (i.e. the penetrance values and arrangement
of those values across genotypes).
In order to generate complex models of a higher order, [9,10] recruited an evolutionary

algorithm (EA) and successfully evolved 2 to 5-locus epistatic models. Over successive
generations, models were evolved towards a state of pure epistasis and maximal pen-
etrance table variance (PTV) in an effort to generate interesting models. Later, [11,12]
added a customized odds ratio (COR) to the multi-objective fitness landscape of the EA.
The COR was applied to quantify and maximize the “strength” of a given model. Both
PTV and COR are calculated directly from a penetrance table and have been applied
to the generation of complex genetic models. However, to the best of our knowledge
the relationship between either metric and model detection has yet to be empirically
investigated.
While relatively successful, EAs are computationally expensive, time consuming, and

do not guarantee that the desired model characteristics will be met. To address this we
introduced GAMETES, a fast, direct algorithm for the generation of random, biallelic, n-
locus, pure, strict, epistatic models [13]. Pure refers to epistasis between n loci that do not
display any main effects [3,13-15]. Strict refers to epistasis where n loci are predictive of
phenotype but no proper multi-locus subset of them are (see in Additional file 1: Figure
S1). We focus on pure, strict, epistatic models because they constitute the worst-case in
terms of detecting disease associations. This makes them an attractive gold standard for
simulation studies which consider complex multi-locus effects.
GAMETES allows the exact specification of four model constraints including; number

of loci, heritability, minor allele frequencies, and population prevalence. In developing
and testing GAMETES, we observed that despite keeping all previouslymentioned model
constraints constant, an algorithm’s ability to correctly detect these models could vary
greatly. This ability is determined by the proportion of datasets within which the correct
underlying model was identified. While some variation can be explained by the prob-
abilistic translation of models into randomly seeded datasets, the rest can logically be
attributed to subtle differences in model architecture.
In addition to considering PTV and COR as potential metrics of detection difficulty, the

present study introduces the Ease of Detection Measure (EDM). Calculation of EDM is
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derived from SURF [16], a filter algorithm for detecting attributes more likely to be useful
in discriminating between two classes. Detection difficulty refers to ease with which the
predictive loci of a model are identified by a given algorithm.
We evaluate the correlation between these metrics and detection difficulty across

three very different search algorithms: an exhaustive combinatorial search algorithm (i.e.
MDR), a filter algorithm (i.e. SURF), and a stochastic search algorithm (i.e. UCS). We
demonstrate how the combination of the GAMETES model generation strategy with a
model difficulty metric allows for the intelligent, automated selection of model architec-
tures for simulation studies. Given that researchers often do not know the architecture
of complex disease models as they appear in the real world, our strategy avoids arbi-
trary assumptions about model architecture and seeks to select models for algorithmic
evaluation which broadly explores the model space.

Methods
In this section, we describe (1) relevant background in genetics and modeling, (2) the
GAMETESmodeling approach, (3) our Ease of DetectionMeasure (EDM), (4) calculation
of PTV and COR, (5) the incorporation of these metrics into GAMETES and the design
of a more comprehensive simulation study, and (6) our methods for evaluating the utility
these metrics.

Genetics andmodeling

The term genotype has been used to refer both to the allele states of a single nucleotide
polymorphism (SNP), as well as the combined allele states of multiple SNPs. To avoid
confusion, we refer to the latter as a multi-locus genotype (MLG) whenever necessary.
Penetrance functions, also referred to as penetrance tables, represent one approach to
modeling the relationship between genetic variation and risk of disease. Penetrance is the
probability of disease, given a particular genotype orMLG. SNPs not under selective pres-
sure within a population typically exhibit genotype frequencies that are predicted by the
Hardy-Weinberg Law [17]. We assume HWE such that, the allele frequencies for a SNP
may be used to calculate it’s genotype frequencies as follows; freq(AA) = p2, freq(Aa)
= 2pq, and freq(aa) = q2, where p is the frequency of the major (more common) allele
‘A’, q is the minor allele frequency (MAF) where ‘a’ is the minor allele, and p + q = 1.
Penetrance functions are easily extended to describe n-locus interactions between n pre-
dictive loci using a penetrance function comprised of 3n penetrance values corresponding
to each of the 3n MLGs.
Table 1 gives an example of an epistatic model that is both pure and strict. Each of the

nine entries in Table 1 corresponds to one of the nine possible MLGs combining SNPs 1

Table 1 A 2-locus purely epistatic penetrance function

SNP 2 Marginal

Genotype BB(.25) Bb (.5) bb(.25) Penetrance

AA(.36) .266 .764 .664 .614

SNP 1 Aa (.48) .928 .398 .733 .614

aa(.16) .456 .927 .147 .614

Marginal .614 .614 .614 K = .614

Penetrance
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and 2. For instance, subjects that have the MLG aa-bb have a 14.7% chance of having dis-
ease. What makes these penetrance functions purely epistatic is that while the genotypes
of SNPs 1 and 2 are together predictive of disease status, neither is individually. A further
discussion of what makes models purely and strictly epistatic is given in [13].

GAMETES

While the model difficulty metrics considered in this paper could be applied to any
penetrance-function-based model, we examine models generated using GAMETES. The
GAMETES strategy for generating random, n-locus, pure, strict epistatic models is briefly
reviewed here. Each n-locus model is generated deterministically, based on a set of ran-
dom parameters, a randomly selected direction, and specified values of heritability, minor
allele frequencies, and (optionally) population prevalence. The GAMETES algorithm first
(1) generates 2n random parameters and a random unit vector, then (2) generates a ran-
dom pre-penetrance table by seeding these parameters using the unit vector, and then (3)
uses a scaling function to scale the entries of this random pre-penetrance table to generate
a random penetrance table. To obtain a random penetrance table having a specified her-
itability, or heritability and prevalence, it further (4) scales the entries of this penetrance
table to achieve, if possible, these values. If steps (1) or (4) are not successful the algorithm
starts over, attempting to generate models until either the desired model population size
or the iteration limit is reached. For a detailed explanation of this strategy see [13].
The speed and precision of GAMETES allows the generation of a large population of

models with the same genetic constraints, but different architectures. With the incorpo-
ration of a model detection difficulty metric, we can intelligently select models from this
population.

The Ease of DetectionMeasure (EDM)

We describe EDM, a value calculated directly from a penetrance function and it’s respec-
tive genotype frequencies, for the purpose of predicting model difficulty. Calculation of
the EDM originates in the context of SURF [16], a SNP filtering algorithm for datasets.
SURF assigns higher scores to SNPs more likely to be useful in discriminating between
healthy and diseased samples. When running SURF on datasets generated by GAMETES,
the mean of the score of the SNPs comprising an n-locus epistatic model is proportional
to the EDM associated with that model. Thus the higher the EDM, the easier it is to distin-
guish SNPs comprising the model from SNPs generated as noise. EDM is a considerably
more accurate measure of this than heritability.

Computing population prevalence K and heritability h2

Here we describe how population prevalence and heritability are calculated from a pene-
trance function and it’s associated genotype frequencies. These calculations offer a useful
precursor to understanding the calculation of EDM. In this section we abbreviate the
notation for multivariate genotypes to G. The population prevalence for any n-locus
model can be computed by

K =
∑

G
P(G)fG . (1)

Here, the sum is over all 3n MLGs G in the model, P(G) is the probability that MLG G
occurs, and fG is the penetrance value associated with G given by the penetrance function.
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The (broad-sense) heritability of a genetic model is defined as the phenotypic variance
due to genotype divided by phenotypic variance in the population. Specifically, using the
notation of equation (1), the heritability of any n-locus model is

h2 = 1
K(1 − K)

∑

G
P(G)(fG − K)2. (2)

Computing EDM

Using the notation of equations (1) and (2), the EDM of a penetrance function is defined
by

EDM = 1
2(K(1 − K))2

∑

G
(P(G))2(fG − K)2. (3)

Note the similarities between the calculation of EDM and that of heritability as defined in
equation (2). Since the genotype probabilities (G) are squared in the definition of EDM,
lesser-occurring genotypes contribute proportionally less to the EDM score than they do
in heritability. The EDM can also be expressed as half the Euclidean distance between two
points. Namely

EDM = 1
2

∑

G
(P(G|s) − P(G|w))2 (4)

where P(G|s) is the probability a random case has genotype G and P(G|w) is the same for
a random control. The equivalence of these two forms of the EDM follows from the first
two displayed equations in the appendix of [16].

Calculating COR and PTV

As described in [12], the COR considered here is the average ratio of odds of disease given
an exposure to a high-risk genotype relative to exposure at a low-risk genotype. COR is an
adaptation of the traditional odds ratio (OR). The COR is derived directly from a genetic
model rather than by comparing cases and controls in a dataset. Additionally in COR,
the ratio is achieved by comparing high vs. low risk genotypes, while in OR the ratio is
typically between individuals with and without some variant of interest. To calculate COR
we begin by calculating the expected proportion of cases (Ecase) and controls (Econtrol) in
a dataset that might be generated from this model for each MLG.

Ecase = P(G)fG
K . (5)

Econtrol = P(G)(1 − fG)

K . (6)

When the expected proportion of cases equals or exceeds that of controls, a MLG is
denoted high risk, otherwise it is low risk. Next, the expected number of high risk cases
‘a’, low risk cases ‘b’, high risk controls ‘c’, and low risk controls ‘d’ are found and used to
calculate the odds ratio for the model as follows;

COR = a ∗ d
b ∗ c (7)

We consider the relationship between COR and EDM in the Additional file 1 (§2.1).
As described in [10], PTV is simply the variance over all penetrance values (fG) for all

3n genotypes G in the model. Using variance for model selection has the disadvantage of
not taking genotype frequencies P(G) into account.
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GAMETES Incorporation

The simplest application of these metrics involves the prediction of detection difficulty
for comparing models of interest. We expand this concept in order to automate the intel-
ligent selection of model architectures of simulation studies. In the context of GAMETES,
we can select an encompassing set of pure, strict epistatic models for the evaluation of
new algorithms. Specifically, given a set of fixed genetic constraints (i.e. n-loci, h2, MAFs,
and K) we begin by generating a population of pure, strict, epistatic models of random
architecture using the strategy outlined in [13]. In the present study, models were gener-
ated until either a population size of 100,000 was reached, or a maximum of 10,000,000
allotted attempts had been made. The goal here is to maximize the range of difficulty
metric values observed in the model population, but prevent the algorithm from running
indefinitely when models possessing the specified constraints were rare or non-existent.
The likelihood that GAMETES can generate a specific type of model is based on random
chance. This may not reflect the probability that such a model might be observed in the
real world, as other selective pressures may come into play.
Once one of the aforementioned stopping criteria is met, all models (each having the

same n-loci, h2, MAFs, and K) are ordered by their difficulty metric value. At this point we
select Nmodels as quantiles from this ordered list, capturing the range of observedmetric
values. We propose selecting two models from this distribution, representing the highest
and lowest metric scores. By selecting the extremes, we minimize the number of models
and datasets needed to account for architecture. While this strategy is not guaranteed to
find models with the mathematical maximum or minimum metric values for a given set
of genetic parameters, it offers a reasonable estimate of these values.

Evaluatingmetrics

To examine the correlation between either PTV, COR or EDM, and the ability to
detect respective underlying models in simulated datasets, we have run an algorithmic
evaluation of three very different data search algorithms. Each search algorithm evalu-
ation was designed to yield varying frequencies of detection success. Without variable
detection success, the correlation between detection and respective metrics would be
nondescript.

Data search algorithms

Multifactor Dimensionality Reduction (MDR), a well documented combinatorial genet-
ics algorithm that exhaustively searches for epistatic interactions [18]. MDR finds models
by scanning through all possible combinations of SNPs up to a pre-specified order of
interaction, and has the ability to identify pure, strict epistatic models. For all evalua-
tions, MDR was set to search up to one order higher than the order of the simulated
model. The best model was selected based on 10-fold cross validation (CV) consis-
tency, and in the event of a CV tie, based on testing accuracy. A model was considered
to have been successfully detected if MDR correctly identified the precise underlying
model.
Spatially Uniform ReliefF (SURF), discussed in Section The Ease of Detection Measure

(EDM) is a filtering and ranking algorithm for the rapid identification of SNPs that are
more likely to be useful in discriminating between healthy and diseased samples. Amodel
was considered to have been successfully detected if SURF ranked all SNPs from the
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correct underlying model in the top 20%. Preliminary analysis indicated that this cutoff
was sufficient to observe a range of detection success frequencies within the datasets
simulated in this study.
The sUpervised Classifier System (UCS)[19] is a Michigan-style learning classifier sys-

tem (M-LCS) [20], or more generally, an evolutionary algorithm. This stochastic search
algorithm has been successfully applied to the problem of pure, strict epistasis in [21].
This type of algorithm ismuchmore computationally intense, so we select run parameters
which are less than optimal, but sufficient to obtain the variable rate of success needed
to calculate correlation. The implementation of UCS applied in this study is the same
as the one used in [21] adopting mostly default parameters with the exception of 50,000
learning iterations, a population size of 1000, tournament selection, uniform crossover,
subsumption, and a ν of 1. A model was considered to have been successfully detected if
UCS correctly specified all SNPs from the correct underlying model more frequently than
all other non-predictive SNPs in the respective dataset. This novel detection estimation
strategy, unique toM-LCS algorithms, is detailed further in [22]. Successful detection was
achieved if the correct attributes were identified in greater than 50% of the 10-fold CV
runs for each dataset.

Experimental evaluation

Each search algorithm described above was run on a spectrum of simulated datasets,
generated using GAMETES. First, we generated models with different numbers of loci,
heritabilities, and MAFs, holding prevalence constant. Specifically, we generated 12 pop-
ulations of both 2-locus and 3-locus, pure, strict epistatic models in which heritability,
MAF, and K were specified. Heritabilities of (0.005, 0.01, 0.025, 0.05, 0.1, or 0.2) andMAFs
of (0.2 or 0.4) were used. We have chosen to fix K as a constant such that any difference
in detectability is strictly due to architecture, independent of all genetic constraints. K
was set to 0.3 for each of these models. We selected this value of K based on the lim-
its described in [13] to ensure that all selected combinations of heritability and MAF
would yield models. Two models from each aforementioned model population were then
selected to be representative of the EDM range (highest and lowest EDM scores), yielding
a total of 24, 2-locus models and 24, 3-locus models from which to generate datasets. For
the purposes of this study we pick model architectures with EDM and calculate the COR
and PTV of these models separately.
For each model, a spectrum of simulated datasets was generated with balanced sample

sizes of either (200, 400, 800, or 1600) and 20 SNPs (n of whichweremodeled as predictive
SNPs, the rest being non-predictive, “noise”). Random dataset replicates were generated
in the following manner: (1) Genotypes for SNPs specified in the genetic model are prob-
abilistically generated for each sample in the dataset based on their specified MAFs. (2)
Affection status (i.e. case/control status) for each sample is determined probabilistically
based on the penetrance value (given by the model’s penetrance function) at that MLG.
(3) Genotypes for all other "noise" SNPs not specified in the model are generated proba-
bilistically based on a randomly assigned uniform distribution of MAFs ranging from 0.05
to 0.5. We generated 100 randomly seeded replicates for each combination of model and
dataset parameters (2 orders of loci ∗ 6 heritabilities ∗ 2 MAFs ∗ 2 EDMs ∗ 4 sample sizes
= 192 combinations) yielding a total of 19,200 simulated datasets independently run on
MDR, SURF, and UCS.
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In addition to the evaluation described above we performed a secondary evaluation of
MDR examining models with K = 0.1 to account for the potential impact of varying K.
Again we applied GAMETES, attempting to generate the same model constraint com-
binations for K = 0.1 as we did for K = 0.3. GAMETES was unable to generate certain
higher heritability model (an observed limitation of the software [13]). In total we gener-
ated 22, 2-locus models and 16, 3-locus models with which to generate simulated datasets
as described above.
Lack of normality in the distribution of detection scores, and the inability to adequately

normalize these values led us to employ the Spearman Rank Correlation to determine
the correlation between detection and our metrics of interest, as well as to examine the
correlation between detection and key constraints (e.g. heritability). We expect the cor-
relation between detection and each considered metric to be limited by the fact that our
dataset generation strategy creates random dataset replicates which probabilistically gen-
erate datasets based on a model. This means that the genotype frequencies and genotype
disease probabilities in the generated datasets may vary slightly from those specified in a
respective model.
All statistical evaluations were done using R [23], with a significance threshold of P

≤ 0.05. Model detection frequency was determined by the proportion of the 100 dataset
replicates within which the correct underlying model was identified. Detection success
was considered to be meaningful when it was greater than 0.8.

Results and discussion
Figure 1 summarizes the detection success each data search algorithmdisplayed in finding
the correct underlying 2-locus model over the spectrum of simulated datasets previously
described. This figure illustrates the influence which genetic architecture alone can have
on the ability to detect a givenmodel. Within each pair of bars, all othermodel and dataset
constraints are equivalent, and we can clearly observe the influence of model architecture
on detection. This influence is most obvious when modest detection is achieved (see the
diagonal of sub-plots stretching from the top left corner of Figure 1 to the bottom right
corner). This figure also illustrates the overall correlation between EDM and detection in
2-locus models.Within each pair of bars, “highest” EDMmodels consistently yield greater
detection than “lowest” EDMmodels. We average models withMAFs of 0.2 and 0.4 in this
figure since we found no correlation between MAF and detection (see Tables 2, 3 and 4).
Tables 2, 3 and 4 summarize the spearman correlation results forMDR, SURF, and UCS

respectively. Notice that for each search algorithm, heritability is a significant predictor
of detection in both 2 and 3-locus models. This relationship between heritability and
detection (while expected) serves as a standard of comparison for the difficulty metrics
evaluated here. Also, notice that sample size is significantly correlated with detection in
MDR and SURF, but to a much less extent than heritability. While the results in Tables 2,
3 and 4 are relatively self explanatory, notice that the 3-locus results for SURF failed to
yield any significant correlations. This is not due to the failure of any metric, rather due
to the failure of SURF to correctly detect the SNPs of any 3-locus pure, strict, epistatic
model. This finding is worth noting, but beyond the focus of the present study.
Next we turn our attention to the three metrics of interest: EDM, COR and PTV.

Tables 2, 3 and 4 indicate that both EDM and COR were strongly and significantly corre-
lated with detection within each of the three search algorithms. Of particular note, both
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Figure 1 2-Locus Model Detection: Each bar represents the model detection frequency (averaged
between a MAF of 0.2 and 0.4) for the respective algorithm within 100 simulated datasets. Highest and
lowest refers to the respective EDM of a given model within the model population generated by GAMETES.
Each sub-plot corresponds to a specific combination of heritability and sample size. A similar figure for
3-locus models is included in the Additional file 1.

EDMand COR are more strongly correlated with detection than heritability in every eval-
uation. Alternatively, we find that PTV is not significantly correlated with detection in
any of the evaluations. Additionally we note that EDM is slightly more strongly correlated
with detection for 2-locus models (we see an even larger difference in the UCS analysis).
For 3-locus models COR is slightly more strongly correlated with detection than EDM
in the MDR analysis, while the opposite is true for the UCS analysis. At the bottom of
Table 2 we include the correlation between EDM and COR within models where K = 0.3.
This correlation is relevant to the analyses presented in Tables 2, 3 and 4.
As mentioned in section 1, we performed a secondary evaluation in MDR using mod-

els generated with K = 0.1. Table 5 summarizes these correlation results. Here we observe
relationships similar to those found with K= 0.3. Specifically, heritability, EDM and COR
are all significantly correlated with detection, with EDM and COR being more strongly
correlated with detection than heritability. Again we see that EDM is slightly more
strongly correlated with detection for 2-locus models, while COR is more strongly cor-
related for 3-locus models. At the bottom of Table 5 we include the correlation between
EDM and COR in these models with K = 0.1. We note that the correlation between EDM
and COR is less strong for 3-locus models than for 2-locus models, and less strong for
models with K = 0.1 than models with K = 0.3.
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Table 2 MDR Analysis (K= 0.3) Spearman Rank Correlations: A summary of Spearman rank
correlation coefficients (ρ) and respective p-values relating detection to the other
variables given in the table

2-locus 3-locus

ρ p-val. ρ p-val.

Heritability 0.7757 ** 0.8270 **

Sample Size 0.3508 ** 0.3253 **

mAF 0.1257 - 0.075 -

EDM 0.8621 ** 0.8564 **

COR 0.8491 ** 0.8603 **

PTV 0.1544 - 0.2707 *

EDM vs. COR 0.9722 ** 0.9652 **

Each calculation is performed over all 9, 600 datasets generated for either 2 or 3-locus models as previously described. Also given
is the correlation between EDM and COR over all datasets with K = 0.3. (− Not Sig., * P < 0.05, ** P << 0.001).

Together, the findings presented above suggest that either EDM or COR would serve
as a suitable metric with which to gauge model difficulty in place of heritability alone.
Subjective interpretation of these results suggest that under different circumstances one
metric may be more favorable to another. Our data does not support one metric as being
universally better than the other, and additional investigation would be required to deter-
mine the circumstances within which one would be preferable to the other. As a result we
have made both metrics available for model selection in the GAMETES software as both
metrics consistently outperform heritability alone. In addition, these results illustrate how
model architecture alone can greatly impact detection.
In order to more clearly observe the relationship between a given difficulty metric

and detection, we performed a follow-up MDR analysis using EDM and datasets with
sample size held constant. Instead of two models representative of the EDM range, we
selected ten in order to observe this relationship at a higher resolution. Entirely new 2-
locus models and datasets were generated for this follow up study, using the same values
of heritability and MAF (with K = 0.3 as before). Figure 2 (left and right panels) provide
different perspectives of this follow up analysis. The left panel illustrates the relationship
between detection and raw EDM scores, highlighting their strong positive correlation
(R2 = 0.9149, P << 0.001) with linear regression, up until the significance threshold
of 0.8 is reached. A Box-Cox transformed linear regression (λ = 0.57) of this same rela-
tionship was found to be similarly strongly correlated (R2 = 0.886, P << 0.001). In this

Table 3 SURF Analysis (K=0.3) Spearman Rank Correlations: A summary of Spearman rank
correlation coefficients (ρ) and respective p-values relating detection to the other
variables given in the table

2-locus 3-locus

ρ p-val. ρ p-val.

Heritability 0.7690 ** -0.0300 -

Sample Size 0.3723 ** 0.0241 -

mAF 0.0864 - -0.0515 -

EDM 0.8798 ** -0.0515 -

COR 0.8602 ** -0.0635 -

PTV 0.1323 - -0.1403 -

Each calculation is performed over all 9, 600 datasets generated for either 2 or 3-locus models as previously described. The
correlation between EDM and COR for these datasets are the same as those given in Table 2. (− Not Sig., * P< 0.05, ** P<< 0.001).
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Table 4 UCS Analysis (K= 0.3) Spearman Rank Correlations: A summary of Spearman rank
correlation coefficients (ρ) and respective p-values relating detection to the other
variables given in the table

2-locus 3-locus

ρ p-val. ρ p-val.

Heritability 0.7984 ** 0.6926 **

Sample Size 0.1567 - 0.0841 -

mAF -0.0413 - -0.1410 -

EDM 0.8990 ** 0.7512 **

COR 0.8673 ** 0.7106 **

PTV 0.1323 - -0.1403 -

Each calculation is performed over all 9, 600 datasets generated for either 2 or 3-locus models as previously described. The
correlation between EDM and COR for these datasets are the same as those given in Table 2. (− Not Sig., * P< 0.05, ** P<< 0.001).

example, all models with an EDM above approximately 0.01 are significantly detected by
MDR. The right panel of Figure 2 looks at the same set of results, keeping detection on
the y-axis, but replacing raw EDM scores with references to quantiles representing mod-
els of increasing EDMwithin the model population. These quantiles are analogous to the
previous distinction of highest and lowest EDM, except instead of two models, we choose
ten. The right panel illustrates the relationship between detection and EDM within fixed
combinations of heritability and MAF, and emphasizes the dramatic impact which model
architecture alone can have on an algorithm’s ability to detect it.

Conclusions
In the present study we formally identify and evaluate metrics which may be used to
predict the detection difficulty of a given model. The simplest application of such a
metric is to compare models without having to run a search algorithm on datasets
generated from them. Using three fundamentally different data search algorithms, we
demonstrate that two metrics (EDM and COR) are strongly and significantly corre-
lated with detection (more that heritability alone). We implement both metrics into the
GAMETES model/dataset generation software and demonstrate how they may be used
to automatically guide the selection of representative model architectures.

Table 5MDR Analysis (K=0.1) Spearman Rank Correlations: A summary of Spearman rank
correlation coefficients (ρ) and respective p-values relating detection to the other
variables given in the table

2-locus 3-locus

ρ p-val. ρ p-val.

Heritability 0.7663 ** 0.7722 **

Sample Size 0.3081 * 0..4305 **

mAF 0.1257 - 0.075 -

EDM 0.8237 ** 0.7786 **

COR 0.8075 ** 0.8241 **

PTV 0.1999 - -0.072 -

EDM vs. COR 0.9401 ** 0.9176 **

ion is performed over all 8, 800 datasets successfully generated for 2-locus models or all 6, 400 datasets successfully generated for
3-locus models as previously described. Also given are the correlations between EDM and COR over these respective datasets
with K = 0.1. (− Not Sig., * P < 0.05, ** P << 0.001).



Urbanowicz et al. BioDataMining 2012, 5:15 Page 12 of 13
http://www.biodatamining.org/content/5/1/15

0.00 0.02 0.04 0.06 0.08

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

EDM

Heritability

0.2
0.1
0.05
0.025
0.01
0.005

R2 = 0.9149
p << = 0.001

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model Quantiles (ordered by EDM)
1 2 3 4 5 6 7 8 9 10

mAF = 0.4

mAF = 0.2

D
et

ec
tio

n 
(%

)

D
et

ec
tio

n 
(%

)

Figure 2 Plots illustrating the follow-upMDR detection analysis over 10 quantiles. For all datasets in
this analysis, K = 0.3, number of SNPs is 20, and sample size is 800. MAF and heritability vary as before. (Left
Panel) The solid regression line gives the best fit for all findings with an observed detection frequency below
the significant detection threshold of 0.8 (the dotted line). Similar figures for COR and PTV are given in the
Additional file 1. (Right Panel) A different perspective on the data in the left panel. This plot illustrates the
capacity of model architecture to impact model detection independent of any genetic or dataset constraints.
The x-axis gives the ten models selected to cover the range of EDMs observed. Each line highlights the ability
to find these ten models for a respective combination of heritability and MAF.

Our results clearly illustrate how model architecture alone can dramatically impact
detection, which emphasizes the importance of taking model architecture into consid-
eration when designing a simulation study. Without taking architecture into account,
researchers run the risk of making incomplete claims about an algorithm’s ability to detect
underlying models within datasets having specific characteristics (e.g. heritability, MAF,
K, number of attributes, and sample size). By incorporating EDM into the selection of
models, researchers canmore comprehensively evaluate their algorithms across the space
in which real biological associations might appear. Beyond data simulation, the ability to
determine a model’s difficulty has the potential to advance our understanding of true bio-
logical models by characterizing and comprehending the theoretical space wherein they
must lie.
The GAMETES software, incorporating EDM and COR, is open source and freely

available for download, and offers an intuitive and flexible framework for the simulation
of complex genetic models, and the option to generate simulated datasets from these
models. This software offers both a graphical user interface, as well as command line
accessibility to facilitate the quick generation of a large simulated dataset archive. The
GAMETES software along with a detailed users guide is included as Additional files 2 and
3, respectively.

Additional files

Additional file 1: Supplemental Materials. Includes supplemental background, methods descriptions, and results.
Supplemental figures included in this document.

Additional file 2: GAMETES Software Version 1.0 Beta. The graphical user interface for the GAMETES software.
This software is open source and includes a User’s Guide. EDM and COR have been implemented into this version.

Additional file 3: GAMETES User’s Guide. A reference guide for using the GAMETES software.
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