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Abstract

Background: The tissue specificity of gene expression has been linked to a number of significant
outcomes including level of expression, and differential rates of polymorphism, evolution and
disease association. Recent studies have also shown the importance of exploring differential gene
connectivity and sequence conservation in the identification of disease-associated genes. However,
no study relates gene interactions with tissue specificity and disease association.

Methods: We adopted an a priori approach making as few assumptions as possible to analyse the
interplay among gene-gene interactions with tissue specificity and its subsequent likelihood of
association with disease. We mined three large datasets comprising expression data drawn from
massively parallel signature sequencing across 32 tissues, describing a set of 55,606 true positive
interactions for 7,197 genes, and microarray expression results generated during the profiling of
systemic inflammation, from which 126,543 interactions among 7,090 genes were reported.

Results: Amongst the myriad of complex relationships identified between expression, disease,
connectivity and tissue specificity, some interesting patterns emerged. These include elevated rates
of expression and network connectivity in housekeeping and disease-associated tissue-specific
genes. We found that disease-associated genes are more likely to show tissue specific expression
and most frequently interact with other disease genes. Using the thresholds defined in these
observations, we develop a guilt-by-association algorithm and discover a group of |12 non-disease
annotated genes that predominantly interact with disease-associated genes, impacting on disease
outcomes.

Conclusion: We conclude that parameters such as tissue specificity and network connectivity can
be used in combination to identify a group of genes, not previously confirmed as disease causing,
that are involved in interactions with disease causing genes. Our guilt-by-association algorithm
should be useful for the discovery of additional modifiers of genetic diseases, and more generally,
for the ability to associate genes of unknown function to clusters of genes with defined functions
allowing for novel biological inference that can be subsequently validated.
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Background

The understanding of the biology underlying phenotype
is still a limiting factor in delivering the promise of high
throughput genomics. However, as new datasets are avail-
able, new data mining methods are developed and the
goal appears ever more achievable.

Among the high-throughput technologies, gene expres-
sion profiling has led to the identification of genes that
perform in a coordinated manner allowing researchers to
reasonably predict the role of genes for which no biologi-
cal function was attributed, based on the known perform-
ance of other group members. These predictions rely on
the guilt-by-association heuristic, widely invoked in
genomics and with proven applicability [1].

At the same time, a comprehensive atlas of transcribed
genes in humans has revealed that genes may be split into
two broad categories based on the number of tissues they
are expressed in [2]. Genes that are expressed in many tis-
sues are designated as housekeeping (HK) while those
that are expressed in few tissues are termed tissue-specific
(TS).

Tissue specificity has subsequently been linked to a
number of significant outcomes including level of expres-
sion [3], ability to detect cis-acting and trans-acting
expression- quantitative trait loci [4], and differential rates
of polymorphism [5], evolution [6] and disease-associa-
tion [7]. In addition, we [8] and others [9,10] have dem-
onstrated the importance of exploring differential gene
connectivity in the identification of disease-associated
genes using microarray gene expression data. More
recently, the combination of text mining with gene inter-
action network analysis has been proposed to infer
unknown gene-disease associations [11].

Furthermore, genes with a high degree of connectivity
(network hubs) have been shown to be conserved across
species [12] and their knockout phenotype more likely to
be lethal [13]. Finally, based on sequence conservation
across species, a computational algorithm has been devel-
oped to identify genes associated with disease [14]. How-
ever, no study relates gene interactions with tissue
specificity and its subsequent likelihood of association
with disease.

To address this situation, we mined three large independ-
ent datasets and classified transcribed human genes based
on transcript abundance, tissue specificity, gene connec-
tivity and disease association. We discuss how these fac-
tors relate to each other and, based on this new
knowledge, implement a simple yet powerful guilt-by-
association algorithm that allows us to identify several
candidate genes that, while not previously associated with
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disease, may impact the development of diseases, includ-
ing cancers, and hypothesize that many other members of
this list will ultimately be confirmed as modifiers of vari-
ous genetic diseases.

Methods

Data resources, edits and nomenclature

We merged three large datasets as follows: Firstly, we
accessed expression data drawn from massively parallel
signature sequencing (MPSS) covering 182,719 tag signa-
tures across 32 tissues [2]. Tissues represented on the
MPSS data included nine different central nervous system
(CNS) areas (amygdale, caudate nucleus, cerebellum, cor-
pus callosum, fetal brain, hypothalamus, thalamus, spinal
cord, and pituitary gland) and 23 non-CNS organs (adre-
nal gland, bladder, bone marrow, heart, kidney, lung,
mammary gland, pancreas, placenta, prostate, retina, sali-
vary gland, small intestine, spleen, stomach, testis, thy-
mus, thyroid, trachea, uterus, colon, monocytes and
peripheral blood lymphocytes). A total of 18,677 unique
genes were represented on the MPSS data and the number
of expressed genes per tissue averaged 8,943 and ranged
from 5,845 in pancreas to 12,267 in testis.

Secondly, we downloaded a set of 55,606 true positive
interactions among 7,197 genes that were defined from
functional studies [15]. This interactions dataset was built
including 2,788 confirmed, direct, physical protein-pro-
tein interactions derived from the Biomolecular Interac-
tion Network Database (BIND; http://binddb.org) [16],
18,176 confirmed human protein interactions from the
Human Protein Reference Database (HPRD; http://
www.hprd.org/) [17], 22,012 direct functional interac-
tions from the Kyoto Encyclopedia of Genes and
Genomes (KEGG; http://www.genome.jp/kegg) [18], and
16,295 interactions derived from Reactome http://

www.reactome.org[19].

Finally, we used the microarray expression results gener-
ated during the profiling of systemic inflammation across
44,924 probe sets [20] and from which 126,543 interac-
tions among 7,090 genes were reported [8]. The microar-
ray experiment used 92 Affymetrix GeneChips
(Affymetrix, Santa Clara, CA) to examine gene expression
profiles in whole blood leukocytes immediately before
and at 2, 4, 6, 9 and 24 h after intravenous administration
of bacterial lipopolysaccharide (LPS) endotoxin to four
healthy human subjects. For the control (placebo) data,
four additional subjects were studied under identical con-
ditions but without LPS administration.

For the present study, and to enable the merging of the
three datasets, a number of edits were performed as fol-
lows: For the MPSS data, tags not expressed at more than
5 transcripts per million (tpm), in at least one tissue, were
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disregarded. The threshold of 5 tpm corresponds to the
sensitivity of MPSS technology as claimed by the manu-
facturers and independently assessed in our laboratory
[21]. Also, when the same gene was represented by more
than one MPSS tag, the reading from the most abundant
tag, summed across all tissues, was assigned to that gene.
Finally, for the true positive interactions and the inflam-
mation datasets, interactions involving genes not sur-
veyed in the MPSS data were also discarded.

These criteria resulted in 15,050 genes [see Additional file
1] of which 5,198 and 4,950 were included in the true
positive interactions and the inflammation datasets,
respectively, and with 2,499 genes in common. In addi-
tion, a total of 6,151 (41%) of the genes were associated
with disease according to OMIM database [22] as of Sep-
tember 19, 2007; and with 1,445 of them defined as dis-
ease-causing (i.e., associated with either known disease
phenotype or polymorphic sequence known).

Hereafter, we refer to DIS to indicate the 6,151 genes from
our resulting dataset that are disease-associated according
to OMIM, and to NDIS to indicate the remaining 8,899
non-disease-associated genes also according to OMIM.
Similarly, we refer to INT (and NINT) to indicate genes in
our dataset for which interactions have (and have not)
been reported.

Data mining approaches

In order to further characterize the relationship existing
between tissue specificity, gene connectivity and disease
association, the 15,050 genes were classified as either TS
or HK. To ensure that these two categories together repre-
sented the majority of the genes, we searched for category
limits from either extreme of the distribution of the
number of genes expressed in one, two, and up to 32 tis-
sues, until equivalent categories were defined, cumula-
tively representing > 50% of the total number of genes. In
doing so, there were 4,232 (28%) TS genes expressed in 1
to 4 tissues, and 4,006 (27%) HK genes expressed in more
than 25 tissues. The remaining 6,812 (45%) genes were
classified as non-specific (NS).

Finally, and in order to identify novel candidate genes
impacting disease, we developed a guilt-by-association
algorithm. Selection thresholds based on the average
number of known interactions combined with the average
proportion of DIS genes among their interactors were
determined from DIS genes. These thresholds were then
applied to genes in the NDIS category. Genes exceeding
both thresholds were identified as likely disease-associ-
ated candidates.

http://www.biodatamining.org/content/1/1/8

Results and discussion

Initial gene groupings and unknown biological processes
Figure 1 illustrates the way in which the 15,050 genes
were simultaneously annotated as either disease-associ-
ated or included in the true positive interactions and the
inflammation datasets. These genes were further classified
as either TS, NS or HK, and the number of disease-associ-
ated and/or interacting genes contained within each of the
resulting 12 categories was determined. The proportion of
genes with unknown biological process was also regis-
tered.

As expected, the discovery of interactions as well as dis-
ease-association for a given gene provides additional bio-
logical knowledge, allowing inferences as to its genomic
functionality. Nevertheless, the biological process of
about 10% of these presumably well-characterized genes
remains to be elucidated. On the other extreme, and high-
lighting the extent to which further research is needed, as
many as 85% of NDIS, NINT genes and across the three
expression categories (TS, NS and HK) belong to an
unknown biological process.

The impact of tissue-specificity

Among the myriad of complex relationships, some inter-
esting patterns emerged. Consistent with previous find-
ings [3], we observed a strong relationship between the
number of tissues in which a gene was expressed and its
level of expression (Table 1). Importantly, this relation-
ship was unaffected by disease or interaction status.

Overall, the distribution of the expression of genes among
tissues was grossly bimodal. However, this bimodality
vanished when the distribution was examined separately
for INT and NINT genes (Figure 2). INT genes are over-
represented among HK genes, while NINT genes are pre-
dominantly TS. We conclude that the more tissues a gene
is expressed in, the higher its chances of interacting with
at least one other gene, irrespective of the tissue-specificity
of this second gene.

Figure 3 presents the relationship between tissue specifi-
city and proportion of disease-associated genes. The over-
all Pearson correlation coefficient (PCC) was moderate
(0.53) yet significant (P = 0.0019) indicating an increase
in the number of DIS genes among broadly expressed
genes. Computing the PCC conditional on interaction sta-
tus results in a non-significant PCC of -0.26 (P = 0.1459)
for NINT genes, and a strong negative PCC of -0.73 (P <
0.0001) for INT genes. This counterintuitive pattern of
correlation is representative of the Simpson's Paradox
[23] with the paradox being that, although INT genes tend
to be expressed in many tissues, those that are expressed
in a tissue specific manner are more likely to be DIS. This
is likely due to the increased number of relationships an
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Gene groupings. Genes were classified as tissue-specific (TS), non-specific (NS) or housekeeping (HK). Among each class,
the number of interacting and disease-associated genes is noted, and for each of the resulting |12 categories, the percentage of

genes with unknown biological process ontology is given.

interacting HK gene would have compared to a TS equiv-
alent, thereby increasing the likelihood of a mutation
leading to a detrimental and potentially lethal outcome,
as previously determined [6]. We conclude that it is not so
much that TS genes are more likely to be associated with
disease, but rather that HK genes associated with disease
are rarely observed.

Gene interactions in the context of tissue-specificity and
disease association

Our analyses revealed that interacting HK genes are more
likely to interact with genes that are also HK (PCC = 0.89;
P < 0.0001) and vice-versa (i.e., TS genes are more likely
to interact among themselves). Importantly, this correla-
tion remained strong when conditioning on disease status
(Table 1). Also, interactions between two HK genes were
12.8 times more frequent (P < 0.0001) and 3.3 times
more cohesive (P < 0.0001) as measured by the clustering
coefficient, than interactions between two TS genes. The
clustering coefficient is a measure of network cohesive-
ness and captures how many neighbours of a given gene
are connected to each other.

Similarly, interactions between two DIS genes were 3.1
times more frequent (P < 0.0001) and 1.6 times more
cohesive (P < 0.001) than interactions between two NDIS

genes (Figure 4). Consistent with our results, genes associ-
ated with similar disorders have been shown to have
higher likelihood of physical interactions between their
products and a higher expression profiling similarity for
their transcripts [24].

Identification of candidate disease genes via guilt-by-
association

Given our measurement confirming that like associates
with like, we developed a guilt-by-association algorithm
with the aim of identifying candidate genes among the
previously classified non-disease subset. Our guilt-by-
association algorithm starts by examining the connectivity
properties of the DIS genes. In this context, DIS genes
were found to be involved, on average, in 12 interactions
(ranging from 0 to 176). Also on average, their interactors
were themselves DIS genes in 75% of instances. Impor-
tantly, while only 1,132 (or 18.4%) of DIS genes had > 12
interactions (revealing the skewedness in the number of
interactions), 651 (or 57.5%) of them interacted with DIS
genes > 75% of the time. When these same thresholds
(i.e., > 12 interactions and > 75% of DIS genes among
interactors) were applied to NDIS genes, we revealed the
presence of 112 genes [see Additional file 2], including 26
TS, 50 NS and 36 HK, that while not being associated with
disease, have higher than average connectivity degree (>

Page 4 of 11

(page number not for citation purposes)



BioData Mining 2008, 1:8

http://www.biodatamining.org/content/1/1/8

Table I: Relationship between the number of tissues in which a gene is expressed and a series of variables.

Variable Correlation Regression
Expression:
Overall genes 0.706 2.034
Non-Interacting (NI) genes only 0.709 1.802
Interacting genes only 0.707 2.107
Non-Disease (ND) 0.707 1.769
Disease (D) 0.709 2.382
Non-Interacting and Non-Disease 0.691 1.759
Non-Interacting and Disease 0.764 2.039
Interacting and Non-Disease 0.719 1.803
Interacting and Disease 0.702 2.438
Proportion of interacting genes:
Overall genes 0.949 0.012
Non-Disease genes only 0.942 0.013
Disease genes only 0917 0.008
Proportion of disease genes:
Overall 0.527 0.002
Non-Interacting genes only -0.263 -0.001
Interacting genes only -0.733 -0.004
Tissue specificity of interactors:
Overall genes 0.887 0.112
Non-Disease genes only 0.736 0.062
Disease genes only 0.872 0.151
Proportion of disease genes among interactors:
Overall genes 0.229 0.000
Non-Disease genes only -0.048 0.000
Disease genes only 0.575 0.001

12 connections) and higher than average proportion (>
75%) of genes in OMIM among their connectors. Table 2
presents the number of genes in the contingency table
underlying our guilt-by-association algorithm.

To assess the optimality of our approach, we repeated the
analyses using only the 1,445 DIS genes (out of the initial
6,151) with known disease phenotype and either
sequence mutation or molecular basis known as those
declared as truly disease-associated. The new thresholds
for connectivity and proportion of DIS genes among inter-
actors were 12 and 35%, respectively. The new list of can-
didate genes included 127 genes of which 107 were
assessed as DIS in the initial list of 6,151. Assuming the
remaining 20 genes are indeed false positives, this implies
a precision of at least 84%.

It should be noted that precision alone is not enough to
assess the goodness of a classifier, as it is only concerned
with the ratio of identified genes that are positive, but not
with the total number of discovered genes.

In order to further ascertain the optimality of various loca-
tion parameters to be used as thresholds in the guilt-by-
association algorithm, we explored the proportion of truly
disease associated genes from the total number of cap-
tured genes and the results are presented in Table 3. While
the median performs slightly better (i.e. by up to 1.03
times better, or 78.9 over 76.3) than the mean when used
as a threshold for the proportion of disease genes among
interactors, this improvement is at the expense of generat-
ing substantially larger lists of candidate genes. When
exploring the number of connections, the mean is very
close to the 75t percentile, indicating the skewness in the
connectivity distribution with most genes having few con-
nections and few genes having many connections. Also, as
a threshold for the number of connections, the mean per-
forms favourably against either inter-quartile.

However, the infeasibility of directly computing perform-
ance measures associated with a given algorithm in the
absence of negative examples should be acknowledged.
That is, although one can be relatively sure that certain
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Frequency histogram of gene expression. For each gene, the tissues showing expression at more than 5 transcript per
million were counted and the histogram explored separately for non-interacting (green) and interacting genes (red). The two
distributions are statistically different (Kolmogorov-Smirnov test P-value < 0.001).

genes are associated with a disease, it is not possible to
ensure that a set of genes is not involved in any disease. In
other words: Absence of evidence is not evidence of
absence. On the other extreme, some of the genes anno-
tated as disease associated by OMIM could also be false
positives. In these situations, partially supervised learning
algorithms have been proposed to address this issue and
in the context of identifying disease genes [14].

Nevertheless, a literature survey revealed that 44 of the
112 candidate genes [see Additional file 2] have been pre-
viously associated with polymorphisms or differential
gene expression leading to a modified risk of disease. A
further 10 genes exist within chromosomal regions associ-
ated with disease. The remaining 58 genes have no obvi-
ous association to disease in any system. The 39% rate of
disease association determined here is much higher

(hypergeometric P = 7.5 x 10-1°) than the 14% predicted
by OMIM across the genome, with 2,549 genes defined as
the basis of heritable disease out of the 18,091 total.

Clusters of disease among candidate genes

In order to determine what diseases these genes might
impact, we explored the gene networks spanned by the
members of our guilt-by-association list, alone and in
combination with their interactors. Based on the disease
associations shown [see Additional file 2], each cluster
was examined for a common disease. In this fashion, we
identified two clusters of genes that impact on either
breast or gastric cancer. Figure 5 depicts the Cytoscape
[25] representation of the breast cancer cluster where
seven of our guilt-by-association genes (APBA2BP,
CCNA2, COBRA1, PCAF, RAD51, SMARCA4 and
STAT5A) were linked to the well characterized human
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Figure 3

Disease association and tissue specificity. Relationship between tissue specificity (x-axis) and proportion of disease-asso-
ciated genes (y-axis) computed using all genes (blue pattern), and separate for non-interacting (green pattern) and interacting

genes (red pattern).

breast cancer susceptibility genes, BRCA1 and BRCA2.
Although none of these genes are annotated as disease
causing in OMIM, five have been previously associated
with the development of breast cancer, for example, alle-
les of RAD51 are epistatic with alleles of BRCA2. However,
CCNA2 is only mentioned in a very small number of
reports on breast cancer and APBA2BP is not a well stud-
ied gene.

For the case of gastric cancer, another cluster of seven
genes (AKT3, KRAS, MAP2K4, PIK3CB, PLCB1, PIK3R5
and PPP3R2) was identified. Four of these genes have
been previously associated with gastrointestinal disease
while AKT3, PIK3CB and PIK3R5 have not, although the
differential expression of AKT3 in gastric cancer is well
defined [see Additional file 2]. We suggest these previ-
ously non-associated genes are strong candidates for fur-
ther study into the basis of these diseases and are potential
prognostic markers.

Conclusion

Data mining approaches have allowed us to gain an
insight into the complex relationships existing between
gene expression, disease association, network connectivity
and tissue specificity. We have identified elevated rates of
expression and network connectivity among broadly
expressed genes, and among disease-associated tissue-spe-
cific genes.

In particular, when exploring the relationship between tis-
sue specificity and disease association, we found this rela-
tionship most interesting. While there is a moderate
positive relationship between the number of tissues in
which a gene is expressed and the proportion of disease
genes, we show that this relationship is reversed when
only considering genes for which interactions have been
reported. We present this phenomenon as an example of
the well-reported Simpson's Paradox. To a great extent,
the inclusion of number of interactions as a threshold
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Relating gene connectivity with disease association and tissue specificity. Percentage of gene-gene interactions that

exists between two groups of genes depending on their tissue specificity (TS: tissue-specific, NS: non-specific, and HK: house-

keeping) and disease association. Colours indicate interactions between two disease-associated genes (red), between a disease-
associated and a non-disease-associated gene (yellow), and between two non-disease-associated genes (green). The size of the
rectangles indicates the relative number of interacting genes in each group.

parameter in our guilt-by-association algorithm obviates
the need to also include tissue specificity.

However, it should also be acknowledged that probability
values associated with testing the null hypothesis of a
given PCC not being statistically different from zero were
computed assuming asymptotic normality and as such are
prone to inaccuracies. With this in mind, we focussed on
combining discrete parameters such as number of connec-
tions and the association to disease-associated genes to
identify a group of genes, not previously confirmed as dis-
ease causing, that are involved in interactions with disease
causing genes. The nature of these newly identified inter-
actions could range from epistatic interactions (i.e., the
action of one gene is suppressed by another such as the
case of RAD51 and BRCA1) to physical gene-gene interac-
tions to correlated co-expression. Based on bibliographi-
cal validation and network re-construction we have
identified several candidate genes that may impact the
development of cancer and hypothesize that many other

members of this list will ultimately be confirmed as mod-
ifiers of various genetic diseases.

Finally, it should be noted that while new algorithms are
being proposed in the literature on a rather frantic pace,
the task of comprehensively comparing algorithms could
be unattainable if not futile. Instead, we claim that our
conservative thresholds for predicting disease association
is justified because using thresholds of known disease
genes increases our likelihood of success given any estima-
tion process is going to have a degree of false positives. We
acknowledge the list does not exhaust all possible disease
genes but merely gives researchers the best short list for
further study.

Abbreviations

HK: housekeeping; MPSS: massively parallel signature
sequencing; NS: non-specific; PCC: Pearson correlation
coefficient; TS: tissue-specific; DIS: genes in our dataset
that are disease-associated according to OMIM as of Sep-
tember 19, 2007; NDIS: genes in our dataset that are non-

Page 8 of 11

(page number not for citation purposes)



BioData Mining 2008, 1:8

Table 2: Contingency table underlying the guilt-by-association algorithm
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Disease Associated? Number of Connections % Disease-associated genes among interactors
<75 >75

Yes <12 3,112 1,907
> 12 481 651

No <12 7,853 705
> 12 229 112

Number of disease- and non-disease-associated genes by thresholds on number of connections and percentage of disease-associated genes among
interactors. The thresholds are obtained from exploring disease-associated genes and correspond to the average number of connections (12)
among disease-associated genes and the average proportion of disease-associated genes (75%) among their interactors. The |12 non-disease-

associated genes (bottom right cell) form the basis of the newly reported disease-associated genes [see Additional file 2].

disease-associated genes also according to OMIM; INT:
genes in our dataset for which interactions have been
reported; NINT: genes in our dataset for which interac-
tions have not been reported.
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Table 3: Precision analysis of the guilt-by-association algorithm

Threshold for number of connections (TC)

Threshold for % disease genes among interactors (TD) Ql Q2 Q3 Mean
TC=1 TC=4 TC=13 TC=12
Ql TD =128 N Captured 1,943 1,391 638 683
% Known 733 75.0 76.5 76.4
Q2 TD =286 N Captured 1,024 563 195 219
% Known 74.8 78.9 85.1 84.9
Q3 TD =50.0 N Captured 251 118 16 19
% Known 70.5 67.8 75.0 78.9
Mean TD =350 N Captured 748 409 109 127
% Known 734 76.3 84.4 84.2

The optimality of various location parameters to be used as thresholds in the guilt-by-association algorithm was explored by computing the
proportion of known (% Known) disease associated genes from the total number of captured genes (N Captured). The analysis was performed
using only the 1,445 genes (out of the initial 6,151) with known disease phenotype as the set of truly disease causing, and with the remaining 4,706
declared as disease associated. The three inter-quartiles (QI: 25th percentile; Q2: 50t percentile or median; and Q3: 75t percentile) plus the mean

were used as thresholds.

Page 9 of 11

(page number not for citation purposes)



Figure 5

Guilt-by-association network analysis on breast cancer. A cluster of 7 non-disease associated genes (yellow) each inter-

acting with BRCAI and/or BRCA2.

Additional material

Additional file 1

Additional Table 1: The set of 15,050 genes. List of 15,050 genes
included in the analyses. For each gene, the number of tissues (out of 32)
in which the gene is being expressed, its average expression, disease asso-
ciation and connectivity structure is provided.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0381-1-8-S1.xls]

Additional file 2

Additional Table 2: Set of 112 guilt-by-association genes. List of 112
genes not associated with disease according to OMIM yet with high con-
nectivity with disease-associated genes. For each gene, the proportion of
disease genes among connectors and polymorphism or differential expres-
sion associated with disease along with the relevant literature reference is
provided.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0381-1-8-S2.doc]
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