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Abstract 

Background: Modifiers significantly impact disease phenotypes by modulating 
the effects of disease-causing variants, resulting in varying disease manifestations 
among individuals. However, identifying genetic interactions between modifier 
and disease-causing variants is challenging.

Results: We developed MDVarP, an ensemble model comprising 1000 random for-
est predictors, to identify modifier ~ disease-causing variant combinations. MDVarP 
achieves high accuracy and precision, as verified using an independent dataset 
with published evidence of genetic interactions. We identified 25 novel modifier ~ dis-
ease-causing variant combinations and obtained supporting evidence for these asso-
ciations. MDVarP outputs a class label ("Associated-pair" or "Nonrelevant-pair") and two 
prediction scores indicating the probability of a true association.

Conclusions: MDVarP prioritizes variant pairs associated with phenotypic modula-
tions, enabling more effective mapping of functional contributions from disease-caus-
ing and modifier variants. This framework interprets genetic interactions underlying 
phenotypic variations in human diseases, with potential applications in personalized 
medicine and disease prevention.
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Introduction
Understanding the impact of genetic factors on human disease phenotypes is crucial for 
genetic diagnostics. Genetic factors contribute to disease etiology in varying degrees, 
from single mutation causing monogenicdiseases to complex interactions involving mul-
tiple genetic and environmental factors [1]. Understanding the forms of plasticity found 
in the human genetic architecture may assist the identification of genetic mechanisms 
responsible for the phenotypic variety of human diseases, and may be exploited as a pre-
clinical knowledge base in precision medicine [2, 3].

Recent advancements in DNA sequencing and computational analysis have signifi-
cantly advanced the field of human genetics [4, 5], providing insights into the genetic 
architecture of many diseases [6]. However, as genes do not act in isolation, interpreting 
genetic variants is complicated by interactions between genetic elements [7, 8]. Genetic 
modifiers play a crucial role in modulating the effects of deleterious variants, leading to 

†Hong Sun, Yunqin Chen 
and Liangxiao Ma equally 
contributed to this article as the 
co-first author.

*Correspondence:   
shpolor@163.com

1 Shanghai Engineering 
Research Center for Big 
Data in Pediatric Precision 
Medicine, Center for Biomedical 
Informatics, School of Medicine, 
Shanghai Children’s Hospital, 
Shanghai Jiao Tong University, 
Shanghai 200062, China
2 Shanghai-MOST Key Laboratory 
of Health and Disease Genomics, 
Shanghai Institute for Biomedical 
and Pharmaceutical 
Technologies (SIBPT), 
Shanghai 200237, China
3 Bio-Med Big Data Center, CAS 
Key Laboratory of Computational 
Biology, Shanghai Institute 
of Nutrition and Health, 
Chinese Academy of Science, 
Shanghai 200031, China

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-024-00392-y&domain=pdf


Page 2 of 14Sun et al. BioData Mining           (2024) 17:39 

phenotypic variability. Evidence for the action of modifier variants is extensive, both in 
humans and model organisms, and the effects of modifiers on the phenotypic expression 
of disease-causing variants can be subtle or profound [9–11]. Assessment of a broader 
spectrum of genetic contributions to disease risk, including both pathogenic variants 
and modifier variants, will be important to answer clinical questions about phenotypic 
variation among individuals [1, 12, 13].

While comprehensive assessment of genetic variations is becoming routine in clini-
cal genetics, interpreting the effects of modifying factors beyond monogenic inheritance 
remains limited. Interactions between modifier variants and the targeted disease-caus-
ing variants is the key characteristic of modifier genetics [1, 12]. It is a significant chal-
lenge for experimental identification of genetic interactions that requires comparison of 
the phenotypic consequences of perturbing two genomic loci either singly or in com-
bination. A high-quality experimental atlas of functional contributions including both 
disease-causing variants and modifier variants may still be decades into the future, 
therefore, there is a pressing need for in silico algorithms that predict modifying interac-
tions between variants.

Most computational methods focus on predicting pathogenicity of single variants [14, 
15]. Methods developed to predict multilocus genetic patterns have mainly been focused 
on pathogenic variant combinations [16, 17]. Co-inherited genetic modifiers differ from 
digenic inheritance in that biallelic mutations are necessary and sufficient to cause the 
pathology, whereas modifiers contribute to the phenotypic variability of a disease. Cur-
rent methods rarely address predictions of interactions between modifier variants and 
disease-causing variants. To address this, we developed the Modifier ~ Disease-causing 
Variant Pairs predictor (MDVarP), a novel bioinformatics tool that accurately identifies 
modifier ~ disease-causing variant combinations.

A major limitation of in-depth studies is that the current knowledge on genetic modi-
fiers is much scarcer than that of disease-causing variants. We previously constructed 
a manually curated genetic modifier database, PhenoModifier [18] and performed sys-
tematic analyses on the differences and relationships between modifier variants and 
disease-causing variants [19]. We called a pair of a modifier locus variant and a disease 
causing locus variant, that may or may not have a specific phenotypical expression, a 
modifier ~ disease-causing variant combination. Building on our previous works, we 
developed MDVarP, which employs variant, gene, and gene pair information to predict 
modifier ~ disease-causing variant combinations. We validated MDVarP using an inde-
pendent dataset consisting of experimentally identified modifier ~ disease-causing vari-
ant combinations, demonstrating its effectiveness in terms of accuracy and sensitivity.

Methods
Data and annotations

We annotated datasets using variant, gene and gene pair information (Table S1). We cal-
culated population genetical statistics for each variant using the 1000 Genomes Project 
data (1KGP) [4], including nucleotide diversity (pi), population differentiation  (FST) [20] 
among the five super-populations (Africans, Admixed Americans, East Asians, Europe-
ans and South Asians), Hardy–Weinberg equilibrium [21] and derived allele frequency 
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(Daf). A derived allele of an SNP site was defined relative to an ancestral allele which was 
inferred from an alignment of multiple genomes [22].

The combined annotation dependent depletion (CADD) is an integrative annotation 
built from diverse genomic features derived from surrounding sequence context, gene 
model annotations, evolutionary constraint, epigenetic measurements and functional 
predictions [23], and this gives CADD the capacity to evaluate deleteriousness for both 
coding and non-coding variants [24]. We used scaled CADD scores (Phred scores, ver-
sion 1.6) for comparability and used the highest score per variant locus.

Additionally, we used Phylop scores [25] to evaluate conserved or accelerated evo-
lution, information from Pfam [26] to predict variant impact on conserved protein 
domains. For the gene features, we used the gene haploinsufficiency data from Huang 
et al. [27, 28] and recessiveness probabilities from MacArthur et al. [29]. For the gene 
pair features, we exploited the biological distance obtained from Itan et  al. [30], pro-
tein–protein interaction data from BioGRID [31], and tissue-specific gene interaction 
data from GIANT [32].

We represented variant combinations as vectors of categorical and numerical features 
(Table S1), handling missing values as described in Table S2. After annotating both the 
training and control datasets, we initially had 65 features per entry, which were reduced 
to 57 after feature selection. All input features were mapped to the human reference 
build hg19.

Training

We trained MDVarP using 3351 modifier ~ disease-causing variant combinations, ran-
domly split into training and test sets (8:2 ratio). We created 1000 balanced training sets, 
each containing 2680 modifier ~ disease-causing variant combinations and 2680 ran-
domly selected control pairs.

We used the Random Forest (RF) algorithm [33] implemented in R package random-
Forest (version 4.7–1.1) [34] as the classifier. Each RF consisted of 500 decision trees 
using bootstrapping. We optimized the RF classifier using the tuneRF function, with 
parameters stepFactor = 1.5 and improve = 0.01, to determine the optimal number of 
variables (mtry) sampled at each split.

Construction of an independent testing dataset

To evaluate the predictor’s accuracy and sensitivity, we manually collected a testing data-
set from published papers with clear evidence of genetic interactions. We searched Pub-
Med using keywords like ‘genetic interaction’, ‘epistasis’, words that describe interactive 
effects, and their synonyms, and extracted variant pairs meeting the following criteria: 
one variant is disease-causing or associated while the other is not in the HGMD data-
base. The independent testing dataset consists of 108 modifier ~ disease-causing variant 
combinations, involving 75 modifier variants, 55 disease-causing variants, 43 modifier 
genes and 40 disease-causing genes.

Feature selection and interpretation

We applied five times repeated tenfold cross-validation for feature selection on a bal-
anced set with median performance among all the training sets using the rfcv function 
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in ‘randomForest’ package. Feature elimination order (starting from all features to 1) was 
ranked by feature importance. We applied log step, i.e. reducing a fixed proportion (1/3) 
of features at each run. The rfcv output is ranked by decreasing feature importance and 
the number of remaining features left was chosen so as to minimize the error rate.

Classification score and support score

We calculated two scores to indicate the strength of a prediction for two variant loci to 
be an “Associated-pair”: a classification score (C-score) and a support score (S-score) 
[17]. The C-score is defined as the median of the “Associated-pair” class probabilities 
over all 1000 independent RFs for the two variant loci combination: Median

t=1,...T
{Pt} , for each 

random forest tree t, T is the total number of random forests. The S-score is defined as 
the percentage of random forests that agree on the “Associated-pair” class for a two vari-
ants combination: T

t dt×100/T, for each random forest tree t, T is total number of ran-
dom forests and d = 1 when it gives a “Associated-pair” decision, d = 0 when it gives a 
“Nonrelevant-pair” decision.

Results and discussion
Collection of modifier ~ disease‑causing variant combinations for training the model

The dataset of modifier variants was extracted from our PhenoModifier database [18] 
and from subsequent collection by manual collection, which contains 3770 records of 
modifier information, involving 303 disorders, 2183 genetic modifier variants and 943 
modifier genes. The dataset of disease-causing variants were extracted from the HGMD 
database [6], variants being considered as disease-causing if the mutations were flagged 
as DM (disease-causing mutations).

A specific procedure was used for generating modifier ~ disease-causing variant com-
binations. Firstly, we got all combinations of modifier variants and disease-causing vari-
ants that are involved in the same disease. We collected all the associated diseases for 
each modifier variant, searched the HGMD database for a match and collected all the 
corresponding disease-causing variants. As many more tumor-associated variants were 
annotated both in HGMD and in phenModifier than variants related to other diseases, 
tumor diseases were excluded from the study to avoid bias. Secondly, we assigned a 
gene to each variant, meeting the criteria that the variant is located either in the genic 
region, or in the upstream/downstream regulatory region based on annotations from the 
Ensembl Variant Effect Predictor [35]. When more than one gene was assigned to a vari-
ant locus, gene pairs in which both genes are associated with the same disease based on 
the annotations in PhenoModifier, HGMD or DisGeNET database [36] were retained in 
the dataset. Thirdly, we introduced two conditions to decrease the probability of random 
associations: 1) the two variant loci are genotype dependent, tested by chi-squared sta-
tistics based on the 2504 genotypes derived from 1KGP [4] (p value < 0.05), and 2) the 
two genes are involved in the same pathway if no variation is observed among individu-
als in 1KGP in either the modifier gene or the disease-causing gene.

The filtered variant combinations were used as the training dataset on which we per-
formed feature selection and parameter tuning for our model. The training dataset 
contained 3351 pairs of modifier ~ disease-causing variant combinations, involving 54 
disorders, 530 modifier variants and 1432 disease-causing variants corresponding to 273 
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modifier genes and 168 disease-causing genes. The dataset contained 3213 pairs in which 
both the modifier and disease-causing variants are located in genic regions and 138 pairs 
in which the disease-causing locus is genic while the modifier locus is non-genic.

Pairs of variants in the training data show non‑random associations among individuals 

of 1KGP

Because of experimental challenges, interactions between modifier variants and dis-
ease-causing variants are difficult to identify, leading to limited empirical evidence 
for interacting genes, especially for interacting variants [12]. The ultimate phenotypic 
manifestation of modifier variants depends on interactions between the specific modi-
fier allele and target disease-causing allele, usually in the context of functional networks 
[7, 8, 37] and often shows genetic linkage associations [12, 38]. To get as much training 
data as possible, we focused on all the manually collected modifier variants, introduc-
ing restrictions of genetic linkage and functional relevance, and screened for all possible 
modifier ~ disease-causing variant combinations.

To assess evidence of non-random associations in the training dataset, we further 
examined variant combinations in 1KGP. For variants included in the training data-
set, 93% of the modifier locus variants were found among individuals in 1KGP; for the 
disease-causing loci, this figure was 25% (Fig.  1A). The median frequency of minor 

Fig. 1 Overlapping variants and modifier ~ disease-causing variant combinations between the training 
dataset and 1KGP. A Percentage of variants carried by individuals in 1KGP. B Histogram of minor allele 
frequency of variants in 1KGP. The dashed lines indicate median values. C Genotype frequencies of the 
548 modifier ~ disease-causing variant combinations, for which the mutant alleles were designated in the 
HGMD database. For each modifier ~ disease-causing variant combinations, M/m designate the allele at the 
modifier locus and D/d the allele at the disease-causing variant locus; uppercase stands for the wide-type 
allele and lowercase stands for the mutant allele which is recorded as the allele responsible for the reported 
disease in the HGMD database. The upper panel shows the linkage disequilibrium statistics D’ for each 
modifier ~ disease-causing variant combination
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alleles was 0.26 for modifier variants, compared to 4 ×  10–4 for disease-causing vari-
ants (Fig. 1B). We next examined the frequency in 1KGP of the mutant allele which is 
recorded as the allele associated with the reported disease in HGMD. In the training 
dataset, we found 548 modifier ~ disease-causing variant combinations in which the 
mutant allele was seen in at least one individual in 1KGB at both the modifier locus and 
the disease-causing locus. The disease-associated mutants were less common than the 
modifier mutants, and homozygous mutant alleles are even rarer (Fig.  1C). We com-
puted the normalized linkage disequilibrium value D’ for all 2-locus haplotypes of modi-
fier ~ disease-causing variant combinations, and found that most allele combinations 
co-occur in high linkage disequilibrium (Fig.  1C). The linkage disequilibrium analysis 
thus suggests that there are a number of nonrandom associations of modifier ~ disease-
causing variant combinations in the training dataset.

Feature evaluation

Our initial study on the data in the PhenoModifier database[18] revealed that biologi-
cal features defined at the variant and gene level distinguish very well modifier varia-
tions and disease-causing variations [19]. Modifier variations differ from disease-causing 
variations in many aspects, including population genetics statistics, epigenetic features, 
evolutionary characteristics and functional properties of the variations. Genes contain-
ing modifier variation(s) exhibit a higher probability of being haploinsufficient and have 
a higher probability of recessive disease causation. The study further suggested that 
co-expression analysis is an effective methodology to predict functional associations 
between modifier genes and their potential target genes. It has been reported that gene 
interaction networks can be exploited as effective ways to identify specific target alleles 
of modifiers [11, 12].

Based on the research outcome so far, we used 34 types of biological information for 
classification (Table S1): 1) 28 values coding for variants, including 14 values represent-
ing variant consequences derived from the Ensembl Variant Effect Predictor [35], 6 val-
ues representing protein domain annotations inferred from the Ensembl Variant Effect 
Predictor [35], 3 values representing evolutionary conservation [25], CADD Phred score 
representing the degree of deleteriousness of a variation, and 4 variant population genet-
ics statistics calculated based on 1KGP; 2) 3 gene values measuring the degree of gene 
haploinsufficiency [27, 28] and recessiveness [29]; 3) 3 gene pair values, including the 
biological distance obtained from Itan et  al. [32], a metric of protein–protein interac-
tions from BioGRID [33], and tissue-specific functional interactions from GIANT [34]. 
We then annotated our data with this information at the variant, gene, and gene-pair 
levels, leading to 65 features in total per variant pair.

MDVarP accurately identifies modifier ~ disease‑causing variant combinations

To better understand the affecting features and identify more modifier ~ disease-causing 
variant combinations, we developed the Modifier ~ Disease-causing Variant Pairs pre-
dictor (MDVarP), a predictor of modifier ~ disease-causing variant combinations.

To create control datasets of variants, we used variant data collected from four data-
bases: phenoModifier [18], HGMD [6], 1KGP of Phase 3 [4], and DisGeNET [36]. Our 
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previous study found that the genomic loci of modifier variations differ from pathogenic 
loci in population genetics statistics [19]. We assigned each variant population genet-
ics statistics calculated on the basis of 2504 genotypes from 1KGP [4]. For the variants 
annotated in the more up-to-date database, e.g. gnomAD [39], but not in 1KGP, data on 
population genetics statistics will be missing. To reduce bias due to the missing data, 
variants annotated by gnomAD were thus not considered in the construction of the con-
trol variant pool. We randomly selected two-variant combinations, and removed the 
modifier ~ disease-causing variant combinations. The randomly selected variant pairs 
were merged to form a neutral dataset, with an equal amount of two-variant combina-
tions as well as an equal distribution of genic/non-genic variant location as in the train-
ing data. In this way, we extracted 1000 random sets of two-variant combinations as the 
control training sets.

For each entry in the training dataset, the modifier locus was ranked ahead of the dis-
ease-causing locus. To ensure a fair prediction process, we determined the order of vari-
ants and genes inside each randomly selected two-variant combination based on their 
CADD Phred score, with the variant present in the second gene always having the high-
est CADD Phred score. For the 138 pairs in which one locus is genic and the other non-
genic, the non-genic locus was ranked ahead of the genic locus. For the 3213 pairs in 
which both loci were genic, we used the CADD Phred score to determine the order of 
the two loci, so that the second locus is the variant with the highest CADD Phred score, 
that is, with the higher probability of being disease-causing.

We found that there were no significant differences between the training and con-
trol datasets for eight of the 65 features (p value > 0.05, Wilcoxon Signed Rank test), 
including three features encoding consequences of the modifier variant, namely, 
whether the modifier variant is a non-coding change or located at a canonical splice 
site or in an intergenic region, and five features encoding consequences of the dis-
ease-causing variant, namely, whether the disease-causing variant is a non-coding 
change or occurred in a 5’UTR, in stop codon, or in a non-coding region or an inter-
genic region. The feature data was thus reduced to 57 dimensions.

We next developed a random forest algorithm (MDVarP), built on 1000 random 
forests, to predict whether two variant loci constitute a functional interacting unit 
that has a specific phenotypical expression. As the accuracy of the machine learn-
ing model is directly proportional to the quality of the training data, we introduced 
filtering rules based on linkage disequilibrium and functional relevance to make sure 
that our training dataset is of high quality. However, there will nearly always be a 
trade-off between quality and quantity, and it is possible that the screening may have 
exclude some valid interactions, leading to fewer training data. To overcome the 
small sample size problem, we applied five times repeated tenfold cross-validation to 
assess the prediction confidence.

The annotated information for each two-variant combination of the training and 
control datasets was then used as training input for the MDVarP. For each variant 
combination, MDVarP outputs a class label, i.e. “Associated-pair” or “Nonrelevant-
pair”, and two prediction scores: a classification score (C-score) and a support score 
(S-score) to indicate how strong the prediction is for two variant loci to be an “Asso-
ciated-pair”. The C-score is defined as the median of the “Associated-pair” class 
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probabilities over all 1000 independent models and the S-score is defined as the per-
centage of models that agree on the “Associated-pair” class (see Methods). Higher 
C- and S-scores indicate that the predictor is more confident about the classification 
of two variant loci as “associated”.

Adjusting the probability decision thresholds can improve the performance of a 
multi-label classifier [40], and this could also be applied to our two-label classifica-
tion. The best prediction performance was obtained for a C-score of 0.49 and an 
S-score of 0.5, for which the highest accuracy and precision are achieved. Higher 
C-scores and S-scores provide a stronger indication of association for a two-vari-
ant combination. As the predictor is based on a majority vote, two variants will be 
predicted to be an “Associated-pair” when the S-score is greater than 50 and the 
C-score is greater than 0.49.

The performance of MDVarP was evaluated on a set of different classification param-
eters (Fig. 2A-E), i.e. accuracy, precision, sensitivity, specificity, and F1 score (a balanced 
measure between precision and recall), by comparing the predicted label with the actual 
label. MDVarP successfully distinguished actual modifier ~ disease-causing variant com-
binations from randomly selected two-variant combinations with an average accuracy of 
0.980, an average precision of 0.967, an average sensitivity of 0.994, an average specificity 
of 0.966, and an average F1 score of 0.980. We further investigated the area under the 
ROC curve (AUC) value. The AUC parameter quantifies the classification accuracy; the 
value of 1.0 represents the perfect prediction. MDVarP achieved a high AUC value of 
up to 0.983 (Fig. 2F). Figure 2G shows the precision and recall when MDVarP is tested 
on the modifier ~ disease-causing variant combinations together with a set of randomly 
selected two-variant combinations of the same size, MDVarP gets a much higher AUC 
of 0.999, indicating an efficient classification. Our results show that MDVarP performs 
well, achieving a true positive rate of 0.996 and a false positive rate of 0.037.

Fig. 2 Performance of MDVarP. MDVarP performance measured by Accuracy (A), Precision (B), Sensitivity (C), 
Specificity (D) and F1 score (E), Receive operator characteristic (ROC) curve (F) and Precision-Recall (PR) curve 
(G)
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Validation on independent data confirms the MDVarP’s predictive success

To evaluate the performance of MDVarP, we validated the MDVarP on a set of 108 inter-
acting pairs of variants with published evidence of genetic interactions. These independ-
ent two variant combinations contain variant pairs relating to 75 modifier variants and 
55 disease-causing variants corresponding to 43 modifier genes and 40 disease-causing 
genes. MDVarP worked well on the validation set, the true positive rate was 89% and 
most of the new variant pairs (83%) were correctly labeled as “Associated-pair” with a 
high confidence (S-score > 80).

Candidates of modifier ~ disease‑causing variant combinations identified by MDVarP

We used the MDVarP to calculate the C- and S-scores for each of the two-variant com-
binations in the random sets and we found 25 novel candidates of modifier ~ disease-
causing variant combinations under the threshold of the S-score greater than 50 and the 
C-score greater than 0.49 (Table S3). Among the 25 novel candidates, the two genes of 
15 combinations have been reported to be associated with the same disease(s) based on 
the annotations inHGMD [6] or DisGeNet [36]. The putative novel combination of vari-
ants in gene C8A and FAT1 with the highest S- and C-scores are both associated with 
the autism spectrum disorder and developmental disorder. The variant FAT1:p.V1597E 
(chr4:187,549,329) was reported to be an autism-causing mutation (DM?) in HGMD [6]. 
It has been reported that FAT1 plays a contributing role in the development of autism 
[41], and that the carbonyl level of C8A protein product is significantly higher in the 
plasma of autistic children than in non-autism controls [42].

To obtain additional information supporting the predictions, we further investi-
gated the characteristics which could indicate the associations in the context of func-
tional networks [7, 8, 37] and/or genetic linkage association [12, 38]. By searching the 
MSigDB database [43] we checked whether there was any functional gene set in which 
the two associated genes co-existed, and we found this to be the case for eleven gene 
pairs (Table S3). Evidence that supported the relationship between the disorder and the 
potential function associated with the two genes was also extracted from several publi-
cations (Table S3). We next computed the normalized linkage disequilibrium value D’ 
for all the 2-locus haplotypes of the 25 candidate variant pairs based on the 1KGP Data, 
and found that seven allele combinations co-occur in high linkage disequilibrium with a 
D’ value equal to 1 (Table S3). Taken together, the investigation on co-existing functional 
gene set as well as the linkage disequilibrium analysis added additional support for non-
random associations for sixteen of the 25 candidate pairs.

Although more functional studies are needed for verification, these preliminary results 
suggest that our approach for candidate modifier ~ disease-causing variant combinations 
is promising.

The synergy of different biological features

We trained MDVarP with a random forest algorithm on combined molecular features 
derived from 57 annotations at the variant, gene, and gene-pair level to identify which 
variant combinations are potentially interacting. The importance of the original 57 fea-
tures was analyzed through a feature selection procedure. The result suggests that a 
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subset of 17 biological features (labeled in red in Fig. 3) is sufficient for making high-
quality predictions, giving an error rate of 0.0089, yet it worth noting that the lowest 
error rate of 0.0077 was obtained when using all the original 57 features (Table S4).

For each of these 57 features, we calculated a mean Gini decrease score, which quanti-
fies the importance of each feature in classification, with higher values indicating higher 
importance. As shown in Fig. 3, protein domain annotations of the disease-causing vari-
ants, CADD Phred score, nucleotide diversity (pi) of the modifier variants, the probabil-
ity of the gene being recessively disease-causing and the biological relatedness between 
genes, are the most important features for separating associated pairs from non-relevant 
pairs. We took a closer, more detailed look at the top 25 features out of the 57 features 
that are ranked in the increasing order of feature weights generated by Gini decrease 
score, and found that all of the features contribute to the differentiation between the 
associated pairs in the training dataset and non-relevant pairs in the control data sets 
(Fig. S1).

By adding features, we see an improvement in classification, and it is the addition of the 
complete biological information that provides the best performance (Fig. 4). Therefore, 
it is the synergy of all features that results in the most optimal classification. This advan-
tage of integrating information from a large number of data points, which is difficult to 
achieve for a human actor, is what underlies the efficiency of a tool like the MDVarP, 
compared with solely relying on combinations based on single-variant information.

Evidence suited to evaluate the cooperation between modifier and disease-causing 
variants is typically less available compared to pathogenicity evaluation of single vari-
ants. Experimental research has only produced a limited amount of empirical evidence 
for interacting variants. For these reasons, there is a particularly strong motivation to 
develop computational methods for inferring the co-operations between modifier vari-
ant and disease-causing variant.

Fig. 3 Mean Gini decrease over all the 1000 predictors of the MDVarP using the training dataset and 
nonrelevant control dataset. The 17 biological features sufficient for making high-quality predictions are 
labeled in red
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MDVarP offers a novel way to explore the modifier-disease variant interactions relat-
ing to a patient’s phenotype, nevertheless, room for improvement still exists. The train-
ing dataset of modifier ~ disease-causing variant combinations depends on the manually 
curated data, which is slow to come. Increasing model complexity or using more inform-
ative features will contribute to the future to improve MDVarP performance and reduce 
overfitting due to limited training data. More thorough feature engineering such as 
mutation burden analysis may help identifying modifiers as some modifier effects are 
latent depending on genetic background and environmental context [12, 44]. It is also 
hard to give good predictions for variant pairs that have “anomalous features” previ-
ously not reported. However, improvement of MDVarP is likely to go hand in hand with 
experimental work as it is being reported in the literature. Thus, “anomalous features” 
that are found to be common to a set of modifier-gene combinations can be included as 
prediction parameters, and will cease to be anomalous, whereas as anomalous features 
that are specific to only one (or some very few) modifier-gene combinations will possibly 
always be out of reach for a tool like MDVarP. Thus, the limitations posed inadequate 
knowledge of the defining features of modifier-gene combination are likely to be further 

Fig. 4 Effect of the number of features on the error rate obtained by random forest cross-validation 
for feature selection. The x-axis represents the number of features included for prediction during each 
elimination procedure, while the y axis represents the average error rate during the five times repeated 
tenfold cross-validation for that number of features
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relaxed as more data on biological features of variants become available. In addition, 
using deep learning framework based on multiple sectional views with different learning 
strategies like transfer learning would also help improving the performance in the future 
tasks.

MDVarP is a tool that is trained on known modifier genes associated with mendelian 
disorders for predicting modifier ~ disease-causing variant combinations. Predicting 
modifier effect for complex, non-mendelian disease is a possible future development for 
a tool like MDVarP. However, modifier genetics for common complex diseases is full of 
significant challenge when compared with rare mendelian disorders, as modifier effects 
on complex, non-mendelian diseases are likely to be far more subtle. A possible future 
expansion of MDVarP to deal with complex, non-mendelian diseases will need to con-
sider that the variant filtering criteria will differ from the “strict” criteria that are neces-
sary to identify disease-causing variants in rare mendelian diseases. Similarly, while it is 
widely assumed that genes involved in the same disease are likely to belong to the same 
molecular pathway or biological process, and this may not necessarily apply to com-
plex diseases. Thus, generalizing MDVarP into a tool for prediction of modifier effects 
of complex, non-mendelian disease is likely to be a process that will require different 
resources, from training dataset to features, that help training machine learning model 
to make classification.

Conclusion
Here, we presented the MDVarP, a predictor of modifier ~ disease-causing vari-
ant combinations. MDVarP is precise and sensitive both in cross validation settings 
(89% correct predictions) and also when tested on independent data. MDVarP tack-
les a crucial but under-explored area, and is reliable and lightweight for identifying 
potential interactions between modifier and disease-causing variants, thus providing 
a framework for interpreting genetic interactions related to phenotypic variations in 
human diseases. The predictive ability of MDVarP would be further improved with 
the advent of new data, the inclusion of additional biological information and the 
adoption of complex machine learning strategy.
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