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Abstract
Background  The additive model of inheritance assumes that heterozygotes (Aa) 
are exactly intermediate in respect to homozygotes (AA and aa). While this model 
is commonly used in single-locus genetic association studies, significant deviations 
from additivity are well-documented and contribute to phenotypic variance across 
many traits and systems. This assumption can introduce type I and type II errors by 
overestimating or underestimating the effects of variants that deviate from additivity. 
Alternative genotype encoding strategies have been explored to account for different 
inheritance patterns, but they often incur significant computational or methodological 
costs. To address these challenges, we introduce PAGER (Phenotype Adjusted 
Genotype Encoding and Ranking), an efficient pre-processing method that encodes 
each genetic variant based on normalized mean phenotypic differences between 
diallelic genotype classes (AA, Aa, and aa). This approach more accurately reflects each 
variant’s true inheritance model, improving model precision while minimizing the costs 
associated with alternative encoding strategies.

Results  Through extensive benchmarking on SNPs simulated with both binary and 
continuous phenotypes, we demonstrate that PAGER accurately represents various 
inheritance patterns (including additive, dominant, recessive, and heterosis), achieves 
levels of statistical power that meet or exceed other encoding strategies, and attains 
computation speeds up to 55 times faster than a similar method, EDGE. We also apply 
PAGER to publicly available real-world data and identify a novel, relevant putative QTL 
associated with body mass index in rats (Rattus norvegicus) that is not detected with 
the additive model.

Conclusions  Overall, we show that PAGER is an efficient genotype encoding approach 
that can uncover sources of missing heritability and reveal novel insights in the study 
of complex traits while incurring minimal costs.

Keywords  Association studies, Case-control, Dominance, Genetics, Genotype 
encoding, GWAS, Heterosis, Inheritance, QTL analysis, Quantitative traits
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Background
While the majority of diallelic single nucleotide polymorphisms (SNPs) likely follow 
an ‘additive’ model of inheritance, where the heterozygote’s phenotype falls between 
those of the homozygotes [1, 2], there have been numerous observations of variants 
that deviate from this pattern, affecting a wide range of traits and systems [3–13]. These 
deviations collectively contribute significantly to explained phenotypic variance (VP) 
in various systems, including humans [8, 11, 12]. Although detection of non-additive 
genetic variation is common, most analytical methods used for studying genotype-phe-
notype associations, such as quantitative trait locus (QTL) analysis and genome-wide 
association studies (GWAS), assume strict additivity at all genetic loci [2, 14–16]. How-
ever, if sources of non-additive genetic variation are left unaccounted for, the predictive 
accuracy of resulting models can be greatly reduced [17, 18]. This, in turn, can lead to 
misinterpretations of the effects of specific genetic variants via inadequate estimations 
of explained VP [19] that could manifest as type I and type II errors.

In a diallelic system, genotype classes are typically encoded assuming the additive 
model of inheritance by the numbers 0, 1, and 2. Here, “0” represents homozygotes for 
the major allele (AA), “1” represents heterozygotes (Aa), and “2” represents homozy-
gotes for the minor or alternate allele (aa). This numerical encoding effectively counts 
copies of a coded allele (usually the minor allele) present for an individual at a locus, 
facilitating the calculation of allele/genotype frequencies and the assessment of genetic 
relatedness among individuals. However, from a modeling perspective, the additive 
encoding presupposes that the phenotype (or disease risk) of heterozygotes is exactly 
intermediate in respect to the phenotypes of the two homozygote classes [14, 15]. Con-
sequently, the regression models used in most GWAS and QTL analyses assume such 
additivity applies universally across all loci. However, the additive model is merely one 
example of the infinite phenotypic relationships that can occur between three genotypic 
classes. Other standard examples of inheritance, such as dominant and recessive models, 
arise when the effect of one allele partially or fully masks that of the other allele on the 
phenotype [14, 15]. These manifest as heterozygotes having phenotypes closer to one 
of the homozygote classes. Eye color in humans is mainly attributable to dominance 
effects [20]. Although not as common in the literature compared to dominant and reces-
sive models, heterotic models of inheritance occur when the phenotypes of heterozy-
gotes surpass or fall below (higher or lower fitness) those of either homozygote [14, 15]. 
Heterotic relationships are commonly referred to as either heterozygote advantage (also 
hybrid vigor) or heterozygote disadvantage depending on the phenotype and environ-
ment. Overall fitness regarding malarial resistance and the sickle-cell trait is a common 
example of heterosis in humans [21]. Additive, dominant, and recessive models serve 
as benchmarks for describing inheritance patterns in diallelic systems, with heterotic 
models also considered to a lesser extent. Yet, in theory, inheritance models encompass 
a spectrum wherein the relative phenotypic differences between genotypic classes can 
exhibit continuous variability, capable of being described by any combination of numeric 
values [14, 15].

Efforts have been made to model the inheritance patterns of individual SNPs in genetic 
analyses using alternative encoding strategies. However, these methods have not gained 
widespread popularity primarily because of two factors. Firstly, encoding methods may 
struggle in identifying significant genetic variants beyond what a standard additive 
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model can detect. In other words, the strategic effort of encoding may not be justified, as 
alternative encoding methods may fail to identify significant associations or could even 
reduce power by assuming inferior models [22]. This is particularly true when using a 
single alternative inheritance model, such as dominant or recessive, which impose their 
own strict inheritance assumptions to all loci. Therefore, it may seem prudent to employ 
multiple models. However, this approach comes with the cost of correcting for multiple 
tests incurred by each additional model implemented. Secondly, encoding may require 
significant computational resources. Each SNP can theoretically exhibit its own unique 
inheritance pattern [14, 15], and modeling these across an entire dataset, and for multi-
ple phenotypes, can be expensive as computational costs increase with both sample size 
and SNP count. Collectively, these challenges reduce the practical viability and utiliza-
tion of alternative encoding approaches.

Despite the issues outlined above, a promising genotype encoding strategy recently 
developed is Elastic Data-driven Genetic Encoding (EDGE) [23, 24]. EDGE estimates 
the genotype encoding of heterozygotes dynamically using a data-driven pre-processing 
approach, alleviating the cumulative multiple testing burden associated with assuming 
multiple inheritance models. Although EDGE was developed with investigating genetic 
interactions (epistasis) as a central goal, it is extensible to univariate tests like GWAS 
and QTL analysis. EDGE is flexible in that heterozygote classes are recoded to reflect 
the accurate genotype-phenotype relationship of each SNP. This is achieved by building 
a specific linear or logistic model (depending on the phenotype of interest) for each SNP 
where the heterozygous encoding (SNPHET: AA = 0, Aa = 1, aa = 0) and the homozygous 
alternate encoding (SNPHA: AA = 0, Aa = 0, aa = 1) are both implemented. The vectors 
of these codominant dummy encodings are then used to construct the model shown in 
Eq. 1.

E (Y |SNPHet, SNPHA, COVi) =
βHetSNPHet + βHASNPHA +

∑
i

βCOVi
COVi

� (1)

Where E(Y) is the expected value of the phenotype (Y) given the predictors in the model, 
SNPHET is SNP vector using the heterozygous encoding, SNPHA is the SNP vector using 
the homozygous alternate encoding, βHet and βHA are the regression coefficients for the 
heterozygous and homozygous alternate encodings, respectively, COVi is the ith covari-
ate (e.g., age or sex), and βCOVi is the corresponding regression coefficient. By fitting this 
regression model for each SNP using the phenotype as the dependent variable, EDGE 
estimates the effect sizes (beta coefficients) associated with the heterozygous (βHet) and 
homozygous alternate (βHA) genotype encodings. The ratio α captures the relative con-
tribution of the heterozygous encoding to the phenotype compared to the homozygous 
alternate encoding, effectively quantifying deviations from the additive inheritance 
model (Eq. 2).

α =
βHet

βHA
� (2)

This process allows EDGE to adjust the encoding of the heterozygous genotype based on 
its observed relationship with the phenotype. Specifically, the resulting α value replaces 
the heterozygous encoding for that SNP, while AA individuals remain scored as 0 and 
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aa individuals are scored as 1. This recoding reflects the SNP’s specific inheritance pat-
tern as observed in the data. After recoding, univariate association tests can then be per-
formed using the adjusted genotype encodings.

EDGE achieves conservative false-positive rates (FPR) and outperforms other inheri-
tance models, including additive, dominant, and recessive, in terms of power [23, 24]. 
Nonetheless, EDGE’s limitations are noteworthy. The computational time required to 
construct regression models to encode each SNP when considering large sample sizes 
and hundreds of thousands to millions of variants is significant. Furthermore, EDGE 
is designed for diallelic systems, limiting its applicability as many systems and variant 
types are multi-allelic. Additionally, EDGE is an integral component of a Python [25] 
software pipeline designed with a primary focus on investigating epistasis, making it 
somewhat challenging to apply EDGE to external datasets. Finally, while EDGE does 
eliminate the need for multiple encoding strategies, its use of regression models, and the 
necessary statistical tests required to determine α values from the phenotype, impose a 
distinct multiple testing burden additional to the conventional multiple test correction 
required in GWAS/QTL analyses. To mitigate this extra layer of testing, either signifi-
cance thresholds can be made stricter, or alpha values can be estimated in a prior sample 
before applying the encodings to GWAS data. Both strategies significantly reduce the 
power to identify meaningful associations but are required.

To address the issues of speed and extensibility while also providing a robust genotype 
encoding strategy, we present Phenotype-Adjusted Genotype Encoding and Ranking 
(PAGER). PAGER employs a straightforward and computationally efficient data-driven 
mathematical approach to compute the mean normalized relative phenotypic differ-
ences between genotypic classes on a SNP-by-SNP basis. Like EDGE, PAGER is a flex-
ible, dynamic pre-processing step that reduces the burden of applying multiple encoding 
strategies and can be used for both binary and continuous phenotypes as well as for 
epistasis investigation. While PAGER shares EDGE’s advantage of eliminating the need 
for multiple encoding models, it also incurs the cost of deriving encodings from the phe-
notype, necessitating an additional layer of multiple test correction. However, PAGER 
offers significant improvements over EDGE, including faster computation speeds, easier 
applicability to real-world datasets, and extensibility to multi-allelic systems and vari-
ants. This paper highlights PAGER’s advantages by demonstrating its efficiency, with 
computation speeds up to 55 times faster than EDGE, while maintaining similar or bet-
ter performance across all relevant metrics, including a lack of false positive inflation. 
We also conduct exploratory GWAS on publicly available data from the model system, 
Rattus Norvegicus and compare the results of using three different models—additive, 
recessive, and dominant—to those obtained with only EDGE and PAGER. The results 
show that both PAGER and EDGE uncover significant genotype-phenotype associations 
not detected by the standard additive encoding alone. PAGER also detects all putative 
QTL identified by the three uniform inheritance models (i.e., those that assume the same 
pattern of inheritance at all loci - additive, dominant, recessive, etc.) tested. These find-
ings underscore the advantages of using flexible and dynamic encoding strategies despite 
their associated correction costs.
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Methods
The PAGER method

PAGER uses the relative difference between the mean phenotype of each genotypic class 
(AA, Aa, and aa) per SNP to construct encodings using the following formulae adapted 
from Cohen’s d [26]

PAGER EncodingAA =
(x̄AA − x̄AA)

σPhenotype
= 0 (anchor)� (3)

PAGER EncodingAa =
(xAa − xAA)

σ Phenotype

PAGER Encodingaa =
(xaa − xAA)
σ Phenotype

where x̅AA, x̅Aa, and x̅aa are the mean phenotype values (proportion of cases [p̂] in case/
control studies) for the AA (0), Aa (1), and aa (2) genotype classes per SNP, respectively 
and σPhenotype is the standard deviation of the entire phenotype vector. However, unlike 
Cohen’s d, our goal is to calculate the mean relative difference between genotypic classes 
and not the effect sizes between means. Thus, the process is simplified by removing the 
σPhenotype term from each calculation as this term is redundant:

PAGER EncodingAA = x̄AA − x̄AA = 0 (anchor) � (4)

PAGER EncodingAa = xAa − xAA

PAGER Encodingaa = xaa − xAA

The three new encodings are min/max normalized between 0 and 1 for clarity and inter-
pretability. Note, the AA genotype encoding for each SNP remains 0 before normaliza-
tion as it serves as the anchor point for relative difference calculations. The normalized 
PAGER encodings replace the original 0 (AA), 1 (Aa), and 2 (aa) encodings for each SNP 
in the dataset. PAGER is fully extensible to any programming language, to genetic sys-
tems beyond diallelic, and for constructing multi-locus genotypes (MLG) for investigat-
ing epistasis. In the case of epistasis, PAGER can be used to generate new features that 
numerically describe the interaction between n loci. The only universal requirement to 
extend PAGER to multi-allelic systems and epistasis detection is that one genotype or 
MLG be chosen as the anchor and all relative differences then be calculated and normal-
ized. In the case where only two genotypes exist at a particular SNP, PAGER encodes 
one as the anchor (0) and the other as 1. If only one genotype exists, PAGER ignores 
that SNP and moves to the next in the dataset. However, instances like these should be 
removed from analyses as low or zero-variance SNPs reduce power and/or could lead to 
type I and type II errors [16, 27].

Simulated datasets

For our various tests to compare PAGER to EDGE and to assess PAGER’s power and 
ability to characterize multiple inheritance models, we generate true-positive main effect 
SNPs with both binary and continuous phenotypes using the Biallelic Model Simulator 
(BAMS) within the Pandas-Genomics Python [25] package [28]. This package is also 
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where EDGE can be natively used. To avoid overfitting of EDGE and PAGER, two sets 
of data are simulated for (1) calculating EDGE alpha values and PAGER encoding val-
ues (training) and (2) applying these values to derive test statistics (validation). All other 
uniform encodings are also applied to the validation sets for comparison purposes. SNPs 
are simulated under eight distinct inheritance patterns: additive, subadditive, superaddi-
tive, dominant, recessive, heterosis, underdominant, and overdominant (File S1). Each 
set of simulations (training and validation) include varying sample sizes (2000, 5000, 
10000, 15000, 20000, 25000, 50000), minor allele frequencies (MAF) (0.1, 0.2, 0.3, 0.4, 
0.5), penetrance differences (PEN_DIFF) (0.1, 0.25, 0.33, 0.4), representing the difference 
between maximum and minimum probabilities (noise) in the penetrance table, and case/
control ratios of 0.25 and 0.5 for binary phenotypes. For each of the eight inheritance 
patterns, we simulate 140,000 SNPs with a continuous phenotype (140 unique com-
binations with 1,000 replicates each) and 280,000 SNPs with a binary phenotype (280 
unique combinations with 1,000 replicates each). Thus, in total, we simulate 1,120,000 
continuous phenotype SNPs and 2,240,000 binary phenotype SNPs in both training and 
validation sets. These simulated SNPs are utilized for performing inheritance model and 
power experiments.

Computation time comparisons

To assess the computational efficiency of PAGER and compare it to EDGE, we measure 
the total time to calculate encoding values from single SNPs from the training set for 
each method using 100 replicates (for tractability due to GPU testing), across all com-
binations of test variables (sample size, MAF, PEN_DIFF, and case/control ratio (binary 
only)) and inheritance models for both binary and continuous phenotypes. We perform 
these calculations using a CPU with an Intel® Xeon® Gold 6342 Processor (2.8  GHz). 
Since PAGER can leverage GPU integration, we also measure PAGER’s compute time 
using the same high performance computing system’s GPU (NVIDIA® Tesla® V100 
SXM2–32GB). We compare computation times for EDGE, PAGER CPU, and PAGER 
GPU by calculating the speed factor increase of PAGER over EDGE (EDGE computa-
tion time/PAGER computation time). We observe that computation times only vary sig-
nificantly as sample size increases, hence, we average computation times across all levels 
of case/control ratio (binary only), PEN_DIFF, MAF, and inheritance model for both 
phenotypes (File S2). Instances where computation times are more than three standard 
deviations from the mean in PAGER GPU tests are removed as these represent instances 
of GPU initialization and are extreme outliers. This results in 223,580 and 111,980 repli-
cate SNPs with a binary phenotype and a continuous phenotype, respectively.

We also measure total computation time between EDGE and PAGER (CPU and GPU) 
when sample size is kept constant but SNP number increases (1, 10, 100, 1,000, 10,000, 
and 100,000). Because BAMS can only generate single SNPs with an association to a 
phenotype, we use SNPs randomly selected from a publicly available real-world data-
set from an outbred, related rat (R. norvegicus) population of males and females derived 
from eight inbred founders (Heterogenous Stock [29]) and used in a previously pub-
lished GWAS investigating obesity-related traits [30, 31]. We measure the time to derive 
EDGE and PAGER values from 3,166 individuals for all datasets of increasing SNP size. 
We use the continuous phenotype of body mass index (BMI) including the animal’s tail 
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(BMI_Tail) for this analysis and perform the same comparisons with the same hardware 
as the previous experiment where sample size varies.

Assessing PAGER’s proficiency at characterizing a range of theoretical inheritance models

To determine if PAGER’s encoding strategy can suitably capture various inheritance 
models (File S1), we illustrate the distributions of the normalized PAGER encodings 
for each genotypic class for both phenotypes under the eight inheritance patterns used 
to simulate our training datasets with box plots in ggplot2 [32] in R [33]. Box plots are 
created by aggregating PAGER values across all variations of case/control ratio (binary 
only), MAF, PEN_DIFF, and sample size. We compare these box plots to the theoretical 
genotype relationships of all eight inheritance models (File S1) used to generate simu-
lated data.

Heterozygote encoding values of PAGER and EDGE are also compared to determine if 
PAGER can more accurately describe inheritance models compared to EDGE. Mean het-
erozygote encoding values for EDGE and PAGER under each inheritance model across 
all experimental parameters, where MAF is set to 0.1, and where MAF and PEN_DIFF 
are both set to 0.1 are compared using Wilcoxon rank sum tests in R and descriptive 
statistics including means, variances, standard deviations, and ranges are also calculated 
(File S2). We separate out instances where MAF is set to 0.1 and where MAF and PEN_
DIFF are both set to 0.1 to investigate how both encodings handle more difficult SNP 
simulations where allele frequencies and noise levels are more extreme.

Evaluating PAGER’s ability to detect genome-wide significance

To assess PAGER’s overall signal potential compared to other encoding methods, we cal-
culate power (rate of success in identifying a significant association between a simulated 
true-positive SNP and the phenotype) from p-values derived from univariate regression 
(logistic for binary phenotype and linear for continuous phenotype) on SNPs using the 
association_study function within the CLARITE Python package [34, 35]. Regression 
is performed on encoded true-positive main effect SNPs simulated from the validation 
set using all eight inheritance models, all experimental variables, and both phenotypes 
within BAMS. Encoding strategies include the standard additive model, inherent encod-
ing, EDGE, and PAGER. The inherent encoding is the encoding method derived from 
the respective inheritance model being analyzed. For example, if SNPs are generated 
using a dominant inheritance model, the inherent encodings are 0, 1, and 1 for the AA, 
Aa, and aa genotypes, respectively (see File S1 for all inherent encodings). Since the 
additive encoding is already inherent to the additive inheritance model, additive-gener-
ated SNPs are only tested with three encodings - additive, EDGE, and PAGER. We assess 
mean power from the validation set across all levels of PEN_DIFF and with PEN_DIFF 
equal to 0.1 by case-control ratio (binary only), MAF, and sample size. Power is obtained 
by counting instances where the CLARITE-derived regression p-value for each encod-
ing is less than the genome-wide significance threshold of 5 × 10− 8 under each inheri-
tance model for both phenotypes. This count is divided by the total number of SNPs in 
each variable combination to obtain each encoding’s power. PEN_DIFF of 0.1 is sepa-
rately illustrated because it exhibits the highest variance in performance, allowing bet-
ter comparison across encodings as power fluctuates significantly at this level (File S2). 
The p-value cutoff of 5 × 10− 8 (-log10p = 7.3) is selected as it represents a realistic level of 
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experiment-wide significance for a simulated human GWAS [36]. This cutoff was also 
used for the initial EDGE testing [23, 24], providing a basis of comparison.

Comparing false positive rates across encodings

To assess PAGER’s inflation in terms of false positive rates (FPR) and if it is compara-
ble to other encodings, we simulate 1,000 null effect (true-negative) SNPs with BAMS 
with both binary and continuous phenotypes across all combinations of experimental 
parameters (total of 280,000 binary-phenotype SNPs and 140,000 continuous-pheno-
type SNPs) and encode with additive, EDGE, and PAGER. As with the other analyses, 
EDGE and PAGER values are derived from a training set and then applied to a validation 
set. These encoded null effect SNPs are regressed with the association_study function in 
CLARITE used in the power experiment. The mean FPR for each combination of sample 
size and MAF is calculated by counting times each encoding produces a p-value ≤ 0.05 
and dividing by the number of combinations of PEN_DIFF and case/control ratio (binary 
only) (two levels of case/control by four levels of PEN_DIFF by 1,000 iterations = 8,000 
for binary and 4,000 for continuous).

Application to real-world data

To explore if EDGE and PAGER have the capabilities to reveal genome-wide significant 
variants that elude single models and to compare GWAS results between encodings and 
methods, we use all LD-pruned SNPs (128,401 variants) and phenotype data from the 
rat GWAS [30, 31] used for the computation time experiment. We selected this dataset 
because the controlled genetic and environmental factors in the breeding design reduce 
confounding variables commonly present in human studies, allowing for a clearer assess-
ment of the effectiveness of both PAGER and EDGE. We choose BMI_Tail, body weight 
(BW), retroperitoneal fat (RetroFat) as our phenotypes of interest as they have the larg-
est sample size (n = 3,166), relatively high heritability, and numerous putative QTLs 
detected in the original GWAS study. Here, we perform GWAS by applying three inheri-
tance model encodings: additive (AA = 0, Aa = 1, and aa = 2), dominant (AA = 0, Aa = 1, 
and aa = 1), and recessive (AA = 1, Aa = 1, and aa = 0) and compare these GWAS results 
to those when only applying EDGE and PAGER. These three inheritance encodings are 
chosen as they are likely to collectively reflect most inheritance relationships that exist 
in natural and laboratory populations [1, 3, 4, 37, 38]. Thus, we compare three distinct 
GWAS methods: tri-encoding, EDGE, and PAGER across all three phenotypes.

Prior to performing GWAS, GEMMA software [39] is used to produce a genetic relat-
edness matrix (GRM) to account for relatedness between individual rats based on allele 
count (i.e., the standard additive encoding (0, 1, and 2)). Although we apply different 
genotype encodings in the fixed effects of our GWAS models, the GRM is computed 
once using the standard additive encoding to capture the overall genetic relatedness 
among individuals. This approach allows us to control for population structure and kin-
ship in the mixed-model association analysis, ensuring that any associations detected are 
not confounded by relatedness. GWAS are performed using encoded genotypes from 
each method in GEMMA, with the generated GRM, using the leave-one-chromosome 
out (LOCO) method to avoid proximal genetic contamination [40, 41]. The genome-
wide significance threshold across experiments is determined by Bonferroni correc-
tion (0.05/128,401 = 3.89 × 10− 7; -log10p = 6.41). Note: this is stricter than the significance 
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threshold used for the original GWAS, -log10p = 5.6 [30, 31]. For the tri-encoding GWAS, 
this threshold is further divided by three (1.30 × 10− 7; -log10p = 6.89) to account for the 
multiple testing of three models. Since both EDGE and PAGER use the phenotype to 
derive genotype encodings, there is an increased risk of overfitting. To address this and 
for accurate comparison to the tri-encoding GWAS, the Bonferroni threshold is halved 
(1.95 × 10− 7; -log10p = 6.71) for the EDGE GWAS and the PAGER GWAS. GWAS QTL 
independence for each encoding strategy is determined by performing conditional 
analysis using custom R scripts adapted from the original GWAS study [30] in which 
top signal SNPs are used as covariates for subsequent GWAS to control for QTL on the 
same chromosome. Putative QTLs are identified, validated, and compared by calculating 
LD intervals and assessing overlap between encodings. LD intervals are calculated from 
original genotype files in PLINK [42] by scanning upstream and downstream of the peak 
parker for SNPs with a correlation coefficient (r2) greater than or equal to 0.6. Beyond 
these points, the LD interval ends. If peak markers of putative QTL from one encoding 
strategy have overlapping LD intervals on at least one end with peak markers of putative 
QTL from another encoding strategy, these QTL are given the same identification num-
ber for comparison purposes.

Gene set enrichment analysis (GSEA) is performed to retrieve gene ontology (GO) 
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for novel 
QTL identified by PAGER, EDGE, or any alternative encoding model other than addi-
tive. This allows us to determine if novel loci detected by alternate encoding strategies 
are associated with terms and pathways that reveal relevant biological insights related 
to BMI, metabolism, and/or obesity. LD intervals (as determined for the QTL compar-
ison and identification step) of these loci are submitted to the Rat Genome Database 
(https://rgd.mcw.edu/), assembly Rnor 6.0, using custom R scripts to retrieve gene mod-
els for enrichment. GO term and KEGG pathway enrichments are performed in R using 
BioConductor [43] and clusterProfiler [44] packages with FDR correction (corrected 
p-value and q-value cutoffs = 0.05).

Results
PAGER demonstrates progressive speed improvements over EDGE

Both CPU and GPU integrations of PAGER consistently show speed increases over 
EDGE in all combinations of case/control ratio (binary only), sample size, MAF, PENN_
DIFF, and inheritance model with the factor of the speed-up increasing with sample size 
(Fig. 1; File S2). PAGER GPU speed increases over EDGE range from 11.7x at a sample 
size of 2,000 to 52.7X at 50,000 individuals with a binary phenotype (Fig. 1A) and 10.9x 
to 54.6x with a continuous phenotype (Fig. 1B). A similar trend of increasing speed up 
as sample size increases is also observed for PAGER CPU where speed increases range 
from 7x to 30x with a binary phenotype (Fig. 1A) and 6.4x to 29.5x with a continuous 
phenotype (Fig. 1B).

Computation time increases do not scale with SNP number as observed with sample 
size (File S2). However, a considerable increase is observed with the GPU at 100,000 
SNPs (4.4X at 10,000 SNPs to 6.4X at 100,000 SNPs; File S2). This speed increase is likely 
observed because, in general, VRAM is faster than system RAM. This, coupled with 
VRAM’s proximity to the GPU cores, loading the dataset in VRAM can improve the per-
formance and efficiency of GPU processing applications which can be observed as data 

https://rgd.mcw.edu/
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size increases. Mean SNP-wise speed increases of PAGER over EDGE are 4.4X and 4.8X 
for the CPU and GPU, respectively (File S2).

On average, from the increasing sample size experiment, the times to encode a single 
discrete SNP are 0.072 s, 4.5 × 10− 3 seconds, and 2.7 × 10− 3 seconds for EDGE, PAGER 
CPU, and PAGER GPU, respectively as sample size increases from 2,000 to 50,000 (File 
S2). For continuous SNPs, mean encoding times are 0.067 s for EDGE, 4.4 × 10− 3 seconds 
for PAGER CPU, and 2.6 × 10− 3 seconds for PAGER GPU (File S2). Total encoding times 
from the SNP-wise experiment as SNPs increase from 1 to 100,000 range from 0.02 s to 
1,919 s for EDGE, 4.4 × 10− 3 seconds to 437 s for PAGER CPU, and 4.2 × 10− 3 seconds to 
300 s for PAGER GPU (File S2).

PAGER values accurately capture phenotypic patterns of theoretical inheritance models

The box plots of aggregated PAGER values across experimental parameters for train-
ing data generated using each of the eight inheritance models are highly comparable 
to expected phenotype distributions per genotypic class of theoretical models (File S1; 
Fig.  2). This is observed for both binary (black boxplots) and continuous (white box-
plots) phenotypes.

When comparing mean heterozygote encodings of simulated SNPs, PAGER and 
EDGE values are similar for most inheritance patterns across MAF and noise conditions 
(Table 1). However, in heterotic models, EDGE heterozygote encodings deviate signifi-
cantly from expected values. Also, compared to EDGE, PAGER exhibits much smaller 
variances for heterozygote values overall (File S2). This is primarily due to PAGER’s nor-
malization process. Additionally, PAGER is less affected by changes in MAF and noise in 
additive, superadditive, dominant, heterosis, underdominant, and overdominant inheri-
tance models in SNPs with a binary phenotype (Table 1; File S2). In continuous SNPs, 
PAGER values are more consistent across MAF and noise levels in subadditive, super-
additive, dominant, heterosis, underdominant and overdominant models. EDGE exhib-
its better consistency in recessive inheritance SNPs in both phenotypes (Table 1; File S2).

PAGER achieves competitive power and a conservative false positive rate

Across all experimental parameters and inheritance models, the power of EDGE and 
PAGER are highly similar (Fig. 3; File S2). Across all levels of PEN_DIFF and inheritance 

Fig. 1  Mean computation time comparisons, as speed factor increases of PAGER over EDGE,  across all experi-
mental variables as sample size increases for (A) binary and (B) continuous phenotypes. CPU speed factors are in 
orange and GPU in blue
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model and in both phenotypes, mean power levels of EDGE and PAGER are slightly less 
than that of inherent with the difference decreasing as sample size and MAF increase 
(Fig. 3A and B; File S2). Additive tends to achieve the lowest levels of power, except in 
SNPs simulated with an additive inheritance model (Files S1 and S2). Additive encoding 
has the greatest difficulty with recessive and heterotic inheritance models. Regardless 
of phenotype or encoding, we observe that power increases with sample size and MAF. 
Additionally, higher power is observed in the binary phenotype for all encodings (Fig. 3; 
File S2). We also observe these trends in instances where PEN_DIFF is set at 0.1 (Fig. 3C 
and D) and within each inheritance model (Files S1 and S2).

Table 1  Mean heterozygote encoding values of EDGE and PAGER 
Phenotype Inheritance 

Model
Expected
Value

All MAF = 0.1 MAF/
PEN_DIFF = 0.1

EDGE PAGER EDGE PAGER EDGE PAGER
Binary Additive 0.50 0.5142 0.4915 0.5666 0.5262 0.7477 0.5548

Subadditive 0.25 0.2652 0.2519 0.2751 0.2822 0.2958 0.3280
Superadditive 0.75 0.7453 0.7327 0.7231 0.7494 0.6677 0.7346
Dominant 1.00 0.9796 0.9563 0.7856 0.9233 0.0650 0.8626
Recessive 0.00 0.0062 0.0257 0.0230 0.0386 0.0741 0.0973
Heterosis 1.00 107.65 0.9991 2.4454 0.9959 -2.0471 0.9840
Underdominant 0.00 -1.0590 0.0019 -1.3057 0.0076 -0.9913 0.0283
Overdominant 1.00 2.1533 0.9964 2.9815 0.9870 2.2889 0.9560

Continuous Additive 0.50 0.5035 0.5161 0.5343 0.5448 0.5646 0.5712
Subadditive 0.25 0.2525 0.2706 0.3325 0.3132 0.5134 0.3813
Superadditive 0.75 0.7062 0.7488 0.6884 0.7450 0.2705 0.7051
Dominant 1.00 1.0949 0.9296 0.9978 0.8785 0.9092 0.8873
Recessive 0.00 -0.0092 0.0543 -0.0078 0.0886 -0.0009 0.2022
Heterosis 1.00 -23.000 0.9948 -3.1527 0.9813 -0.9586 0.9368
Underdominant 0.00 -0.9541 0.0087 -0.7623 0.0260 0.7380 0.0869
Overdominant 1.00 2.1302 0.9868 1.1540 0.9602 0.9102 0.8873

Mean heterozygote encoding values of EDGE and PAGER derived from binary and continuous phenotype SNPs from the 
training set across all parameters, at MAF set at 0.1, and at MAF and PEN_DIFF both set at 0.1. The ‘Expected Value’ column 
contains heterozygote encoding values expected under each theoretical model

Fig. 2  Boxplots of mean PAGER values across all experimental variables for training data simulated with the eight 
theoretical inheritance models used in this study. AA, Aa, and aa genotypic classes are depicted in red, blue, and 
green lines and boxplots, respectively. Boxplots filled in with black represent SNPs with a binary phenotype while 
white-filled boxplots represent SNPs with a continuous phenotype
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PAGER achieves a conservative FPR at all levels of sample size and MAF, for both phe-
notypes, similar to that of additive encoding and EDGE (~ 5%), within Bradley’s liberal 
criteria [45] of 2.5–7.5% (Fig. 4; File S2). FPR does not seem to scale (negatively or posi-
tively) as MAF or samples size increase.

PAGER and EDGE identify putative QTL not detected by additive encoding

There are 13 unique putative QTL denoted by LD regions identified by the three GWAS 
across all phenotypes (Figs. 5 and 6; Table 2). Separated by phenotype, we observe three, 
eight, and six QTL for BMI_TAIL, BW, and RetroFat, respectively. Two QTL, QTL 3 and 
5, are pleiotropic with two phenotypes (BMI_TAIL/BW and BW/RetroFat, respectively). 
QTL 1, which is detected at least once in all phenotypes by all encoding methods, is 
pleiotropic with all three phenotypes (Figs. 5 and 6; Table 2). SNPs in the LD interval of 
QTL 1 are in close proximity to putative loci with high signal identified by the original 
GWAS study for multiple phenotypes [30, 31].

QTL 3 is identified as a putative QTL by only recessive, EDGE, and PAGER (Figs. 5 
and 6; Table 2). While recessive and PAGER detect this QTL for both BMI_TAIL and 
BW, EDGE only detects it for BMI_TAIL. Furthermore, no SNPs within QTL 3’s LD 
intervals are implicated in the original GWAS [30, 31]. Apart from EDGE not detecting 
QTL 3 in BW, EDGE and PAGER detect all the putative QTL that the standard models 
in the tri-encoding GWAS collectively detect across all three phenotypes (Figs. 5 and 6; 

Fig. 3  Polar plots of mean power for each encoding as sample size and minor allele frequency (MAF) increases 
for SNPs with binary (A and C) and continuous phenotypes (B and D). A and B show mean power across all levels 
of PEN_DIFF while C and D show mean power with PEN_DIFF set at 0.1. Large radial sectors, separated by lines 
extending from the center, represent increases in sample size in a clockwise direction. Within each radial sector, 
MAF increases clockwise from 0.1 to 0.5 in 0.1 increments. Power increases from the center of the circle to the edge 
from 0 to 1 in increments of 0.25, depicted by concentric rings of alternating shades of gray
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Table 2). It is important to note that additive encoding does detect significant putative 
QTL that are also detected by recessive and dominant (Fig. 5; Table 2). However, reces-
sive SNPs at QTL 3 do not reach significance under additive encoding (Fig. 5; Table 2). 
QTL 2, 5 (RetroFat only), 6, 10, and 13 are only detected by the additive encoding in the 
tri-encoding GWAS (Fig.  5; Table  2). No QTL, as defined by LD intervals, are exclu-
sively detected by dominant encoding (Fig. 5; Table 2). Due to our increased significance 
threshold compared to the original GWAS study, we do not detect four QTL (one for 
BMI_TAIL, two for BW, and one for RetroFat) that were detected in that study [30, 31] 
using any encoding (File S3).

Across phenotypes, PAGER has the most instances (13/17 with 5/13 shared with 
EDGE) of having the highest QTL signal, in terms of –log10p, compared to other encod-
ings (Table 2; File S3). QTL 3 in BMI_TAIL reaches the highest significance with reces-
sive while QTL 6, 11, and 12 reach the highest significance with additive encoding.

GSEA identifies 150 GO terms and 16 KEGG pathways that are significantly enriched 
among gene models within the LD interval of QTL 3 (File S3). Most of these enriched 
GO terms are associated with two genes: Apc and Wnt8a.

Discussion
PAGER achieves competitive performance and scalable efficiency in simulations

PAGER achieves encoding speeds up to 55 times faster than EDGE when leveraging 
GPU integration and operating on a sample size of 50,000 (Fig. 1; File S2). Significant 
speed increases are also observed at lower sample sizes and when utilizing a CPU. These 
speed increases are significant and highlight that genotype encoding by PAGER will not 
significantly burden large-scale single locus analyses. Additionally, PAGER accurately 

Fig. 4  Mean false positive rate (FPR) for (A) binary and (B) continuous phenotypes as sample size increases for ad-
ditive encoding, EDGE, and PAGER. MAF increases left to right from sub-plot to sub-plot. Each point in each subplot 
is derived from simulated null effect (true-negative) SNPs for each combination of sample size and MAF. Bradley’s 
liberal criteria (2.5–7.5%) is denoted with horizontal dotted red lines
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describes eight theoretical inheritance models used for SNP simulations (Fig.  2; File 
S1), underscoring its efficiency and versatility. Comparisons of heterozygote encod-
ings between EDGE and PAGER reveal that both PAGER and EDGE generate hetero-
zygote values close to theoretical levels for both phenotypes, even at a low MAF and 
high noise, which lead to the most challenging SNPs (File S2). However, EDGE has diffi-
culty describing heterotic inheritance models (heterosis, underdominant, and overdomi-
nant). This arises because EDGE uses two anchors (AA and aa) while PAGER only uses 
one (AA), allowing PAGER to be more flexible and accurately describe any inheritance 
model. EDGE’s lack of flexibility in this regard can make post-analysis interpretations of 
SNP inheritance models challenging. Despite this, EDGE’s power to detect significance 

Fig. 5  Porcupine plots (aggregated Manhattan plots) representing –log10p-values for each SNP for all three phe-
notypes for the tri-encoding GWAS. Inheritance model encoding names are above their respective plot. Chromo-
some number increases along the x-axis. Red horizontal lines denote the experiment-wide significance threshold 
(-log10p = 6.89). Red, yellow, and blue circles represent putative QTL hits for BMI_TAIL, BW, and RetroFat, respectively
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in SNPs simulated with these heterotic models are highly comparable to PAGER (Fig. 3; 
Files S1 and S2). This suggests that, from a modeling perspective, the heterozygote val-
ues derived by EDGE for heterotic SNPs are still informative. Consequently, EDGE 
should still be effective in detecting significant associations in SNPs following heterotic 
inheritance patterns.

Although PAGER and EDGE do not achieve the highest levels of power, they com-
pensate with their flexibility. Since both methods derive encoding values from a train-
ing set, applying these encodings to an external validation set results in some power 
loss. Nevertheless, EDGE and PAGER significantly outperform the additive encoding in 
SNPs simulated from non-additive inheritance models, with the greatest performance 
differences observed in recessive and heterotic models and at the highest noise level 
(PEN_DIFF = 0.1). This finding suggests that the additive model can underperform in 
real-world situations, potentially leading to type II errors when SNPs follow alternative 
inheritance models.

While respective inherent models outperform EDGE and PAGER, especially in sce-
narios with lower sample sizes and MAFs, employing multiple inherent models in 
a GWAS or QTL analysis will significantly increase the burden of multiple testing (as 
observed in our real-world experiment). Therefore, it is more prudent to use EDGE or 
PAGER to flexibly and dynamically assign each SNP an encoding that closely matches 
the actual inheritance model at that locus. This approach reduces the burden of multiple 
testing while maintaining reasonable power. Since we observe that EDGE and PAGER 

Fig. 6  Porcupine plots (aggregated Manhattan plots) representing –log10p-values for each SNP for all three pheno-
types for EDGE and PAGER GWAS. The name of each method is above their respective plot. Chromosome number 
increases along the x-axis. Red horizontal lines denote the experiment-wide significance threshold (-log10p = 6.71). 
Red, yellow, and blue circles represent putative QTL hits for BMI_TAIL, BW, and RetroFat, respectively
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power losses diminish as sample sizes increases, we recommend using training and vali-
dation splits in large-scale studies. However, for studies with inherently lower power due 
to sample size limitations, increasing the significance threshold statistically acknowl-
edges this constraint while still penalizing EDGE and PAGER. While we acknowledge 
that selecting between penalization strategies is not ideal, our suggestion offers a prag-
matic approach for leveraging EDGE and PAGER in practical applications and balancing 
between power availability and the potential of overfitting.

PAGER’s performance on these benchmarking metrics shows that the approach does 
not incur the significant costs or penalties, such as time loss, often associated with other 
genotype encodings. PAGER distinguishes itself through its streamlined mathematical 

Table 2  Putative QTL detected in tri-encoding, EDGE, and PAGER GWAS
QTL Position (chr.bp) LD Interval Start LD Interval Stop Add Dom Rec EDGE PAGER MAF
BMI_TAIL
1 chr1.281474527 chr1.280924333 chr1.282109150 11.40 0.42

chr1.281489331 chr1.280924333 chr1.282109150 12.14 0.42
chr1.281509176 chr1.280924333 chr1.282109150 11.26 0.43
chr1.282070632 chr1.280924333 chr1.282561614 11.20 0.46

2 chr10.84021443 chr10.83611968 chr10.84896193 7.84 7.86 7.86 0.46
3 chr18.27355039 chr18.26640423 chr18.27355039 8.91 8.78 8.72 0.31
Bodyweight
4 chr1.185170500 chr1.184483617 chr1.187801594 7.42 6.95 0.26

chr1.185730317 chr1.184483617 chr1.187728266 7.47 7.47 0.26
1 chr1.281420356 chr1.280924333 chr1.282109150 16.91 17.47 0.42

chr1.281489331 chr1.280924333 chr1.282109150 15.92 17.63 0.42
5 chr3.136021511 chr3.132304192 chr3.137146532 7.96 7.57 0.23

chr3.136707086 chr3.134362543 chr3.137146532 7.90 0.25
chr3.136975356 chr3.136201348 chr3.138849452 7.13 0.49

6 chr5.50933779 chr5.49236189 chr5.50933779 6.91 6.79 6.79 0.22
7 chr7.24971798 chr7.24895116 chr7.25205985 7.21 7.88 7.96 0.073

chr7.25030336 chr7.24895116 chr7.25205985 7.76 0.074
8 chr7.34874677 chr7.34156704 chr7.36522260 8.79 0.12

chr7.34917462 chr7.34132390 chr7.36522260 8.65 8.82 0.12
chr7.36417727 chr7.34156704 chr7.36522260 7.79 0.12

9 chr12.1985457 chr12.850324 chr12.5747642 7.78 0.18
chr12.5747404 chr12.4956491 chr12.6054210 8.88 9.06 9.06 0.40

3 chr18.27355039 chr18.26640423 chr18.27355039 8.75 8.81 0.31
RetroFat
10 chr1.160493164 chr1.157254290 chr1.162850128 7.14 7.59 7.59 0.47
1 chr1.280876316 chr1.279904638 chr1.281355424 7.17 0.45

chr1.281420356 chr1.280924333 chr1.282109150 22.69 23.14 0.42
chr1.281509176 chr1.280924333 chr1.282109150 20.27 23.47 0.43

11 chr3.94614669 chr3.92341346 chr3.97685154 9.69 0.42
chr3.95378412 chr3.92341346 chr3.97685154 12.67 12.59 12.59 0.42

5 chr3.137286589 chr3.136201348 chr3.138849452 7.34 7.44 0.48
chr3.137335822 chr3.136201348 chr3.138849452 7.14 0.48

12 chr6.27047239 chr6.23069244 chr6.28634206 10.32 0.34
chr6.28560776 chr6.27047239 chr6.29668903 17.74 13.05 17.63 17.65 0.35

13 chr13.53419980 chr13.52504586 chr13.54655489 7.49 7.75 7.75 0.47
QTL are separated by phenotype and position of peak marker (chromosome and base pair location), LD start and stop 
intervals, -log10p-values per inheritance encoding, and minor allele frequencies (MAFs) are displayed in columns. Bolded 
QTL numbers denote pleiotropy  (association with more than one phenotype). QTL that have multiple SNP identifier/
location rows denote SNPs with overlapping LD windows. Displayed -log10p-values denote that the encoding method 
identified that SNP as a peak marker for the respective QTL. Bolded -log10p-values represent the highest signal and most 
significant encoding observed at that QTL
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approach and flexibility, which facilitate its application to a broad range of systems and 
phenotypes. Most encoding strategies are tailored to specific species, models, and/or 
phenotype categories (such as binary or continuous traits). Additionally, it is common 
for studies to implement a limited selection of inherent inheritance models tailored to 
particular phenotypes of interest [9, 10, 13]. In contrast, PAGER’s architecture supports 
its use in any genetic framework (including polyploid systems) or phenotype (binary or 
continuous) and can be implemented for both univariate analyses and investigation of 
epistasis by simple extension of the algorithm. Moreover, PAGER’s ability to incorpo-
rate and describe any theoretical inheritance model (Fig. 2; File S1), significantly simpli-
fies the analytical process by removing the need to apply multiple encodings, and thus, 
the associated multiple testing burden. Finally, PAGER’s enhanced processing speed sig-
nificantly diminishes computational costs associated with genotype encoding. Through 
these advantages, PAGER emerges as a highly versatile and efficient tool for simplifying 
and expediting the encoding process for a diverse spectrum of genetic investigations.

PAGER and EDGE reveal a biologically relevant and novel putative QTL

In their 2019 review on the benefits and limitations of GWAS, Tam et al. use an iceberg 
metaphor to contrast current knowledge with potential future discoveries by GWAS 
[16]. The tip of the iceberg, visible above water, symbolizes our existing understanding of 
GWAS, including the reliance on the additive inheritance model. The larger submerged 
portion represents the untapped future potential of GWAS, including the implementa-
tion of alternative inheritance models. This exploratory study builds on that premise and 
demonstrates that three alternative encoding strategies - recessive, EDGE, and PAGER - 
identify a novel putative QTL (QTL 3) that additive did not in two phenotypes (EDGE in 
only one phenotype – BMI_TAIL).

LD intervals around putative SNPs for QTL 3 do not overlap with any QTL found 
in the original GWAS study [30, 31]. Thus, QTL 3 is novel for this population of rats 
and these phenotypes. Gene models in the LD interval of QTL 3 (chr18.26640423 - 
chr18.27355039) show enrichment in 150 specific GO terms (five MF, 143 BP, and two 
CC) and 16 KEGG pathways (File S3). KEGG pathways are related to Wnt signaling 
and certain diseases including cancers (including colorectal cancer and gastric cancer), 
Alzheimer’s disease, and Cushing syndrome (File S3). GO terms are associated with pri-
marily two genes: Wnt8a and Apc.

Wnt8a participates in the Wnt signaling and thus is likely involved in roles including 
cell fate determination, cell migration, cell polarity, neuron differentiation, and organo-
genesis [46]. Indeed, many of the enriched biological functions for QTL 3 are associated 
with these roles (File S3). Apc, just upstream of Wnt8a, is an APC (adenomatous pol-
yposis coli) regulator of the Wnt signaling pathway. Apc, in addition to being involved 
in growth, development, and cell differentiation, is also a tumor suppressor gene linked 
to certain cancers including colorectal and brain cancers [47, 48]. In humans and mice, 
obesity and obesity-driven inflammation, precursors to colorectal cancers, are linked 
to overactivation of the Wnt signaling pathway [49, 50]. In turn, Apc negatively regu-
lates increased Wnt signaling [49–51]. Our results could indicate that mutations in 
Wnt8a and Apc are associated with some of the variation in BMI and bodyweight we 
observe in this population of rats. Additional studies are required to validate this claim. 
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Nevertheless, EDGE and PAGER effectively highlight a novel genetic locus, and areas for 
scientific investigation, that were not identified in the initial GWAS.

Encoding methods Differ in Peak QTL marker positions and significance

Variation in the base pair positions of peak markers of the same QTL are observed 
depending on the encoding method employed (Table 2; File S3). Because of this, some 
encoder-specific LD intervals do not have the same start and end points yet do overlap 
at least at one end. This likely occurs as each encoding method implicates (or prefers) 
peak markers that conform better to the inheritance pattern(s) modeled. These prefer-
ences result in fluctuations of the signal of each encoding’s peak marker and explain the 
varying significance levels observed across encoding methods, including dominant and 
recessive (Table 2; File S3).

PAGER can model each SNP to describe the inheritance pattern observed from aver-
age phenotypes more accurately than EDGE (primarily in heterotic models) and other 
inheritance encodings (Table  1: File S2), making it more sensitive to variation. Thus, 
PAGER can accurately subsume all theoretical inheritance models. In theory, it follows 
that PAGER should achieve the highest significance level for every QTL. However, it is 
likely that additive encoding inflates the signal of some SNPs that do not conform to 
strict additivity [16, 52], even those exhibiting moderate to high deviations from additiv-
ity. This is likely true for dominant and recessive encodings as well. Indeed, according 
to PAGER heterozygote values, no SNP at a peak marker is observed to follow a purely 
additive model of inheritance in which the heterozygote is completely intermediate (i.e., 
0.5; File S3). Despite this, additive achieves higher significance than any other model in 
three QTL.

An explanation for why significance values differ and reach higher levels in different 
models may involve how EDGE and PAGER dynamically derive encoding values. Model-
ing SNPs closer to their true inheritance pattern likely results in QTL signals closer to 
their ‘true’ significance level and chromosomal position as EDGE and PAGER account 
for and quantify deviations from additivity on an SNP-by-SNP basis. Although it could 
be argued that this is a type of overfitting, higher significance values observed in other 
models point to an alternative explanation. It is also possible that additive, recessive, and 
dominant models, which are applied uniformly to all SNPs, may introduce some error, 
either increasing or decreasing main effect signals and potentially resulting in type I and 
type II errors in marginally significant SNPs [16, 52]. Another way to frame this is that 
uniform inheritance models enforce their own inherent biases across the entire dataset, 
introducing error.

An alternative explanation for the varying levels of significance across models is that 
PAGER and/or EDGE interact with LD structures differently compared to uniform mod-
els. This interaction may increase or decrease the significance of nearby loci by effec-
tively shortening or lengthening the virtual LD windows. While our steps for controlling 
proximal contamination and ensuring QTL independence address some of these issues, 
there could be additional aspects to explore. Yet another alternative, exclusively regard-
ing PAGER, is the potential violation of the assumption of normality in phenotypic 
distributions for each genotypic class. However, this is unlikely as MAFs are greater 
than 0.20 in every QTL where an encoding other than PAGER achieves a higher signal 
(Table 2; File S3). Although this does not guarantee normality, it implies that adequate 
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sample sizes exist for each genotypic class in these QTL, hence not limiting PAGER’s 
efficacy. Despite these differences observed in significance levels, PAGER and additive 
encodings share the same peak marker in 80% (12/15) of instances where both encodings 
identify the same QTL (Table 2; File S3). Alternatively, additive and EDGE and PAGER 
and EDGE only share peak markers in 53.3% (8/15) and 56.25% (9/16) of instances, 
respectively (Table 2; File S3). Thus, in most circumstances, additive and PAGER encod-
ings highlight the same peak marker underlying these complex phenotypes and, in that 
way, are more comparable. This implies that PAGER may generalize better to complex 
traits across phenotypes and systems compared to EDGE. However, additional experi-
mentation and biological validation is required to bolster this claim.

It is unclear why additive detects some SNPs with notable deviations from additivity 
while not detecting QTL 3 on chromosome 18 (Table 2; File S3). For example, additive 
encoding detects QTL 8 and 13, both of which have large deviations from additiv-
ity, according to PAGER values and respective detections from the dominant encoding 
(QTL8; File S3). It may be that these SNPs still contribute significantly to the additive 
genetic variation of the traits (BW and RetroFat), which allows the additive model to 
detect them [14]. In addition to EDGE and PAGER, QTL 3 is also identified by the reces-
sive encoding GWAS (Fig. 5; File S3), reinforcing its potential as a genuine true positive 
as the PAGER values for this locus point to a recessive model of inheritance. However, 
this QTL is not detected by the additive encoding. Interestingly, our simulation experi-
ments reveal that the additive model’s power to detect recessive-simulated SNPs is sig-
nificantly lower compared to its performance with dominant-simulated SNPs (Files S1 
and S2). The representations of the recessive and dominant inheritance models in File 
S1 provide insight on this observation. The slopes and linear relationships of the additive 
and dominant models are better aligned compared to those of the additive and reces-
sive models. This suggests that the dominant model (and the dominant encoding) more 
closely resembles the additive model than the recessive model does. Indeed, both QTL 
8 and 13 follow highly dominant inheritance patterns, according to PAGER encoding 
values. This discrepancy between the additive and recessive models makes detecting 
recessive SNPs more challenging for the additive encoding and explains why additive 
fails to identify QTL 3 in the GWAS. Additional validation experiments are required to 
elucidate QTL 3’s role, if any, in obesity and metabolism in this system. However, it is 
important to note that we provide evidence that sole use of the additive model in GWAS 
significantly reduces the power to detect putative QTL following a recessive model of 
inheritance.

Notably, while the dominant model did not identify any unique QTLs beyond those 
detected by the additive model, it yielded more significant p-values for QTL 1 across all 
phenotypes (Table 2; File S3). This is likely due to the peak markers at this locus exhibit-
ing strong deviations from additivity, according to PAGER values, that align more with 
subadditive models of inheritance (Aa range = 0.191–0.218; File S3). While QTL 1 exerts 
substantial main effects on the phenotypes tested in this rat population, the increased 
significance with the dominant model suggests it could detect this locus where the addi-
tive model might fail if the effects were more marginal. However, it must be noted that 
the dominant model highlights different peak markers than the additive model, which 
show greater deviations from additivity (File S3). This supports the notion that dif-
ferent encoding strategies may favor variants aligning more closely with their model 
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assumptions. Interestingly, both dominant and additive encodings identify the same 
peak marker for QTL 7, yet the dominant model yields a more significant p-value despite 
this SNP exhibiting an inheritance pattern that is nearly additive (Aa = 0.445), accord-
ing to PAGER values (File S3). The reason for this is unclear but highlights that uni-
form model assumptions may lead to the introduction of noise and error in single-locus 
analyses.

The inability of the additive encoding to detect QTL 3 in BMI_TAIL and BW raises 
concerns about its effectiveness in identifying QTLs following heterotic models of inher-
itance. Indeed, additive power values in SNPs simulated from heterotic models are low 
(Files S1 and S2). In this study, we employ three uniform encoding strategies in the tri-
encoding GWAS, additive, dominant, and recessive, which successfully identify concor-
dant QTLs with EDGE and PAGER. However, in other systems and phenotypes, SNPs 
exhibiting strong effects can follow heterotic patterns (e.g., heterosis, underdominance, 
and overdominance). This is especially true in economically significant domesticated 
plants [5, 7] and animals [53, 54]. It remains uncertain whether the additive encoding, or 
dominant and recessive, can adequately capture all, most, or any of these variants. Had 
such variants been present in our study, additional uniform encoding models might have 
been necessary for their detection, further increasing the multiple testing burden of the 
tri-encoding GWAS. This underscores the potential of using dynamic tools like PAGER 
and EDGE, which are designed to detect any significant SNP association, regardless of 
the inheritance model. Further experimentation using real-world data is needed to eval-
uate the effectiveness of the additive encoding in capturing significant heterotic signals 
and to further explore PAGER’s capabilities in this context.

Limitations of PAGER

Every model has assumptions, and therefore limitations. Indeed, the assumption under-
lying the additive inheritance model (and all uniform models) could be considered the 
most unrealistic when compared to EDGE and PAGER. It assumes that for every SNP, 
across all systems and phenotypes, heterozygotes exhibit traits that are precisely inter-
mediate between those of homozygotes. PAGER, on the other hand, uses the relative dif-
ferences between mean phenotype values of each genotypic class. This dynamic nature 
makes PAGER a powerful tool, but it can lose power to accurately describe inheritance 
models when phenotype distributions deviate from normality. This is an issue only in 
continuous phenotypes, as the mean phenotype per genotypic class is the proportion of 
cases in case/control studies. However, skewed phenotypic distributions can affect any 
encoding strategy [27, 55]. We expect that with large sample sizes and typical MAFs, sig-
nificant deviations from normality will not be common. However, if this is not the case, 
we suggest transforming phenotypes or editing the PAGER formulae by replacing the 
mean phenotype value per genotypic class with the median and comparing performance 
between the two approaches. In some highly skewed distributions, the median may be 
more descriptive than the mean [56] and better capture the central tendency of the data. 
It is important to prune data of SNPs that have low MAFs to further reduce instances 
of skewed phenotype distributions. Future work will focus on the impact of skewness 
on PAGER accuracy. Small sample sizes and low allele frequencies can also lower PAG-
ER’s ability to detect true significance. Yet, as stated above concerning skewed genotype 
distributions, these issues negatively impact all encoding strategies [27, 57]. Indeed, we 
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observe how low sample sizes and MAFs negatively affect power in our simulated data 
experiments for all methods including additive and inherent (Fig. 3: Files S1 and S2).

Although PAGER does not generate statistical models and perform hypothesis tests 
like EDGE, it does use the phenotype to derive SNP encodings. Often termed ‘double-
dipping,’ this can lead to significant overfitting [58]. Even though PAGER does achieve 
higher significance in most QTL compared to other encodings, these signals are not 
largely inflated nor is the trend universal (i.e., other encodings are observed to achieve 
higher signal for some QTL). Despite these observations, PAGER, along with EDGE, 
should be penalized due to the costs associated with more accurately modeling each 
SNP’s inheritance pattern using the phenotype. For our application of PAGER to real-
world data, we adjusted the significance threshold by halving the Bonferroni cutoff to 
make it comparable to the tri-encoding GWAS, which utilizes the same population of 
rats and divides the Bonferroni cutoff by three. As we have touched upon previously 
and demonstrated in our simulation experiments, in non-exploratory studies with large 
sample sizes, using training and validation splits can provide a viable and potentially 
more robust alternative. Regardless of the penalty selected, their implementation can 
prevent the detection of some variants with substantial main effects. Despite this, we 
demonstrate that PAGER not only captures the same genetic associations as multiple 
uniform inheritance models, including a novel putative QTL, but also achieves greater 
efficiency, as fewer tests and corresponding corrections are required compared to when 
multiple models are applied. While no approach to genotype encoding is flawless, 
PAGER is expected to perform efficiently in the vast majority of cases, especially within 
robust experimental designs featuring large sample sizes. When selecting phenotypes 
for PAGER encoding, researchers should choose traits that are directly relevant to their 
research questions and for which they have high-quality phenotype data. Ensuring ade-
quate sample size and appropriate phenotype distribution (e.g., avoiding highly skewed 
data) will enhance the accuracy of the genotype encodings and the reliability of results.

Conclusions
We have effectively demonstrated that PAGER is a fast, robust, and efficient genotype 
encoding strategy that, along with EDGE, detects biologically relevant genotype-phe-
notype associations that the standard additive encoding alone does not. We also pro-
vide evidence that it is more prudent to use dynamic SNP-wise encoding strategies, like 
EDGE and PAGER, than employing multiple uniform inheritance encodings. PAGER 
is designed to replicate findings from additive, dominant, and recessive models while 
also identifying novel associations that these standard models may miss. The variation 
in findings across different models, as observed in Table 2, underscores the importance 
of considering multiple inheritance patterns in association analyses. By capturing a 
wide range of inheritance patterns within a single analysis, PAGER reduces the need to 
apply multiple models separately. This flexibility allows researchers to detect SNPs with 
diverse effect types without increasing the multiple testing burden, thereby enhancing 
the discovery of meaningful genetic associations. Taken together, these results suggest 
PAGER’s potential in uncovering previously unrecognized variants, and thus missing 
heritability, influencing complex traits. Our approach facilitates a more nuanced under-
standing of quantitative genetics, surpassing traditional methods that follow uniform 
models of inheritance. Importantly, PAGER has the capability of opening new avenues 
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for research into the genetic basis of traits and diseases, offering promising directions for 
future genetic studies and the discovery of novel putative loci and therapeutic targets.

PAGER is easy to implement in any programming language, faster than competitive 
methods, is extensible to any genetic system and phenotype, and can be easily adapted 
to investigate epistasis. In future work, we aim to apply PAGER to other systems and 
phenotypes and explore its capability to detect pairwise and higher order epistatic inter-
actions. Additionally, we aim to incorporate PAGER as a feature encoding and feature 
engineering operator in automated machine learning (autoML) workflows. PAGER’s 
speed and extensibility make it an ideal addition to any autoML method, and we expect 
that it can even be applied to non-biological categorical features.

We hope this work motivates others to implement PAGER in their respective fields 
and that its use leads to new discoveries. Python and R code to implement PAGER is 
publicly available at: https://github.com/EpistasisLab/PAGER.
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