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Abstract

Background: Microarray data sets provide relative expression levels for thousands of
genes for a small number, in comparison, of different experimental conditions called
assays. Data mining techniques are used to extract specific information of genes as
they relate to the assays. The multivariate statistical technique of principal
component analysis (PCA) has proven useful in providing effective data mining
methods. This article extends the PCA approach of Rollins et al. to the development
of ranking genes of microarray data sets that express most differently between two
biologically different grouping of assays. This method is evaluated on real and
simulated data and compared to a current approach on the basis of false discovery
rate (FDR) and statistical power (SP) which is the ability to correctly identify
important genes.

Results: This work developed and evaluated two new test statistics based on PCA
and compared them to a popular method that is not PCA based. Both test statistics
were found to be effective as evaluated in three case studies: (i) exposing E. coli cells
to two different ethanol levels; (ii) application of myostatin to two groups of mice;
and (iii) a simulated data study derived from the properties of (ii). The proposed
method (PM) effectively identified critical genes in these studies based on
comparison with the current method (CM). The simulation study supports higher
identification accuracy for PM over CM for both proposed test statistics when the
gene variance is constant and for one of the test statistics when the gene variance is
non-constant.

Conclusions: PM compares quite favorably to CM in terms of lower FDR and much
higher SP. Thus, PM can be quite effective in producing accurate signatures from
large microarray data sets for differential expression between assays groups identified
in a preliminary step of the PCA procedure and is, therefore, recommended for use
in these applications.

Introduction
It is well known that living organisms have complicated gene structures. However,

while major advancements have been made in recent years, understanding of the biolo-

gical functions of each individual gene is still quite limited. Active research is strongly

focused on understanding the behavior of genes and as well as the highly complex

metabolism and regulatory network inside living cells [1]. This effort falls under a

molecular biological field called functional genomics (FG). There are at least three
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areas in which experimental techniques are widely applied in FG: transcriptomics, pro-

teomics, and metabolomics [2]. A combination of leading scientific techniques as well

as powerful mathematical and statistical tools for data analysis makes the task of iden-

tifying important transcriptome, proteome, and metabolome corresponding to a biolo-

gical effect promising. Typical studies in these areas involve the identification of

possible behavior and responses of species under various genetic backgrounds as well

as environmental factors (i.e. assay).

There are different high technology techniques applied in FG field to advance under-

standing of the transcriptional genetic response of many organisms in various environ-

mental perturbations [1]. One of the techniques that have been adopted in this field is

a multiplex technology called DNA microarray [3]. A new technique that is becoming

popular and will probably displace array-based measurement in FG is next-generation

sequencing (RNAseq) [4,5]. These techniques have the ability to generate data sets that

consist of expression levels of thousands of genes, providing a wealth of information

that is hidden by high noise levels, low signal levels, and a relatively small number of

experimental units to the number of genes studied. More specifically, since the data

set containing the gene expression measurements consists of a lot more genes than

assays, analytical techniques are needed to provide accurate gene identification under a

large number of gene candidates that is much greater than the number of experimental

runs.

To achieve this objective, traditional statistical methods, such as principal component

analysis (PCA) [2-8], the focus of this article, are being retrofitted to provide effective

statistical inference in this challenging context of microarray data analysis. Other

methods used in this field included linear model analysis [9-14], Bayesian method

[15-17] and network component analysis (NCA) [18-20]. Thus, statistics is playing a

critical role through the development of methodologies that give high statistical power

(SP) (i.e., accurate identification), and low false discovery rate (FDR)[21] (i.e. low misi-

dentification). To this end, this article introduces two new PCA based statistics for

determining gene rank for differential expression between two PCA identified assay

groups. This work extends the technique introduced by Rollins et al.[2] that deter-

mines gene rank for a single PCA identified assay group. Thus, the proposed method

(PM) in this work is aimed at finding the genes with high expression levels in one

group and low expression levels in the other group.

The PM uses PCA to first establish the existence of the assay groupings of interest.

Then using the results that established the grouping, the differential contribution for

each gene is determined using a statistic based on eigenvalues. This article proposes

and evaluates two statistics. The first one is the group averaged difference of eigenva-

lue linear combinations that we call Tdiff. The second one divides Tdiff by its estimated

pooled standard deviation that we call Tscaled. The genes are ranked based on the lar-

gest absolute value of these statistics. The PM is evaluated against the ranking deter-

mined by the well known Student’s t-statistic [14] that we call Tpooled in this work. We

will refer to Tpooled as the current method (CM) which is actually a subclass of the PM

that weighs each assay equally in each group. Note that for the CM the assay members

in each group is not established based on the data but by á priori considerations. In

contrast, for the PM the data drives the assay weight as well as group assignment of

the assays.
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The CM and PM are applied in the following three case studies to compare their

effectiveness (i.e., power) in identifying assay-specific signature: (i) exposure of E. coli

cells to two different levels of ethanol concentration [22]; (ii) the use of myostatin as

inhibitor of skeletal muscle growth for five 5-weeks-old myostatin and non-treated

mice [10]; and (iii) a simulation study based on statistical properties of the second case

study.

This work is organized into the following sections. The Background Section gives a

brief review of PCA and connects it to our application in FG’s data analysis. This sec-

tion is followed by the Methods Section that derives and presents the test statistics of

the CM and PM. These test statistics are evaluated and compared in three studies in

the Results and Discussion Section. The final section summarizes the results and gives

concluding remarks on the contribution of this work.

Background
The microarray data set is given as an m by n matrix X where n is the number of

assays expressed along columns (i.e. variables) and m represents the number of genes

expressed along rows. The cells in this matrix are given as xij which is the expression

level of the ith gene for the jth assay (i.e. condition). Principal component analysis

(PCA) is a multivariate technique that mathematically transforms (rotates) the original

coordinate system to a new orthogonal coordinate system based on correlations among

the variables [23]. The principal components (PCs) are eigenvectors generated from

either the covariance matrix (scaled sum of squares and cross products) or the correla-

tion matrix (sums of squares and cross products from standardized data) of the vari-

ables involved. They are used to construct n linear combinations of the n variables

that can be thought of as n pseudo variables [23]. A PC is rank ordered by the amount

of variation in the original data set that it captures.

An illustration is given in Figure 1 that shows a visual representation of a two-

dimensional data system (x) and a rotated data system (z). As shown, the new coordi-

nated system points z1 in the direction with the greatest spread in the data. The other

variable, z2, points in a direction that is orthogonal to z1, but also seeks to maximize

spread in this direction. The first PC determines z1 and the second PC determines z2.

A data matrix of rank n will give n PCs that are linear combinations of the variables in

Figure 1 Visual representation of the original data system and the rotated data system. The figure
represents the original data system on the horizontal and vertical axis while the new rotated data system
is represented as z1 and z2. Variance-covariance matrices for original data system and rotated data system
are shown on the right of the figure.
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the original data matrix that can be described as n pseudo variables. The goal in this

application of PCA is to obtain at least one pseudo variable that represent the biologi-

cal behavior of interest. This can be a PC that represents a small portion of the total

variation making it a potentially very powerful data mining approach.

The top of Figure 2 shows the relationship between the original data matrix, X, the n

by n PC loading matrix, L, and the m by n pseudo data matrix, called the scores

matrix, S. The PCs derived from X are called eigengenes (EG) because the elements of

S represent pseudo values for gene expression. In Figure 2 the bottom set of matrices

are derived from the transpose of X which is an n by m matrix. In this case the loading

matrix is m by n in dimension and the scores matrix is n by n in dimension. The PCs

derived from the transpose of X are called eigenassays (EA) because the elements of

the scores matrix represent pseudo assays. The proposed method (PM), following Roll-

ins et al. [2], uses both EG and EA approaches to develop signatures sets of ranked

genes. In the next section we derive the EG and EA statistics for determining gene

contribution for the PM.

Methods
Eigengene Contribution Approach

The first step in the eigengene (EG) approach of the PM is to standardized the ele-

ments of X to give the standardized matrix Z with each element equal to

x j , where x j and sj are the sample mean and sample standard deviation of the data

Figure 2 Visual representation of data, loading, and score matrices for X and XT. The upper part of
this figure represents the EG procedure while the bottom part of this figure represents the EA procedure.
Note that dimension of the data matrix used for EG and EA and different.
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in column j, respectively. The following distributional assumptions are made for sim-

plicity and are taken as the scope of this work:
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where sij
EG is the score for the ith gene using the jth vector of EG loadings,  ij

EG is the

ith loading for the jth EG vector, and gijk
EG is the contribution for the ith gene, on the kth

assay from the jth EG loading vector. Let A = Group A with nA assay members and B =
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where k’ and k’’ are the assay members in Groups A and B, respectively. Finally, the

EG differential gene contribution between Groups A and B for the ith gene from the

jth EG loading vector is given as

dg g gij
EG

ij
EG

ij
EGA B= − (5)

The basic difference between the method in Rollins et al. [2] and this extension is

that work developed gene signatures for individual groups using equations of the form

given by (3) and (4) and this work uses equation of the form given by Eq. 5.

Eigenassay Contribution Approach

As stated above, the EA approach uses the transpose of X as the data matrix treating

the genes as the variables. Following Rollins et al. [2], XT is not standardized in the EA
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approach as in the EG approach. The elements of scores matrix, SEA, are determined

from Eq. 6 as follows:
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where sij
EG is the score for the ith assay using the jth vector of EA loadings,  ij

EG is

the ith loading for the jth EA vector, and gijp
EA is the contribution for the pth gene, on

the ith assay from the jth EA loading vector. As above, for A = Group A with nA assay

members and B = Group B with nB assay members with no members in common with

Group A, we obtain the contribution expressions as follows. The mean contribution

for pth gene from the jth EA loading vector for Groups A and B are

g
n

x
n

gjp
EA pj

EA

A
pi

over i A
i jp
EA

over i

A = =∑ ∑
′

′
′

′

1
(7)

g
n

x
n

gjp
EA pj

EA

B
pi

over i B
i jp
EA

over i

B = =∑ ∑
′′

′′
′′

′′

1
(8)

respectively, where i’ and i” represent the assay members in Groups A and B, respec-

tively. Finally, the EA differential gene contribution between Groups A and B for the

pth gene from the jth EG loading vector is given as
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Test Statistics

The next step after deriving the gene contribution equations is to define the decision

or test statistics based on these derivations. Tdiff for EG and EA are equivalent to Eqs.

5 and 9, respectively. More specifically,
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The variances for the components of these equations are given below by treating the

loadings as fixed variables (making these expressions approximations):
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Thus, combining Eqs. 10-11, the variances for Tdiff
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The scale test statistic in the EG case can now be given by dividing Eq. 10 by the

estimated standard deviation using Eq. 16:
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2 are the sample variances for the standardized expression levels
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Similarly, the scaled test statistic in the EA case can also be given now by dividing

Eq. 11 by the estimated standard deviation using Eq. 17:
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sAxp
2 and sBxp

2 are the sample variances for the un-standardized expression levels for

Groups A and B, respectively, corresponding to the pth gene. Note that Tscale
EA

JP
is inde-

pendent PCA loadings and thus, does not benefit from PCA. In actuality, Eq. 21 is the

commonly known Student’s t-statistics [14]; thus,

T Tpooled p scale
EA

JP, = (23)

From Eq. 23 it is clear that scaling the EA differential contribution is not providing

any new technique in PCA and therefore is not a useful result under the PM. Thus,

we do not propose scaling for the EA approach.

The steps for applying the PM are as follows:

1. Standardize X to obtain Z.

2. Obtain the loading and scores matrices for X (EG) based on correlation.

3. Obtain the loading and scores matrices for XT (EA) based on covariance.

4. For each of the n EG loading vectors, plot its loadings against the assay number.

Select the plot(s) that separate the assays into desired or interesting groups for

further analysis.

5. For each n EA score vectors, plot its scores against the assay number. Select the

plot(s) that separate the assays into desired or interesting groups for further

analysis.

6. For each selected EG loading vector in Step 4, using Z and Eq. 5 determine the

differential EG contribution for each gene.

7. For each selected EA loading vector in Step 5, using X and Eq. 9 determine the

differential EA contribution for each gene.

8. For each case in Steps 6 and 7, rank order the differential contribution and then

table (with the corresponding gene) and plot these values against the rank. These

signature plots can be used to determine where to make cutoffs as described in

Rollins et al. [2].

In the next section we evaluate the proposed test statistics that we have derived in

this section against a current method that uses the Student’s t-test statistic. This work

also includes an evaluation to determine when it is better to choose Tdiff or Tscale.

Results and Discussion
The best choice for a test statistics is the one that has the highest statistical power (SP)

and the lowest false discovery rate (FDR) [21]. This section presents three case studies

to evaluate the proposed test statistics against one another and against a current

method (CM) that uses Tpooled. The first study revisits the single group analysis in Roll-

ins et al. [2] involving exposure of E. coli cells to two different levels of ethanol con-

centration [2,22]. The second study applies the proposed method (PM) to data from
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Steelman et al. [10]. This data set involves the use of myostatin as an inhibitor of ske-

letal muscle growth for five 5-weeks-old myostatin (called “mutant”) and non-treated

(called “wild-type”) mice in each group. The third study is a mathematically simulated

data study using characteristics of the data from Study 2.

Exposure of E. coli cells Study

The data set for the first case study contains E. coli cells that were exposed to two dif-

ferent ethanol concentrations. In Rollins et al.[2] ranked signatures were obtained for

non-ethanol (i.e., non-treated) (Group A) and ethanol (Group B) separately. Thus,

these signatures ranked the genes based on their contribution to the score of their

group. However, the goal of this work is to obtain a ranked signature of the genes that

is based on the difference of gene contribution between the two groups. Therefore,

under this objective, genes with high contribution in both groups would not be ranked

high; whereas, genes with low contribution in one group and high contribution in the

other group could be ranked high based on the greatest negative, positive, or absolute

difference, depending on the interests of the experimenter. For this study, we ranked

the genes based on absolute difference for evaluative purposes.

The results of this study using the PM are given in Table 1 and Figure 3. These

results were obtained from the first PC for an EA analysis (since it indicated the stron-

gest separation) using Tdiff
EA

i1
only to determine differential gene contribution. This PC

was selected, as supported by Figure 3, because it separated the two groups in the

score plot quite well. The plot on the right in Figure 3 gives the differential contribu-

tion calculated from Tdiff
EA

i1
by rank with the rank decreasing with increasing value on

the horizontal axis. As this figure shows, the top genes clearly standout by their dis-

tinct separation and how they line up almost vertically along the vertical axis. Table 1

gives the top 20 genes that expressed the most differently between ethanol treated and

non-ethanol treated groups. This list contains some of the top genes in the ethanol

and non-ethanol signatures in Rollins et al.[2] as indicated. In addition, it contains

genes that were not ranked very high in either signature. However, note that each gene

is at opposite ends of the signatures in Rollins et al.[2] in support of their differential

significance. Thus, the PM has potentially found genes that might express relatively

low within assays of similar conditions but quite differently between assays of different

Table 1 Top 20 genes that showed distinct difference between ethanol and non-ethanol
along with their ranking

Rank Gene Name EtOH Rank* Non-EtOH Rank* Rank Gene Name EtOH Rank* Non-EtOH Rank*

1 b2387 729 2001 11 argT 925 2330

2 ybdO 558 2182 12 argH 2 4286

3 b1455 959 2120 13 ycbE 317 3626

4 gltD 2884 151 14 b0538 328 2658

5 appY 360 2457 15 citB 372 2642

6 caiA 5 3810 16 wbbH 2952 408

7 b0960 2664 787 17 ccmD 2605 1083

8 yaiD 1 4284 18 agaA 885 2483

9 b1815 3178 43 19 ymcC 568 2587

10 ydaK 375 2548 20 abc 389 2705

The “*” gives the rank in the ethanol and non-ethanol signature in Rollins et al. [2].
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conditions. Follow up experiments would be necessary to verify these findings which

are beyond the scope of this work.

Skeletal Muscle Growth in Mice Study

The second study is a data set that involved the use of myostatin as inhibitor of skele-

tal muscle growth for five 5-week-old myostatin (called “mutant”) and non-treated

(called “wild-type”) mice in each group. A powerful method for ranking genes and

determining the size of signatures is the Q-method developed by Storey and Tibshirani

[12]. The Q-method uses Tpooled and a novel method for achieving high SP and low

FDR. The Q-method first uses Tpooled to obtain p-values then convert to q-values to

determine where to cut-off signatures based on a maximum q-value. Given that the q-

value is related to the p-value, one could also rank genes based on p-values or their

Tpooled values which are inversely related. Since we are primarily interested in ranking

genes in this work, we will compare the techniques based on the abilities of Tpooled and

the PM to find top ranked genes.

PCA results for PM are given in Figure 4. These results were obtained from the first

PC for an EA analysis (since it indicated the strongest separation) using Tdiff
EA

i1
only to

Figure 3 EA1 Score plot (a) and gene signature plot (b) for the E. coli in ethanol and non-ethanol
study. The score plot shows excellent separation for the non-ethanol group (A) and ethanol group (B). For
the signature plot on the right, the rank decreases as the number increases. The top ranking genes seen
on the upper left in plot (b) shows distinct separation as an evidence of the vertical line gap between the
genes.

Figure 4 EA1 Score plot (a) and gene signature plot (b) for the skeletal muscle growth in mice
study. The score plot shows excellent grouping for the mutant mice (A) and the wild-type mice (B) assays.
For the signature plot on the right, the rank decreases as the number increases. The top ranking genes
seen in plot (b) show distinct separation by how they line up almost vertically along the vertical axis
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determine differential gene contribution. This PC was selected, as supported by Figure

4, because it separated the two groups in the score plot quite well. As shown by the

Tdiff
EA

i1
plot on the right, the top genes clearly standout by their distinct separation and

by how they line up along the vertical axis. The top genes that the PM identified were

genes identified in Steelman et al. [10]. In addition, it also identified genes that were

not previously identified in their work.

A comparison of the PM and the CM is given in Table 2. In this table, the top 200

genes of the CM are selected as the base set. The number and percentage of the top

10, 20, . . ., 100 genes of the PM in this set are given. For an example, if one will to

compute the percentage of top 10 genes found using the PM in comparison to the 200

genes found using CM (base set). The computation can be done simply dividing the

number of genes in common between two groups by 10. This analysis is represented

by the first three columns in the table. In addition, this table gives results that switch

the roles of the PM and CM. More specifically, the top 200 genes of the PM are

selected as the base set and the number and percentage of the top 10, 20, . . ., 100

genes of the CM in this set are determined. This analysis is represented by the last

three columns in Table 2. With the CM as the base set, the results range from 70% of

the top 10 genes to 22% of the top 100 genes of the PM being in set of the top 200

genes of the CM. Similarly, with the PM as the base set, the results range from 50% of

the top 10 genes to 22% of the top 100 genes of the CM being in the set of the top

200 genes of the PM. Thus, while there is agreement between the two approaches, the

lack of agreement warrants further investigation on the best choice of method based

on the criteria of highest SP and lowest FDR. Our last study is a Monte Carlo simula-

tion data study to compare these two approaches under these criteria.

Simulation Study

As stated above, the purpose of the simulated data study is to evaluate and compare

the PM and CM to identify genes with significant differential effects. We simulated

several data sets based on the statistical properties of the data matrix from the second

study. More specifically, each data matrix contained 40,000 genes with 10 assays of five

Table 2 Top ranked genes of one method in the top 200 genes of the other method in
study (ii)

x x in top 200 CM
genes

%x in Top 200 CM
genes

y y in top 200 PM
genes

%y in Top 200 PM
genes

10 7 70 10 5 50

20 9 45 20 7 35

30 10 33 30 7 23

40 10 25 40 11 28

50 11 22 50 15 30

60 17 28 60 17 28

70 19 27 70 17 24

80 20 25 80 19 24

90 20 22 90 20 22

100 21 21 100 21 21

This table shows how many of the top genes for one method are in the top 200 genes of the other method with × = #
of top PM genes and y = # of top CM genes. For example, the result for × = 30 means that 10 (33%) of the top 30
genes of the PM where in the top 200 genes of the CM.
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samples in each group. The distribution for the simulated data can be described as

follows:

x N i jij xx

indep

ij~ , , ,  2( ) ∀ (24)

such that


 

x j

i j

otherwise
=

+ > = … =⎧
⎨
⎩

5 3

5 3

0 1 200 1 5. ,

. ,

; , , ; , ,
(25)

Thus, 200 of the genes for each of the assays in Group A had the largest mean and

were significantly different than all the other genes that had a mean of 5.3. The study

will evaluate the ability of the CM and PM to identify these 200 genes when the var-

iance for all the data in the data matrix is the same (Part 1) and when the variance dif-

fers from gene to gene (Part 2). Each result in the simulation study is an average of

five trials. For simplicity, all the results in this study will be based on eigengene (EG)

principal components (PCs) as it gave strong separation of the groups.

Simulation Study – Part 1

In the first simulation study we evaluated the techniques under different levels of  x
2

with δ = 1. (Note that for, δ = 1, the value of sx is the same as the coefficient of varia-

tion defined as sx/δ.) There were seven levels of  x
2 that ranged from 0.04 to 1.0.

Thus, the range of the coefficient of variation was also 0.2 to 1.0. The PCA results for

one trial of the PM at the lowest level of  x
2 are given in Figure 5. As shown, the

loading plot indicates excellent separation of Group A and Group B indicating that

PCA was able to pick up a difference of δ = 1 quite well for 200 of the 40,000 genes

using the Tdiff
EA

i1
test statistic. The signature plot reveals a distinct signature for these

genes as evidenced by the large gap. For this case the percents of the 200 significantly

different genes (SDG) ranked in the top 200 by Tdiff
EA

i1
, Tscaled

EA
i1

and Tpooled
EA

i
, were

100.0%, 99.9% and 90.9%, respectively. These percentages for all the cases for this part

of the simulation study for these three test statistics are given in Figure 6. In addition,

this figure gives results for percentages of the SDG in the top 300 and top 400 for

Figure 5 Plot of Loading 1(a) and gene signature (b) when δ = 1 and s = 0.20. Plot (a) shows a
clean separation of Group A from Group B. Plot (b) shows the nice assay-specific gene signature
plotted against their rank.
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these test statistics. As shown, Tdiff
EG has the best performance, followed closely by Tdiff

EG

at the extremes and poorly by CM statistic Tpooled. Thus, when the variability of the

assays is similar, Tdiff
EG appears to be the best choice for identifying the most significant

genes.

Simulation Study – Part 2

In the second simulation study we evaluated the techniques by varying levels of  xi
2

for each gene and two levels of δ: 1 and 3. More specifically, the distribution for  xi

was log normal with mean 0.37 and variance 0.372. Thus, for each data table a  xi

was randomly generated for each gene i, i = 1, ..., m, and then ten simulated expression

values, one for each assay, were generated according to Eqs. 24 and 25 for the given

level of δ.

Identification results for this part of the study are given in Figure 7 as the percent of

the SDG that are in the top 200 and top 400 ranks determined by the three test statis-

tics. The best performing method this time is Tscaled
EG , followed by Tpooled , and then by

Tdiff
EG . At δ = 3, all three methods are close but spread out at δ = 1. While the spread

Figure 6 Comparison of three test statistics in term of % of identified for simulation study. This plot
shows the percent of each method in accurately identified the 200 SDG. The plot of the left shows a
comparison between Tscaled

EG and Tpooled. While the plot of the right shows a comparison between Tdiff
EG

and Tscaled
EG .

Figure 7 The % of SDG in the top ranked genes for δ = 1 (left) and δ = 3 (right). This figure shows
percent of the 200 significantly different genes (SDG) that are in top 200, top 300, and top 400 selected at
two different values of δ for the Tdiff, Tscaled, Tpooled for Part 2 of the simulation study.
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at δ = 1 for Tscaled
EG and Tpooled is significant, the spread for Tpooled and Tdiff

EG is quite

large. Thus, Tdiff
EG does not appear to be the best choice when δ is small and there is

significant variation between the genes across the assays. Since Tscaled
EG consistently did

the best, when the gene variation is significant across the assays, it is our

recommendation.

Our final analysis in this study evaluated performance in signature size determina-

tion. The CM is the Q-method developed by Storey and Tibshirani [12] that uses the

p-values of the t-test (i.e., Tpooled) and cuts the list off at a maximum Q-value, com-

monly 0.05, the value used in this analysis. The PM is the Inflection Method (IM) that

is described in Rollins et al.[2] that cuts the list off at the greatest change in the signa-

ture plot of the ranked genes. The results are from Part 1 of the simulation study with

a constant  xi for all the genes in a data table.

The results of this analysis are given in Figure 8. The plot gives the signature size

(SS) (i.e., the number of genes in the signature) and the SDG against xi . Statistical

Power (SP) is seen by the height of the SDG curve. As typical, SP, as indicated by this

line, decreases as  xi increases. Hence, the PM signature performance is seen to be

significantly better than the CM in terms of SP. An indication of the false discovery

rate (FDR) of the methods can be compared by the separation of their two lines in

Figure 8. These lines for the PM are very close except at the highest levels of xi . This

Figure 8 Signature Size (SS) performance for the CM and PM. The plot gives the signature sizes (i.e.,
number of genes the method determines as being significant) and the number of the 200 significantly
different genes (SDG) in the signatures for the CM and PM. Higher statistical power (SP) is observed by the
higher height of the SDG plot and the higher false discovery rate (FDR) is observed by the greater
separation of the lines of the same color.
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indicates that the number of insignificant genes in the signatures of the PM is quite

small and hence, has a small FDR. The FDR of the CM appears to be much higher for

low values  xi and the SS drops to zero relatively quite fast so that performance at

low  xi is not too meaningful since there are very few genes in the signature. Thus,

the IM with the test statistics of the PM for determining signature cutoffs appears to

have merit as a viable approach.

Conclusion
This work proposed a new principal component analysis (PCA) method for analyzing

large dimensional data set such as gene expressions data set. The strength of the pro-

posed method (PM) comes from its data driven nature. It is data driven because the

relationships obtained by PCA are only determined by those that exist in the data.

Thus, no predetermined grouping or any á priori knowledge has influence on the prin-

cipal components (PCs) obtained. After obtaining the PCs, they are used to match and

verify the existence of the assay groups of interests. From the PCs that have the stron-

gest match, the contribution of each gene providing the greatest differential expres-

sions are identified and ranked. Thus, a PM signature is not just a difference of

expression levels for genes but differences in a direction verified to have the character-

istics of interests. This approach distinguishes PM from methods that do not form

groups on the basis of data analysis and develop signatures from the differences

between two groups in the original data space. One should be cautioned that as the

number of members in the groups becomes smaller, the probability a particular order

of the assays increases. Thus, for a small number of assays, one should require greater

separation of groups for high confidence in the true existence of the groups.

Following Rollins et al. [2], the PM develops test statistics treating the assays as vari-

ables (eigengenes, EG) and the genes as variables (eigenassays, EA). These test statistics

are linear combinations of these variables (i.e., pseudo variables) as determined from

the elements of the eigenvectors. One test statistic, called Tdiff is the difference of the

average expression levels between two groups of pseudo variables. The other test sta-

tistics, called Tscaled, is Tdiff divided by the estimated pooled standard deviation. We

compared the performance of these two test statistics with the common and popular

Student’s t-statistic, Tpooled that we called the current method (CM). Two real data stu-

dies provided evidence in support of the PM as a viable technique. A simulation study

provided the strongest supportive evidence for the use of Tdiff when the gene variability

is fairly uniform throughout a data table and for Tscaled when the variability is not fairly

uniform. However, one should note that this study was done under a particular set of

model assumptions. The most critical one is independence. If the data have a particu-

lar correlation structure, which is not uncommon given that all the genes in an assay

experience the same set of conditions, the results in this article may not be supported.

Future work will include evaluating the PM under the kinds of correlation structures

found in real expression data. Finally, with the PM test statistics, the inflection method

(IM) introduced by Rollins et al. [2], indicated strong promise in determining signature

cutoffs in terms of statistical power and false discovery rate (FDR) as compared to CM.

We are applying the PM in a variety of applications involving biological as well as

physical phenomenon, with promising results. These applications include: 1. Nitric
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Oxide- and S-nitrosoglutathione-responsive genes in E-coli; 2. analysis of DNA micro-

array data for juvenile small round blue cell tumors; 3. analysis of metabolite data

from corn tissues (silk, pollen, coleoptile, and seedlings) for differential expression

levels between the wild type and genetic mutations; 4. analysis of spectroscopy data for

super alloys; and 5. the enhancement of nondestructive tests for ceramic armor in the

resistance of ballistic penetration. Thus, the PM has potential application in a variety

of situations where differential analysis is needed on large data sets with a relatively

small number of different conditions or assays. It appears to have promise for these

applications for high SP and low FDR as compared to other currently available

methods.
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