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Abstract

Background: In bio-medicine, exploratory studies and hypothesis generation often
begin with researching existing literature to identify a set of factors and their
association with diseases, phenotypes, or biological processes. Many scientists are
overwhelmed by the sheer volume of literature on a disease when they plan to
generate a new hypothesis or study a biological phenomenon. The situation is even
worse for junior investigators who often find it difficult to formulate new hypotheses
or, more importantly, corroborate if their hypothesis is consistent with existing
literature. It is a daunting task to be abreast with so much being published and also
remember all combinations of direct and indirect associations. Fortunately there is a
growing trend of using literature mining and knowledge discovery tools in
biomedical research. However, there is still a large gap between the huge amount of
effort and resources invested in disease research and the little effort in harvesting
the published knowledge. The proposed hypothesis generation framework (HGF)
finds “crisp semantic associations” among entities of interest - that is a step towards
bridging such gaps.

Methodology: The proposed HGF shares similar end goals like the SWAN but are
more holistic in nature and was designed and implemented using scalable and
efficient computational models of disease-disease interaction. The integration of
mapping ontologies with latent semantic analysis is critical in capturing domain
specific direct and indirect “crisp” associations, and making assertions about entities
(such as disease X is associated with a set of factors Z).

Results: Pilot studies were performed using two diseases. A comparative analysis of
the computed “associations” and “assertions” with curated expert knowledge was
performed to validate the results. It was observed that the HGF is able to capture
“crisp” direct and indirect associations, and provide knowledge discovery on demand.

Conclusions: The proposed framework is fast, efficient, and robust in generating new
hypotheses to identify factors associated with a disease. A full integrated Web service
application is being developed for wide dissemination of the HGF. A large-scale study by
the domain experts and associated researchers is underway to validate the associations
and assertions computed by the HGF.
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Background
The explosion of OMICS-based technologies, such as genomics, proteomics, and phar-

maco-genomics, has generated a wave of information retrieval tools, such as SWAN

[1], to mine the heterogeneous, high dimensional and large databases, as well as com-

plex biological networks. The general characteristics of such complex systems as well

as their robustness and dynamical properties were reported by many researchers (i.e.,

[2,3]). These reports of designing scalable and efficient knowledge discovery tools can

further our understanding of complex biological systems. The burgeoning gap between

the effort and investment made to acquire the knowledge about complexities of bio-

logical systems is disproportionately large compared to the development of knowledge

discovery tools that can be used for effectively disseminating the acquired knowledge,

generating and validating hypothesis, and understanding the complex causal relation-

ships. Despite a plethora of efforts in reverse-engineering of complex systems to predict

response to perturbations, there is a lack of significant effort to create a higher level ab-

straction of such complex biological systems using sources of information other than

genetics data [2,4]. A high level view of complex systems would be very useful in gener-

ating new hypotheses and connecting seemingly unrelated entities. Such an abstraction

could facilitate translational research and may prove vital in clinical studies by provid-

ing a valuable reference to the clinicians, researchers, and other domain experts.

Disease networks can provide a high level view of complex systems; however, the

reported networks are mostly based on genetic and proteomic data [2,4]. Such net-

works could also be constructed based on literature data to incorporate a wider range

of factors such as side effects and risk factors. Generating disease-models based on lit-

erature data is a very natural and efficient way to better understand and summarize the

current knowledge about different high-level systems. A connection between two dis-

eases can be formalized by risk factors, symptoms, treatment options, or any other dis-

eases as compared to only common disease-genes. The relations between diseases can

provide a systematic approach to identify missing links and potential associations. It

will also create new avenues for collaborations and interdisciplinary research.

To construct a disease network based on literature data, it is imperative to have a scalable

and efficient literature-mining tool to explore the huge textual resources. Nevertheless,

mining of biological and medical literature is a very challenging task [5-7]. This can further

be complicated by challenges with the implementation of relevant information extraction,

also known as deep parsing, which is built on formal mathematical models. Deep parsing,

also known as formal grammar, attempts to describe how text is generated in the human

mind [5]. Deterministic or probabilistic context-free grammars are probably the most

popular formal grammars [7]. Grammar-based information extraction techniques are com-

putationally expensive as they require the evaluation of alternative ways to generate the

same sentence. Grammar-based information could therefore be more precise but at the

cost of reduced processing speed [5].

An alternative to the grammar-based methods are factorization methods such as

Latent Semantic Analysis (LSA) [8], and Non-negative Matrix Factorization (NMF)

[9,10]. Factorization methods rely on bag-of-word concept, and have therefore reduced

computational complexity. LSA is a well known information retrieval technique which

has been applied to many areas in bioinformatics. Arguably, LSA captures semantic

relations between various concepts based on their distance in the reduced eigen space [11].
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It has the advantage of extracting direct and indirect associations between entities.

A commonly used distance measure in LSA is the cosine value of the angle between the

document and query in the reduced eigen space.

Over the past two decades, medical text-mining has proved to be valuable in generat-

ing new exciting hypotheses. For instance, titles from MEDLINE were used to make

connections between disconnected arguments: 1) the connection between migraine and

magnesium deficiency [12] which has been verified experimentally; 2) between indo-

methacin and Alzheimer’s disease [12]; and finally 3) between Curcuma longa and ret-

inal diseases [13]. Hypothesis generation in literature-mining relies on the fact that

chance connections can emerge to be meaningful [7].

This paper designs and implements an efficient and scalable literature-mining frame-

work to generate and also validate plausible hypotheses about various entities that in-

clude (but not limited to): risk factors, environmental factors, lifestyle, diseases, and

disease groups. The proposed hypothesis generation framework (HGF) is implemented

based on parameter optimized latent semantic analysis (POLSA) [14] and is suitable to

capture direct and indirect association among concepts. It is easy to note that the over-

all performance and quality of results obtained through LSA-based systems is a func-

tion of the dictionary used. The concept of mapping ontologies was integrated with the

POLSA to overcome such limitations and to provide crisp associations. In particular,

the Medical Subject Headings (MESH) is used to construct the dictionary. Such a dic-

tionary allows a more efficient use of the LSA technique in finding semantically related

entities in the biological and medical sciences. This framework can be used to generate

customized disease-disease interaction networks, to facilitate interdisciplinary colla-

borations between scientists and organizations, to discover hidden knowledge, and to

spawn new research directions. In addition, the concept of statistical disease modeling

was introduced to compute the strongly related, related, and not related concepts.

The following section describes the proposed hypothesis generation framework and

its evaluation. Two case studies were performed to showcase the potential and utility of

the proposed method. Finally, the paper ends with a brief conclusion and discussions

about the strengths and weaknesses of the method.

Results and discussion
Hypotheses generation framework (HGF)

The HGF has three major modules: Ontology Mapping to generate data-driven domain

specific dictionaries, a parameter optimized latent semantic analysis (POLSA), and Disease

Model. The schematic diagram of the overall HGF framework is shown in the Figure 1(A).

The model is constructed using the POLSA framework, and it is based on the selected

documents and the dictionary (Figure 1C). Users can query the model and the output is a

ranked list of headings. These ranked headings are grouped into three sets (unknown fac-

tors, potential factors, or established factors) using the Disease Model module (Figure 1C

and 1D). Analyzing the headings in the three sets can facilitate hypothesis generation and

information retrieval based on user query.

Ontology mapping

MeSH is used to generate the dictionary in the POLSA model. The mapping of MeSH

ontology to create the dictionary for the POLSA significantly enhances the quality of
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Figure 1 Flow diagram of the hypothesis generation framework (HGF). A) In a medical and biological
setting, Ontology Mapping could use the Medical Subject Heading (MeSH) and generate a context specific
dictionary, which is one of the parameters of the POLSA model. Associated factors are ranked based on a
User Query which can be any word(s) in the dictionary. These factors are subsequently grouped into three
different bins (unknown factors, potential factors or established factors) based on our Disease Model. B)
Ontology Mapping to create domain specific dictionary. C) Parameter Optimized Latent Semantic Analysis
Module. D) Disease Model Module.
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results and provides a crisp association of semantically related entities in biological and

medical science. All MeSH headings are reduced to single words to create the context spe-

cific and data driven dictionary (see Figure 1B). For instance, “Reproductive and Urinary

Physiological Phenomena” is a MeSH term and is reduced to five words in the dictionary

(1. Reproductive, 2. and, 3. Urinary, 4. Physiological, and 5. Phenomena). In the filtering

step, duplicates as well as stop words such as “and” or words containing fewer than three

characters are removed. The final size of this dictionary is 19,165 words. Any dictionary

word could be used as a query to the HGF. For instance, the disease “stroke” is a query in

this study. The highly ranked factors with respect to a query-disease are considered factors

associated with that disease. Cosine similarity measure is used as a metric in the HGF.
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POLSA module

In order to develop an effective literature-mining framework to model disease-disease

interaction networks, generate plausible new hypotheses, and support knowledge-

discovery by finding semantically related entities, a Parameter Optimized LSA (POLSA)

[14] was re-designed and adopted in the proposed HGF framework.

In addition, a set of associated factors was selected to represent interaction between

diseases. Ninety-six common associated factors (see Table 1) were selected through a

literature review from numerous medical articles by two domain experts. As the first

step, a set of articles was selected by querying the PubMed database using a series of

diseases and factors. In the second step, the retrieved articles were manually reviewed

by domain experts and entities that were associated with diseases or factors were

selected. All articles considered for this analysis were peer reviewed articles. In

addition, some common diseases such as diabetes and depression were also included in

the set of 96 factors, as these are believed to be, in many instances, risk factors to other

diseases. Therefore, the set of 96 associated factors represents a wide range of factors

including generic factors such as depression and infection as well as specific factors

such as vitamin E. As the final step, the set was further revised by an expert in the

medical field. Using the improved POLSA technique [14], meaningful associations from

the textual data in the PubMed database are extracted and mined. Furthermore, the

factors are ranked based on their level of association to a given query.
Table 1 Potential risk factors and/or contributing factors selected by medical expert

Potential contributing factors Categorys

Asthma, autism, schizophrenia, HIV, immunological disorder, bipolar,
hypertension, osteoporosis, coronary heart disease (CHD), diabetes,
allergy, herpes, leukemia, breast cancer, lymphoma, hypothyroidism,
hyperthyroidism, insomnia, depression, viral infection, bacterial infection,
hepatitis B virus, retrovirus, enterovirus

Disease / medical condition

morning cortisol level, cholesterol level, head trauma, abdominal
adiposity, fracture, bone mineral density (BMD), body mass index (BMI),
pregnancy outcome, maternal influenza, postmenopause, mood, volume
of cerebrum, volume of hippocampus, volume of lateral ventricle, family
history, motor activity assessment

Sign / symptom

caffeine, hormone, aflatoxin, calcium deficiency or calcium overdose,
phosphorus deficiency or phosphorus overdose, magnesium deficiency
or magnesium overdose, sodium deficiency or sodium overdose, potassium
deficiency or potassium overdose, sulphur deficiency or sulphur overdose,
chloride deficiency or chloride overdose, chromium deficiency or chromium
overdose, copper deficiency or copper overdose, fluoride deficiency or
fluoride overdose, iodine deficiency or iodine overdose, iron deficiency or
iron overdose, manganese deficiency or manganese overdose, molybdenum
deficiency or molybdenum overdose, selenium deficiency or selenium
overdose, zinc deficiency or zinc overdose, vitamin A or Retinol, vitamin B1
or Thiamine, vitamin B2 or Riboflavin, vitamin B3 or Niacin, vitamin B5 or
Pantothenic acid, vitamin B6 or Pyridoxine, vitamin B7 or Biotin, vitamin, B9
or Folic acid, vitamin B12 or Cyanocobalamin, vitamin C or Ascorbic acid,
vitamin D or Calciferol, vitamin E or Tocopherol, vitamin K or Phylloquinone,
Cannabis, cocaine, bisphenol-A (PBA), diethylstilbestrol (DES), estradiol (E2),
oral contraceptive (OC)

Chemical compound

air pollutants, volatile organic compounds, Pesticide, chemical agents, wood
dust (exposure), silica dust (exposure), night shift work, outdoor workers,
indoor workers, exposure polycyclic aromatic hydrocarbons, heterosexual,
homosexual, Tobacco smoking, alcohol consumption, health education and
health promotion, addiction, lifestyle intervention, diet nutrition, stress, age
gender, breast-feeding

Environmental / life style and
behavioral factors
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Titles and abstracts from PubMed (for the past twenty years) for each of the 96 fac-

tors were downloaded in a local machine. On average there were 47,570 abstracts per

factor; the specific factors such as “maternal influenza” had fewer abstracts associated

with them (minimum of 160 abstracts/factor) and the more generic factors such as

“hormone” were associated with a greater number of abstracts (a maximum of 557,554

abstracts/factor). The complete collection was then used to construct the knowledge

space for the POLSA model. Using a query such as “Parkinson” or “stroke” the 96 fac-

tors were then ranked based on their relative level of associations to the query. The dis-

tribution of a set of associated factors with respect to a disease was modeled as a tri-

modal distribution: a distribution which has three modes. This is due to the fact that

some factors are known to be associated with the disease and have high scores. Simi-

larly, some factors are known to be unassociated to the disease and these have negative

scores; in addition, some factors may or may not be associated to the disease and these

have low similarity scores. Matlab was used to generate two tri-modal distributions

based on general Gaussian models for the two distributions obtained from queries

“stroke” and “Parkinson”. The model uses the following formulation to describe the tri-

modal Gaussian distribution:

f ¼ α1∗ exp � x� μ1ð Þ
σ1

� �2
( )

þ α2∗ exp � x� μ2ð Þ
σ2

� �2
( )

þ α3∗ exp � x� μ3ð Þ
σ3

� �2
( )

; ð1Þ

Where α1, α2 and α3 are the scaling factors; μ1, μ2 and μ3 are the position of the cen-
ter of the peaks, and σ1, σ2, σ3 control the width of the distributions. The goodness of

fit was measured using an R-square score.

Disease model

Using a disease model (see Figure 2), it was possible to map the mixture of three

Gaussian distributions into easy to understandable categories. The implicit assumption

is that if associated factors of a disease are well known, a large body of literature will be

available to corroborate the existence of such associations. On the other hand, if asso-

ciated factors of a disease are not well documented, the factors are weakly associated to

the disease with few factors displaying a high level of association (Disease X versus Dis-

ease Y as shown in the Figure 2). Since the distribution of association level of factors

(including risk factors) will be different in the two scenarios. In the first case (Disease Y)

the two dominating distributions are the factors that are associated and those that are not

associated with the disease; in the second case (Disease X) the dominating distribution is

that of the potential factors. In essence, if one accepts this assumption then the distribu-

tion of associated factors follows a tri-modal distribution and it will be intuitive to

measure the level of association for different factors with respect to a given disease.

Utilization of a disease model (by a tri-modal distribution) allows better identification of

the three sets of factors: unknown associations, potential associations and established

associations.

Separating the three distributions allows implementation of a dynamic and data-

driven threshold calculation. Hence, the parameters of the distributions can be used to
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Figure 2 Model for the distribution of associated factors of a given disease. If associated factors –
such as risk factors – of a disease are well known as in the case for Disease Y, then the two dominating
distributions are the factors that are associated and those that are not associated with the disease; if on
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distribution is that of the potential factors.
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model a cut-off threshold for the factors that are established, potential, or unknown.

This method is empirical and provides an intuitive approach to evaluate the results.

The score can be further optimized in a heuristic manner with utilization of a large-

scale and comprehensive ground truth set. Furthermore, the highly associated factors

to the disease are the well known factors; the hidden knowledge on the other hand

resides in the region where the associations are positive yet weak.

Model evaluation

Two diseases, namely, Ischemic Stroke (IS) and Parkinson’s Disease (PD), were used as

queries to the hypothesis generation system. The distribution of associated factors is

presented in the Figure 3. The results were compared with MedLink neurology [15], a

web resource used by clinicians. Comparative results were summarized in the Figure 4.

In the case of IS, most of the associated factors are identified by both systems; however

there is a set of factors that have only been identified by the proposed approach. In the

case of the PD, a large number of factors have been identified by both systems. How-

ever, there are a number of factors that have only been identified by the proposed HGF

and only a handful that are mentioned in the MedLink neurology which have positive

but low similarity score in the hypothesis generation framework.

The tri-modal distribution model is used to group the associated factors into different

levels. The cut-off values to differentiate between different association levels vary

slightly depending on the distribution of the similarity scores. The ideal decision

boundary can be found if a large number of ground truth cases are available; in this

situation the decision boundary is selected intuitively based on the shape of the distri-

butions. For example, in the case of IS, factors are considered highly associated if their

cosine score is greater than 0.3, factors are possible associated if their score is between

0.1 and 0.3 and are possibly not associated if their score is lower than 0.1. In the case
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of PD, factors are considered highly associated if their cosine score is greater than 0.2,

factors are possibly associated if their cosine score is between 0.1 and 0.2 and finally

the factors with scores between 0.05 and 0.1 are considered associated at low level,

factors with scores lower than 0.05 are considered possibly not associated with the

Parkinson’s Disease.

In the case of IS, the distribution of known associated factors are more shifted to the

right as compared to the factors in PD, hence the separation between the known and

unknown factors is more pronounced. In addition to that, associations at both extreme

levels (close to +1.0 and −1.0) are likely to be common knowledge; however, the hidden

knowledge tends to be captured at similarity scores that are low yet positive. Nonethe-

less, it is not realistic to compare the precise similarity score values in order to give

more importance to one factor versus another factor mainly because there is a systemic
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bias that is inherent to the biological text data and causes the generic factors to be an

underestimate of the true value (data not shown); hence a direct comparison would fail

in this case if no additional normalization steps are taken.

Figure 3 summarizes a comparative analysis of MedLink Neurology and HGF for IS

and PD. Overall in the case of IS, twelve factors were identified by both systems and

six factors were identified by the HGF. In the case of PD, twelve factors were identified

by both systems, ten factors were identified by the HGF and five factors were identified

by MedLink Neurology. But, these factors had a low association level in HGF. The five

factors were either very generic or were not exactly mapped in the set of the 96 factors,

hence a direct comparison could not be made. Finally, this small scale comparative ana-

lysis corroborates the hypothesis that HGF based on literature can better predict the

associated factors for diseases such as IS when the risk and associated factors are well

studied and documented. In both cases, MedLink, Neurology, and HGF predicted

twelve common associated factors; however, in the case of PD ten new factors were

predicted in comparison to six in the case of IS.
Discussion
De novo hypothesis generation can provide an approach on how we design experiments

and select the parameters for the study. Interestingly, associations detected by the pro-

posed framework can facilitate extraction of interesting observations and new trends in

the field. For instance, it was found that PD could possibly be associated with immuno-

logical disorders; this is an intriguing observation. This analysis also facilitates interdis-

ciplinary research and enhances interaction among scientists from sub-specialized

fields. A manual review of the literature is performed to find evidences for some of the

associations found only by the HGF; Table 2 summarizes these results.

There are three main limitations in the presented framework. We are currently in the

process of finding solutions for these limitations. 1) Manual selection of the factors cre-

ates bias in the dataset and also limits its scalability property. To alleviate this problem,

MeSH hierarchy will be used to generate the set of factors. MeSH comprises more than

25,000 subjects headings organized in an eleven-level hierarchy. 2) In the set of 96 fac-

tors, some factors were very generic and some very specific, therefore, there was a sys-

temic bias in the dataset which caused the score for generic factors to be an

underestimate of the true values and factors with limited information to be overesti-

mated (data not shown). To partially solve this technical difficulty, an improved

method based on local LSA is being developed in our lab. And finally, 3) looking only

at literature from the past twenty years was not sufficient for the HGF. The expansion
Table 2 A subset of factors identified only by the hypothesis generation framework

Query Factors Level of association (cosine score) References

Ischemic stroke Calcium/Minerals 0.13 [16,17]

Depression (morning cortisol level, mood,
stress)

0.48, 0.18, and 0.12 [18,19]

Vitamin E 0.12 [20]

Parkinson’s disease Immunological disorders 0.29 [21-27]

Hyperthyroidism 0.1 [28-32]
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of the literature is necessary based on the observation that the association between

head trauma and PD was significantly lower than expected.
Conclusion
Generating new hypotheses by mining a vast amount of raw unstructured knowledge

from the archived reported literature may help in identifying new research trends as

well as promoting interdisciplinary studies. In addition, the presented framework is not

limited to uncovering disease-disease interactions; any word from MeSH can be used

to query the system, and its associated factors can be identified accordingly. Disease-

disease interaction networks, interaction networks among chemical compounds, drug-

drug interaction networks, or any specific type of interaction network can be con-

structed using the HGF. The common basis for all these networks is the knowledge

embedded in the literature. Application of this framework is broad as its usage is not

limited to any specific domain. For instance, uncovering drug-drug interactions is valu-

able in drug development and drug administration, uncovering disease-disease inter-

action is important in understanding disease mechanism’s and advancing biology

through integrated interdisciplinary research. Even though the framework is not limited

to diseases, in this study two neurological diseases were used to test the system and

demonstrate the power and applicability of the framework.

In addition to addressing the limitations of the framework, work is in progress to ex-

pand the HGF framework to allow the user to generate disease networks based on a

number of user-defined queries. Such customized networks can be valuable to a wide

range of scientists by promoting a faster identification of associated factors and detec-

tion of disease-disease interactions. Disease networks based on genetics and proteomics

data display many connections between individual disorders and disease categories

[2,4]. Therefore, as expected each human disorder does not seem to have unique ori-

gins or be independent of other disorders. To uncover potential links between two dis-

orders knowledge extraction from medical literature could be greatly beneficial and

reliable.
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