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Abstract 

Alzheimer’s disease (AD) has emerged as the most prevalent and complex neurode-
generative disorder among the elderly population. However, the genetic comorbidity 
etiology for AD remains poorly understood. In this study, we conducted pleiotropic 
analysis for 41 AD phenotypic comorbidities, identifying ten genetic comorbidities 
with 16 pleiotropy genes associated with AD. Through biological functional and net-
work analysis, we elucidated the molecular and functional landscape of AD genetic 
comorbidities. Furthermore, leveraging the pleiotropic genes and reported biomarkers 
for AD genetic comorbidities, we identified 50 potential biomarkers for AD diagnosis. 
Our findings deepen the understanding of the occurrence of AD genetic comorbidities 
and provide new insights for the search for AD diagnostic markers. 

Highlights 

The present study has focused on the comorbidities associated with Alzheimer’s dis-
ease (AD) by constructing a landscape of these comorbidities at various levels, includ-
ing diseases, genetics, and pathways.

1. The study findings reveal novel and significant pathways that contribute to the etiol-
ogy of AD and its comorbidities.

2. By exploring pleiotropic genes and reported biomarkers of AD comorbidities, 
the study has identified several potential diagnostic biomarker candidates for AD.
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Graphical Abstract
Study pipeline.

Introduction
Alzheimer’s disease (AD) has emerged as the foremost prevalent and intricate neuro-
degenerative disorder among the geriatric populace [1, 2]. Owing to the current lack of 
effective ways to intervene AD progression, it is critical to identify key determinants for 
the etiology and early diagnosis of AD.

Against the backdrop of a rapidly aging global population, the co-occurrence of 
comorbidities among individuals diagnosed with AD has emerged as a prominent and 
pervasive phenomenon [3]. Considering the pervasive prevalence of AD and its pro-
found implications for affected individuals, there exists an escalating imperative to 
meticulously investigate the intricate interplay between specific comorbidity patterns 
and their intricate association with AD. It is well-established that many chronic dis-
eases precede the onset of AD, and their presence significantly elevates the risk of AD 
development. Consequently, exploring the etiology of comorbidities in relation to AD 
holds promise for advancing preventive measures and early diagnosis of AD. Moreover, 
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the biomarkers identified for these comorbidities hold great potential as biomarkers for 
AD itself. As such, greater attention has been focused on investigating the association 
between comorbidity and AD [4–7].

Although several longitudinal studies have identified chronic diseases as at-risk 
conditions for increased AD incidence, most research on the association between AD 
and comorbidities has focused on the impact of a single or a small number of chronic 
diseases. This approach overlooks other frequent co-occurrences, thus restricting 
researchers from deeper exploration [4, 8, 9]. Meanwhile, the majority of studies 
conducted thus far have primarily focused on exploring the phenotypic relation-
ships between AD and its associated comorbidities. With the advent of Genome-wide 
Association Studies (GWAS), some genetic factors for the comorbidities associated 
with AD have been identified. For example, variants in genes involved in lipid metab-
olism, such as APOE gene and CLU gene, have been associated with an increased 
risk of AD and cardiovascular disease [2], and variants in the APOE gene, as well as 
genes involved in insulin signaling and glucose metabolism, have been implicated in 
the development of AD and type 2 diabetes [10]. Nevertheless, the existing body of 
research has predominantly concentrated on investigating individual comorbidities, 
thereby leaving the comprehensive landscape of genetic comorbidities in AD largely 
unexplored.

Genetic comorbidity refers to the co-occurrence of two or more diseases or condi-
tions that are linked due to shared genetic factors. Constructing the landscape of genetic 
comorbidities for AD could suggest a potential differential impact of specific comorbid-
ity patterns on AD development and further provide more diagnostic biomarker candi-
dates. Further, potential biomarkers could be identified using genetic components that 
are significantly associated with AD.

Results
Identification of AD genetic comorbidities

In accordance with the prescribed methods, a comprehensive literature search was 
performed resulting in the identification of 65 phenotypic comorbidities associated 
with AD (Fig. 1). Of these, 44 displayed GWAS data, meeting the inclusion criteria for 
further examination (Fig. 1, Table S1). A total of 15,567,451 patients were included in 
this analysis. A meticulous quality control assessment was executed, and ultimately, 
a total of 39,391,465 SNPs were deemed suitable for further analysis. We used con-
ditional QQ plots to detect the pleiotropy between AD and the comorbidities. The 
x-axis is the log P value for the SNP in AD, and the y-axis is the log P value for genetic 
comorbidity. Different lines indicate the different cut off of P value. Pronounced 
pleiotropy was indicated by a leftward lean and noticeable separation among vari-
ous cut-off points. Significant leftward shifts under various P value cut-offs (0.1, 0.01, 
0.001, and 0.0001) were observed in QQ plots for eight diseases, including Crohn’s 
disease (CD), irritable bowel syndrome (IBS), chronic obstructive pulmonary disease 
(COPD), multiple sclerosis (MS), chronic sinusitis (CS), pernicious anemia, chronic 
kidney disease, eczema (Fig.  2). The QQ plots for the not significant comorbidities 
were shown in Figure S1.
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Mapping of pleiotropic genes of AD‑related genetic comorbidities

We plotted the genetic Manhattan plots for AD and its genetic comorbidities in Fig. 3, 
where the SNP situation for AD was presented in the inside circle and the comorbidi-
ties were in the outside circle. The SNPs were categorized into their correlated chro-
mosomal. The height of the points indicates the log P value for the SNP. We found 
that chromosomal 6, 11, and 19 consist of the most significant shared loci for AD-
related comorbidities. With predefined cut-off criteria (p < 10−5 and ccFDR < 0.01), 
we obtained 104 pleiotropic SNPs, which were mapped on 24 genes (Table S2). The 
pleiotropic SNPs for AD and CKD are all on Chromosome 19 and were mapped to 
MADD, ENSG00000255197, NR1H3, PSMC3, RAPSN and SPI1 gene. The pleiotropic 
SNPs between AD and COPD or CS or PA were all located on Chromosome 6 and 

Fig. 1  Knowledge graph for AD and its phenotypic comorbidities. 65 diseases were identified as phenotypic 
comorbidities for AD. The nodes represent the diseases, and the size of the nodes indicate the number of 
samples. 44 diseases had GWAS data (circles), and the others did not (blocks)

Fig. 2  Conditional QQ plots for AD and its genetic comorbidities. The x-axis is the log P value for the SNP in 
AD, and the y-axis is the log P value for genetic comorbidity. Different lines indicate the different cut-offs of 
P value. Pronounced pleiotropy was indicated by a leftward lean and noticeable separation among various 
cut-off points



Page 5 of 13Zhang et al. BioData Mining           (2024) 17:40 	

mapped to HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DRB5, HLA-DQB1-AS1 
genes, respectively. All pleiotropic SNPs for AD and MS and some for AD and Eczema 
were on Chromosome 19 and mapped to CEACAM16-AS1, ENSG00000288773, 
NECTIN2, and BCL3 genes. SNPs for AD and Eczema were on Chromosome 6 and 
mapped to HLA-DRB1, and HLA-DQA1.

Landscape of AD‑related genetic comorbidities

Adding two previously reported genetic comorbidities, posttraumatic stress syndrome 
(PTSD) and age-related macular degeneration (AMD), we finally identified 10 genetic 
comorbidities for AD. We mapped the AD genetic comorbidities along with their 
pleiotropic genes, and pathways on one combined network, as the landscape of AD 
genetic comorbidities (Fig. 4). The pleiotropic genes of AD-related comorbidities were 
significantly enriched in GO terms related to biological processes of immune response 
(e.g., very-low-density lipoprotein particle clearance, chylomicron remnant clear-
ance, positive regulation of cholesterol esterification, MHC class II receptor activity) 
(Table S3). KEGG enrichment analysis demonstrated that the pleiotropic genes were 
mainly enriched in asthma, which is strongly mediated by pathways related to immu-
nity. Genes in the HLA family, with the highest degree of interaction, were identified 
as hub genes (Fig. 4, Figure S2).

Based on further observation, COPD, CS, Eczema as well as PA tend to share genes, 
such as HLA-DQB1 and HLA-DRB1. In contrast, multimorbid relationships of CKD 
and AD, PTSD and AD tend to share immune-related pathways. The detrimental role 
of CKD on the brain has been previously reported, being CKD as a pro-inflamma-
tory dysmetabolic state that is associated with brain dysfunction. SPI1, for example, 
a transcriptional activator that may be specifically involved in the differentiation or 
activation of macrophages or B- cells. MS4A2, the pleiotropic gene for PTSD and AD, 
was shown to mediate the secretion of important lymphokines. Although mediated 
by different genes, the identified comorbidities were all closely related to immune 

Fig. 3  Manhattan plots for AD genetic comorbidities. The SNPs were categorized according to their 
correlated chromosomal. The height of the points indicates the log P value for the SNP
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responses. Further, we also mapped the pleiotropic genes to the human PPI network 
and found that most of them connected closely with others (Fig. 5A), indicating that 
they may conduct biological functions synergistically.

Function and expression analysis for pleiotropic genes

Essential genes were reported to have a tendency to encode hub proteins in the 
human interactome and play important roles in maintaining normal developmental 
and/or physiological functions. It is curious that if pleiotropic genes could be essen-
tial genes. Here, we obtained 70,310 essential genes, which were human orthologs of 
mouse genes whose disruptions are embryonically or postnatally lethal. We found 
that SPI1 was the only essential gene among pleiotropic genes (Fig. 5B). These results 
indicated that most pleiotropic genes were functionally peripheral in the human 
interactome, and their mutations are compatible with survival into reproductive years 
so that these comorbidity phenotypes are preserved in a population. Housekeeping 
genes, also known as constitutive genes, are a class of genes that are expressed at rel-
atively constant levels in all cells and under normal physiological conditions. These 
genes are responsible for carrying out fundamental cellular functions that are essen-
tial for the maintenance of basic cellular processes. To examine whether pleiotropic 
genes tend to be housekeeping genes, we summarized the number of tissues each 

Fig. 4  The landscape of AD and its genetic comorbidities. AD was set as a purple node. The yellow nodes 
represent genetic comorbidities for AD. The green nodes represent pleiotropic genes, and the blue nodes are 
enriched pathways by pleiotropic genes. The size represents the Degree of the nodes
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gene was expressed in based on the gene expression data of 53 tissues in ScRNA-seq 
data from GTEx. We found that pleiotropic genes, such as APOE and HLA-DRB1 as 
well as PSMC3, tend to be expressed in more tissues (Figure S3).

Identification of potential diagnostic biomarkers for AD from AD‑related comorbidities

In order to find new biomarkers for AD, we tested the predictive efficiency of the above 
pleiotropic genes on two independent AD microarray datasets, respectively. Using 
patients/health controls as the dependent variable and gene expression as the inde-
pendent variable, logistic regression was conducted to detect the diagnosis value for the 
pleiotropic genes. Diagnostic test results for pleiotropic genes of different comorbidities 
have been presented in Fig. 5C. APOC1 (the pleiotropic gene for AD and AMD, average 
AUC = 0.65), MADD, NR1H3, PSMC3 (the pleiotropic gene for AD and CKD, all aver-
age AUC > 0.6), and KCTD2, MS4A2 (the pleiotropic gene for AD and PTSD, all average 
AUC > 0.6) showed good diagnostic value in AD microarray datasets. However, the AUC 
values of the rest genes were not significant.

The number of the pleiotropic genes with predicted potential in our study was rela-
tively low, we, therefore, searched the reported biomarkers of the 10 genetic comor-
bidities from public databases (MarkerDB Database, Therapeutic Target Database, 
Disgenet Database, and PubMed) and examined their prediction accuracy (Table S4). 
A total of 4458 reported biomarkers were collected. All these reported biomark-
ers were conducted using the logistic diagnosis test on the AD microarray datasets, 
and their AUCs were calculated and presented in Fig. 6A, categorized by the source 

Fig. 5  System analysis for pleiotropic genes. A PPI network for pleiotropic genes. B Venn plot for essential 
genes and AD pleiotropic genes. Only the SPI1 gene was both an essential gene and a pleiotropic gene. 
C Diagnostic AUCs for pleiotropic genes. The x-axis shows the source comorbidities for the pleiotropic genes
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genetic comorbidities. Based on a logistic regression model, 50 genes passed the AUC 
of 0.8 on both validation datasets (Fig. 6A). Notably, ACTB and YWHAZ showed good 
prediction accuracy for five different comorbidities (ACTB for CKD, COPD, CD, MS, 
PTSD and YWHAZ for COPD, CS, CD, Eczema, and MS) while MSC for four comor-
bidities (COPD, CD, Eczema, MS). The biological functional analysis (KEGG pathway 
enrichment analysis and Gene ontology (GO) analysis) was conducted to detect the 
important pathways. Interestingly, > 10 of these biomarkers were mapped on Synapse, 
Cell junction, and Vesicle pathways in GO annotation on the cellular component level 
(Fig.  6B). No overlap was found among pathways enriched by pleiotropic genes and 
biomarker candidates.

Discussion
Our study conducted a profiling of the genetic comorbidity relationships of AD, add-
ing the functional and network analysis, we have formulated a comprehensive por-
trayal of the landscape of AD genetic comorbidities. Notably, this analysis represents 
the largest in scale to date. Further, we identified several novel diagnosis biomarkers 
for AD, from the pleiotropic genes and reported biomarkers of comorbidities. These 
findings portray a comprehensive genetic and multimorbid landscape for AD and 

Fig. 6  A Diagnostic AUCs for genetics comorbidities biomarkers in AD. Each reported biomarker was 
conducted in the AUC tests and presented as different nodes in the Figure. The x-axis represents the 
source genetic comorbidities of the reported biomarkers. The y-axis represents the values of AUC tests 
for different biomarkers. 50 biomarkers have an AUC > 0.8, which were identified as biomarker candidates 
for AD. B Combined network of PPI and pathway enrichment for biomarker candidates for AD. The circle 
nodes represent biomarker candidates, the diamond nodes represent GO pathways, the hexagon nodes are 
KEGG pathways, the parallelogram nodes are Reactome pathways, and the rectangle nodes represent Wiki 
pathways. The size of the nodes shows the Degree, the nodes with a bigger Degree have a bigger size
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reveal a pool of prospective biomarkers that may prove useful in the early diagnosis, 
management, and treatment of AD and its associated comorbidities.

Our study approved that AD was a hub comorbidity in the old population. In light 
of the considerable prevalence and deleterious impact of AD, particularly among the 
elderly population, it is imperative that we direct our focus toward the comprehen-
sive understanding and management of its comorbidities. The urgency to prioritize 
this matter stems from the recognition of the significant burden these comorbidities 
impose on overall health. Shang et al. found that individuals with ≥ six diseases were 
around four times more likely to develop dementia, and around 51.2% of incident 
dementia was attributed to one or more observed diseases [11]. A few studies have 
investigated the association between comorbidity and incident dementia. However, 
these studies agree with our research highlighting the importance of comorbidity 
in the development of dementia. Shang et al. proved the association of high choles-
terol with dementia [11]. Giulia Grande et al. found increased dementia risk among 
persons with high levels of systemic inflammation [12]. It is well acknowledged that 
a low-grade chronic proinflammatory state characterized by high levels of serum 
cytokines is common in older individuals and that older persons with high inflamma-
tory markers have a higher number of chronic diseases as well as a steeper increase in 
comorbidity over time. The imbalance between inflammatory and anti-inflammatory 
agents due to several chronic diseases can lead to a systemic and chronic proinflam-
matory state, which ultimately may affect the brain.

In the present study, we constructed the landscape for AD and its comorbidity. 
Comorbidity has been found previously to be associated with biomarkers of neuro-
degeneration and amyloid deposition; however, specific comorbidity patterns may 
increase dementia risk through different pathways. The identified genetic comorbid-
ity was attributed to genes encoding human leukocyte antigen (HLA) and major his-
tocompatibility complex (MHC) class II receptor activity. HLA within the MHC in 
humans consists of several highly polymorphic and tightly linked genes on chromo-
some 6p21 [13]. Multiple previous association studies verified that certain HLA gene 
variants within MHC class I and II regions have shown significant associations with 
AD, agreeing with our findings and indicating the shared patterns for the comorbidity 
[14, 15]. A wide range of activities involved in immune responses may be determined 
by HLA genes, including inflammation, T-cell transendothelial migration, infection, 
brain development and plasticity in AD pathogenesis [13]. HLA-DR, is a known micro-
glia marker for AD. The expression of HLA-DRB1 and HLA-DRB5 in the microglia has 
been proven positively correlated with measures of AD pathology [16]. Furthermore, 
the immune response in the brain may be influenced by the peripheral immune system 
and vice versa, because the integrity of the blood–brain barrier (BBB) could be com-
promised by inflammatory processes and microvascular pathologies, both of which 
have been observed in AD [17, 18]. It has also been demonstrated that macrophage 
phagocytosis can be impaired and HLA-DR can be abnormally expressed by neutro-
phils and monocytes [19, 20]. Our study identified that the Cholesterol Metabolism 
Pathway played an important role in the pleiotropy among AD and other comorbidi-
ties, which coincided with a last study by Holstege et  al. [21]. The majority of prior 
investigations concentrated on discerning the connections between the individual or a 
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limited number of chronic ailments. Our research amalgamated all pertinent chronic 
conditions with AD and employed uniform methodologies to pinpoint precise genetic 
associations. Our findings delineated that certain chronic illnesses exhibit genetic 
comorbidities with AD, while others are solely phenotypical, thus outlining the genetic 
landscape of AD comorbidities. Additionally, we validated the critical significance of 
certain inflammatory pathways in AD and its comorbidities, underscoring their poten-
tial pivotal roles in the onset and progression of genetic comorbidities in AD.

Dong et al. and Nam et al. all conducted pleiotropy analysis focusing on the common 
diseases and phenotypes to understand the human comorbidities [22, 23]. Compared 
with their studies, the primary distinguishing factor lies within the sample sizes: while 
both aforementioned articles draw from the UK Biobank, our research encompassed 
data from 45 distinct studies, involving a total of 15,567,451 patients, thereby yielding 
more compelling outcomes. Moreover, our investigation specifically honed in on AD, 
whereas the two referenced studies examined all phenotypes within the UK Biobank 
cohort. Additionally, we employed a Bayesian-based algorithm for pleiotropy detection, 
in contrast to the network-based methodologies utilized in the aforementioned studies.

The present study exhibits a few noteworthy limitations. Firstly, despite the sample 
size being relatively large, it is important to note that the number of cases for each 
disease or multimorbid disease pair was limited. Consequently, it is possible that cer-
tain multimorbid disease pairs that are overrepresented in the population may have 
been overlooked. For instance, the cardiovascular diseases failed to achieve statistical 
significance in this study. Secondly, it is plausible that variants with minimal effects 
may have been overlooked by the GWAS analyses. Thirdly, although some biomarkers 
were identified in our analysis that are supported by previous literature, experimental 
validation is necessary to affirm their clinical utility. Of paramount consideration in 
the quest for biomarker discovery are the sample size and diagnostic efficacy. Regret-
tably, our diagnostic test featured a modest cohort, comprising solely 26 out of 97 
individuals afflicted with AD and 62 out of 98 healthy controls, a constraint imposed 
by data availability. This limitation potentially compromises diagnostic accuracy, as 
evidenced by the identification of a mere 50 biomarkers. Moreover, our dataset was 
confined to bulk gene expression profiles, underscoring the imperative for subsequent 
investigations encompassing single-cell and spatial validation methodologies.

Conclusions
In summary, we have performed, for the largest scale, a systematic analysis of multimor-
bid relations for AD as well as their shared genetic components based on the GWAS 
analysis. Our findings reveal a propensity for comorbidity in individuals with AD and 
offer insight into the genetic mechanisms underlying these associations. Furthermore, 
the pleiotropic genes identified in our analysis may serve as valuable biomarkers for both 
AD and its comorbidities, enhancing the ability of researchers and clinicians to manage 
these conditions in a more holistic manner.
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Methods
All the data included in this study was downloaded from public databases, so the 
Standard Protocol Approvals, Registrations, and Patient Consents statement were not 
applicable.

Literature search for AD phenotypic comorbidities

In the previous study, we identified 53 diseases associated with AD in phenotype [24]. 
Then, a comprehensive literature search was conducted using the PubMed database 
to search other comorbidities identified by other researchers. The search employed 
the following keywords: "multiple diseases," "multiple conditions," "multiple chronic 
diseases," "multiple chronic conditions," "comorbidity," "comorbidit*," or "co-mor-
bidit*," combined with "dementia" or "Alzheimer’s disease." No language restrictions 
were imposed. In total, until December 2023, 2350 published papers were identified, 
from which 65 phenotypic comorbidities associated with Alzheimer’s disease were 
extracted.

GWAS data

We obtained GWAS summary statistics for AD and its associated comorbidities 
from the GWAS Catalog database. Table S1 provides detailed information about the 
acquired datasets. The AD dataset used in this study was sourced from Lambert et al. 
and consisted of a cohort comprising 17,008 individuals with AD and 37,154 controls 
without cognitive impairment [25].

Estimation of pleiotropy among AD and its comorbidities

To assess pleiotropy among AD and its associated phenotypic comorbidities, we 
employed conditional quantile–quantile (QQ) plots. Pronounced pleiotropy was indi-
cated by a leftward lean and noticeable separation among various cut-off points.

Detection of pleiotropic genes among AD and its genetic comorbidities

In this study, we employed the conditional false discovery rate (cFDR) algorithm 
to identify pleiotropic genes associated with AD and its genetic comorbidities. We 
applied a rigorous threshold of statistical significance, using a cut-off value of 0.01 as 
a stringent criterion for detecting significant pleiotropy.

Biological network and function analysis for pleiotropic genes

To determine whether the AD pleiotropic genes were essential genes, we used the 
OGEE database [26]. Additionally, we utilized the String database to obtain protein–
protein interaction and pathway information for the biological network and func-
tional analysis of pleiotropic genes.

Diagnostic biomarker discovery for AD

We downloaded gene expression data from the GEO database to identify new diag-
nostic biomarkers for AD. The dataset used for AD discovery (GSE36980) consisted 
of gene expression data obtained from the frontal cortex, temporal cortex, and 
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hippocampus of 26 individuals with AD and 62 healthy individuals serving as con-
trols. For AD replication (GSE132903), gene expression data from the middle tem-
poral gyrus were analyzed, involving 97 individuals with AD and 98 healthy controls. 
The candidate biomarkers were derived from two sources: pleiotropic genes and pre-
viously identified biomarkers associated with genetic comorbidities of AD. Logistic 
regression was conducted to detect the diagnostic value for the pleiotropic genes and 
reported biomarkers for AD related genetic comorbidities, using patients/health con-
trols as the dependent variable and gene expression as the independent variable. The 
reported biomarkers were collected from MarkerDB Database (https://​marke​rdb.​ca/), 
Therapeutic Target Database (https://​idrbl​ab.​net/​ttd/), Disgenet Database (https://​
disge​net.​com/), and PubMed. KEGG enrichment analysis and GO annotation were 
conducted for these genes to detect the important pathways.
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