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Abstract 

Background:  The rapid growth of deep learning, as well as the vast and ever-growing 
amount of available data, have provided ample opportunity for advances in fusion 
and analysis of complex and heterogeneous data types. Different data modalities 
provide complementary information that can be leveraged to gain a more complete 
understanding of each subject. In the biomedical domain, multi-omics data includes 
molecular (genomics, transcriptomics, proteomics, epigenomics, metabolomics, 
etc.) and imaging (radiomics, pathomics) modalities which, when combined, have 
the potential to improve performance on prediction, classification, clustering and other 
tasks. Deep learning encompasses a wide variety of methods, each of which have 
certain strengths and weaknesses for multi-omics integration.

Method:  In this review, we categorize recent deep learning-based approaches 
by their basic architectures and discuss their unique capabilities in relation to one 
another. We also discuss some emerging themes advancing the field of multi-omics 
integration.

Results:  Deep learning-based multi-omics integration methods were categorized 
broadly into non-generative (feedforward neural networks, graph convolutional 
neural networks, and autoencoders) and generative (variational methods, generative 
adversarial models, and a generative pretrained model). Generative methods have 
the advantage of being able to impose constraints on the shared representations 
to enforce certain properties or incorporate prior knowledge. They can also be used 
to generate or impute missing modalities. Recent advances achieved by these meth-
ods include the ability to handle incomplete data as well as going beyond the tradi-
tional molecular omics data types to integrate other modalities such as imaging data.

Conclusion:  We expect to see further growth in methods that can handle missing-
ness, as this is a common challenge in working with complex and heterogeneous data. 
Additionally, methods that integrate more data types are expected to improve perfor-
mance on downstream tasks by capturing a comprehensive view of each sample.
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Background
Exploring the biological mechanisms of human health is a core aspect of biomedi-
cal research. The advent of high-throughput technologies has significantly broadened 
our ability to analyze the biological underpinnings of life at various levels of complex-
ity. Multiomics, or integrative omics or panomics, is a comprehensive approach to bio-
logical analysis. It involves simultaneously studying multiple ‘omics’ datasets, including 
the genome, proteome, transcriptome, epigenome, metabolome, and microbiome. This 
approach allows researchers to explore the complex interactions and networks underly-
ing biological processes and diseases.

Many studies have demonstrated that multi-omics data can offer valuable insights into 
understanding biological processes. Bakker et  al. [1] shows that by integrating multi-
omics layers, cytokine production is influenced by various genetic and non-genetic fac-
tors and can be moderately predicted using baseline profiles. Nativio et al. [2] conducted 
a comprehensive multi-omics analysis of brains affected by Alzheimer’s disease (AD) 
compared to those of older and younger controls. Their study identified histone mod-
ifications associated with AD and revealed that increases in H3K27ac and H3K9ac in 
AD brains disrupt disease pathways by affecting transcription and chromatin-gene feed-
back loops. Zijlmans et al. [3] utilized an integrated multi-omics approach to map the 
chromatin-associated proteome, histone post-translational modifications (hPTMs), and 
transcriptome of naive and primed human pluripotent stem cells (hPSCs). They unex-
pectedly discovered that PRC2 activity inhibits trophoblast induction in naive hPSCs 
and blastoids, revealing that naive pluripotent cells are not epigenetically unrestricted 
but are constrained in their differentiation into trophoblast by chromatin barriers.

Multi-omics provides a comprehensive approach that enhances discovery across 
various biological levels. However, it faces several challenges in practice: (1) Paired and 
Unpaired Datasets - Ideally, these studies should use paired samples, where all omics 
layers per replicate are derived from a single individual. Two issues arise with unpaired 
samples: different sample sources and data modalities. Different sample sources refer to 
collecting omics data from distinct batches of cells or biological samples. Conversely, 
different data modalities refer to the simultaneous sequencing of various types of omics 
data from the same sample set. Analytical methods such as correlation analysis detect 
relationships between various omics layers across the dataset [4]. Deep learning meth-
ods are employed for differing data modalities to transform the data into the shared 
latent space by autoencoders and then perform integration [5]. (2) Missing Values - 
Common in multi-omics datasets, missing values can result from experimental limita-
tions or sample quality issues. Bayesian methods and deep learning-based methods are 
often used to address this problem. (3) High dimensionality - Multi-omics datasets often 
encompass thousands of genes, leading to a high-dimensional data space. This can pose 
challenges in data analysis, as traditional statistical methods may struggle with the “curse 
of dimensionality”. Dimensionality reduction techniques such as principal component 
analysis (PCA) [6], t-distributed stochastic neighbor embedding (t-SNE) [7], and uni-
form manifold approximation and projection (UMAP) are commonly employed [8].

Different approaches have been developed to address the practical issues in multi-
omics data integration, and these can be categorized into statistical learning meth-
ods and machine learning-based approaches. Among the statistical learning methods, 
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a famous one is Principal Component Analysis (PCA) and its variants, which aim to 
reduce the dimensionality of the data while preserving as much of the variance as pos-
sible. A method similar to PCA is Canonical Correlation Analysis (CCA), which seeks 
to find linear combinations of variables in two datasets that are maximally correlated. 
In traditional machine learning algorithms, Multi-kernel frameworks are often used to 
integrate multiple datasets of various types into a single exploratory analysis [9]. Deep 
learning, a branch of machine learning, is increasingly popular for its capability to iden-
tify complex nonlinear patterns in data. It offers an efficient framework for processing 
large volumes of multi-omics data and has a strong generalization capacity, which allows 
it to make accurate predictions for unseen data [10].

There are several reviews about multi-omics data integration. Subramanian et  al. 
[11] summarized Multi-omics Data integration tasks based on the traditional machine 
learning algorithm and classified them into network, Bayesian, fusion, similarity-based, 
correlation-based, and other multivariate methods but did not discuss the deep learn-
ing side. Vahabi and Michailidis [12] reviewed the method for unsupervised learning 
tasks in Multi-Omics Data Integration. Wekesa and Kimwele [13] explored the applica-
tion of deep learning in disease diagnosis, prognosis, and therapies in multi-omics data 
integration but is only limited to convolutional neural networks (CNN), feed-forward 
networks, and recurrent neural networks (RNN). Kang et al. [14] presented a review of 
recent deep learning-based studies that integrate multi-omics data for downstream anal-
ysis, including feature selection/reduction, clinical outcome prediction, survival analysis, 
and clustering for subtype discovery. Wen et al. [15] reviewed the multi-omics data inte-
gration methods based on the different DL frameworks: fully connected neural network 
(FCNN), convolutional neural network (CNN), autoencoder (AE), graph neural network 
(GNN), capsule network (CapsNet), and generative adversarial network (GAN).

This review focuses on the tools and methods published since 2017 that integrate mul-
tiple omics data and discusses their applications in understanding complex human biol-
ogy. With the emergence of generative methods and attention mechanisms, this review 
aims to summarize current advancements and updates in deep learning methods. Our 
review introduces a distinctive approach by incorporating generative pretrained trans-
formers (GPT), which previous studies have not extensively utilized. From an applica-
tion perspective, we address the challenge of incomplete data and broaden our scope to 
include imaging modalities. We group the methods of interest as follows: Non-gener-
ative methods (feed forward neural networks (FNNs), graph convolutional neural net-
works (GCNs), and autoencoders (AEs)) and generative methods (variational methods, 
GANs, and generative pretrained transformer (GPT) (see Fig. 1). The methods are fur-
ther categorized by more specific characteristics, including their specific approaches for 
multi-modal data integration. These include early, intermediate, and late integration (see 
Fig. 2). In early integration, features from each modality are concatenated before being 
treated as a single input to the model, whereas methods utilizing intermediate integra-
tion treat the modalities as separate entities while being able to learn inter-modality rela-
tionships and generate an integrated model or a shared latent space. On the other hand, 
late integration involves training a separate model for each modality and then combin-
ing the predictions to get a final aggregated result. Finally, we discuss advancements 
afforded by these deep learning frameworks including those that handle incomplete data 
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and those that go beyond molecular -omics data types to incorporate imaging modali-
ties. All of the methods reviewed in this paper are summarized in Table 1.

Non‑generative methods
The first category of methods we will review are non-generative methods. As opposed 
to generative methods, non-generative methods learn a mapping from the input X to the 
outcome Y without modeling the underlying data distribution. In doing so, they focus 
on the conditional probability distribution of the outcome given the input, i.e., P(Y|X), 
as opposed to the joint probability distribution of the input and the labels, P(X,  Y). 
Although these methods do not explicitly model the data distribution, and thus do not 
have the advantages associated with this, their approach is simpler, requiring fewer 
parameters, and they tend to be less computationally intensive than their generative 
counterparts. They have been successfully applied to a variety of tasks in multi-omics 

Fig. 1  Overview of the types of methods reviewed in this paper
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integration. We organize the non-generative methods in this review into the following 
categories: (1) feedforward neural networks, (2) graph convolutional neural networks, 
and (3) autoencoders.

Feedforward neural networks to integrate multi‑omics

The first set of non-generative methods we will discuss is feedforward neural networks 
(FNNs) which have been adapted to take multiple modalities as input. These range 
from (1) methods that learn representations separately for modality before concat-
enating them to produce a final integrated representation, to (2) methods that model 
inter-modality relationships when constructing a joint representation, and finally (3) 
methods that additionally consider the biological underpinnings of the modalities by 
either designing their model architectures to mimic biological organization or incorpo-
rating prior domain knowledge.

Sharifi-Noghabi et al. [16] propose MOLI, a late integration deep learning method, by 
using modality-specific encoding FNNs to learn features separately for each modality 
before concatenating them into a single multi-omic representation. This concatenated 
representation is then used as input to a classification sub-network to predict drug 
response. While this is relatively simple and allows the model to consider the unique dis-
tribution of each modality, it may ignore the interactions between modalities.

Inter-modality Interactions. To address inter-modality interactions, other methods 
have been developed to learn features while considering multiple modalities. Bica et al. 
[17] use a superlayered neural network (SNN), consisting of separate FNN superlayers 
for each modality as well as cross-connections between them to allow information to 
flow between the modalities and learn interactions between them.

Fig. 2  Overview of multi-modal integration strategies
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Table 1  Methods summary

Method Model 
architecture

Data source Modalities 
handled

Handles 
incomplete 
data

Task

MOLI [16] FNN GDSC [64], PDX 
[65], TCGA [66]

somatic muta-
tion, CNV, gene 
expression

No drug response 
prediction

SNN [17] FNN TCGA [67] gene expression, 
DNA methylation

No classification

GLUER [18] FNN self-generated 
[18]

single-cell gene 
expression and 
epigenomics, 
spatial transcrip-
tomics

Yes matching cells 
across different 
single-cell data 
modalities

CapsNetMMD 
[19]

FNN TCGA [67] gene expression, 
DNA methylation, 
CNV

No phenotype-related 
gene identification

MOMA [20] FNN TCGA [67], ROS-
MAP [68]

gene expression, 
DNA methylation

No classification

SALMON [21] FNN TCGA [67] gene expression, 
miRNA expres-
sion

No survival prediction

MiNet [22] FNN TCGA [67], KEGG 
[69], Reactome 
[70]

gene expression, 
CNV, DNA meth-
ylation, biological 
pathways

No survival prediction

DeepOmix [23] FNN TCGA [67], KEGG 
[69], Reactome 
[70]

genomics, CNV, 
gene expression, 
DNA methylation, 
biological path-
ways

No survival prediction

MOGONET [10] GCN ROSMAP [68], 
TCGA [67]

gene expres-
sion, miRNA 
expression, DNA 
methylation

No classification

MoGCN [24] GCN TCGA [67] somatic muta-
tion, gene 
expression, 
proteomics

No classification

MOFGCN [25] GCN GDSC [64], CCLE 
[71]

gene expression, 
CNV, somatic 
mutation, drug-
cell line associa-
tions

No drug response 
prediction

AGCN [26] GCN TCGA [67], 
STRING [72]

gene expres-
sion, CNV, DNA 
methylation, PPI 
network

No classification

DeepMOCCA 
[27]

GCN TCGA [67], 
STRING [72]

somatic muta-
tion, DNA meth-
ylation, gene 
expression, CNV, 
PPI network

No survival prediction

Chaudhary et al. 
[28]

AE TCGA [67] gene expres-
sion, miRNA 
expression, DNA 
methylation

No dimensionality 
reduction; cluster-
ing

Zhang et al. [29] AE TARGET [73], 
SEQC [74]

gene expression, 
CNV

No dimensionality 
reduction; cluster-
ing
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Table 1  (continued)

Method Model 
architecture

Data source Modalities 
handled

Handles 
incomplete 
data

Task

Song et al. [30] AE TCGA [67] DNA methylation, 
gene expression, 
miRNA expres-
sion

No dimensionality 
reduction; cluster-
ing

DeepAutoGlioma 
[31]

AE TCGA [67] gene expression, 
DNA methylation

No dimensionality 
reduction; cluster-
ing

DRIM [32] AE CCLE [71] gene expres-
sion, CNV, DNA 
methylation, 
genomics

No drug response 
prediction and 
analysis

AE+consensus 
learning [33]

AE TCGA [67] gene expression, 
DNA methylation, 
miRNA expres-
sion, CNV

No survival prediction

concatAE/cros-
sAE [34]

AE TCGA [67] gene expression, 
DNA methylation, 
miRNA expres-
sion, CNV

No survival prediction

MOCSS [35] AE TCGA [67] gene expres-
sion, miRNA 
expression, DNA 
methylation

No clustering

DLSF [36] AE TCGA [67] gene expression, 
DNA methylation, 
miRNA expres-
sion

No clustering

MultiGATAE [37] AE TCGA [67] miRNA expres-
sion, gene 
expression, DNA 
methylation

No clustering

MAE [38] AE TCGA [67], 
STRING [72], 
miRDB [75]

gene expression, 
miRNA expres-
sion, proteomics, 
DNA methylation, 
molecular inter-
action networks,

No classification

MvNE [39] Variational TCGA [67] gene expres-
sion, miRNA 
expression, DNA 
methylation

Yes representation 
learning; clustering

DCCA [40] VAE 10X Genomics 
[76]

paired single-cell 
transcriptomics 
and single-cell 
epigenomics

Yes representation 
learning; cluster-
ing; regulatory 
inference

Multigrate [41] VAE 10X Genomics 
[76]

single-cell 
transcriptomics, 
single-cell epig-
enomics, single-
cell proteomics

Yes multimodal 
data integration 
and imputation; 
multimodal atlas 
construction

GLUE [42] VAE SNARE-seq [77], 
SHARE-seq [78], 
10X Multiome 
[76], Nephron 
[79], MOp [80]

scRNA-seq, 
snmC-seq, 
scATAC-seq

Yes multi-modal data 
integration; regula-
tory inference; 
multi-omics atlas 
construction

LSTM-VAE [43] VAE Lau et al. [81] temporal 
proteomics and 
metabolomics

No clustering
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Table 1  (continued)

Method Model 
architecture

Data source Modalities 
handled

Handles 
incomplete 
data

Task

CVAE [44] VAE TCGA [67] mRNA, DNA 
methylation, 
microRNA

No classification

OmiVAE [45] VAE TCGA [67] gene expression, 
DNA methylation

No classification

MMD-VAE [46] VAE TCGA [67] CNV, mRNA, 
RNAseq, DNA 
methylation

No clustering; clas-
sification; survival 
analysis

OmiEmbed [47] VAE TCGA [67], TAR-
GET [73]

gene expression, 
DNA methylation, 
miRNA expres-
sion

No multi-task: classifi-
cation, regression, 
survival prediction

DeepIMV [48] Variational 
(encoder only)

TCGA [67], CCLE 
[82]

mRNA expres-
sions, DNA meth-
ylation, microRNA 
expressions, 
reverse phase 
protein array, 
DNA copy num-
ber, metabolites

Yes classification

Subtype-GAN 
[49]

GAN TCGA [67] CNA, mRNA, 
miRNA, DNA 
methylation

No clustering

omicsGAN [50] GAN TCGA [67], Tar-
getScan Human 
[83]

mRNA expres-
sion, miRNA 
expression, 
miRNA-mRNA 
interaction 
network

No classification

CLUE [51] VAE+GAN NeurIPS2021 [84], 
SHARE-seq [78]

single-cell gene 
expression, 
single-cell prot-
eomics, single-
cell epigenomics

Yes multimodal single-
cell integration

scGPT [52] GPT 10X Genomics 
[76], CELLxGENE 
[85]

single-cell 
transcriptomics, 
single-cell epig-
enomics, single-
cell proteomics

Yes foundation model; 
diverse tasks: cell 
type annotation, 
multi-batch inte-
gration, multi-omic 
integration, per-
turbation response 
prediction, gene 
network inference

Carrillo-Perez 
et al. [53]

CNN+SVM + 
late fusion

TCGA [67] pathomics, gene 
expression, 
miRNA expres-
sion, CNV, DNA 
Methylation

No classification

Chen et al. [54] AE + late fusion TCIA NSCLC [86] radiomics, gene 
expression, 
clinical

No survival prediction

Pathomic Fusion 
[55]

CNN+FNN+ 
attention

TCGA [67] pathomics, 
genomics, CNV, 
gene expression

No survival prediction

Shirkavand et al. 
[56]

transformer + 
GAN

ADNI [87], ADSP 
[88]

radiomics, 
genomics

Yes regression; clas-
sification

JSRL [57] GAN CLAS [89], ADNI 
[87], AIBL [90]

radiomics 
(MRI+PET)

Yes classification
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Another approach called GLUER is introduced by Peng et al. [18] to integrate single-
cell multi-omics data and multiplexed molecular imaging assays to match cells across 
different data modalities for downstream analyses. It first uses nonnegative matrix fac-
torization to derive factor loading matrices that represent common factors shared across 
modalities, then uses a mutual nearest neighbor algorithm to map many-to-many rela-
tionships among cells in different data sets, and finally a deep neural network to project 
data from different biological assays onto a common feature space while capturing non-
linear relationships between modalities.

Peng et  al. [19] approach the learning of inter-modality relationships differently by 
using a capsule neural network to perform convolution between modalities and sam-
ples for a given gene with the goal of identifying novel breast cancer-related genes. This 
allows the initial feature matrix of each gene to be converted to higher-level and more 
abstract local features incorporating all modalities.

Finally, Moon and Lee [20] combine multi-omics data using a geometrical deep learn-
ing approach by vectorizing and grouping the omics data into modules via a fully con-
nected layer, and then using an attention mechanism to weight the modules based on 
their relevance for disease prediction. The combination of different omics data into 
multiple modules allows the model to learn different relationships between the modali-
ties. Furthermore, the method can relate each omics data type to their associated genes, 
which can then be used to interpret the modules. The most relevant modules for a given 
phenotype can then be identified using the attention matrix.

Biological Interpretability. Another group of methods go even further to allow bio-
logical interpretability by either aggregating the data in biologically meaningful ways 
or incorporating prior domain knowledge. For example, SALMON [21] seeks to use 
mRNA-seq and miRNA-seq data to predict Cox regression survival in breast cancer by 

Table 1  (continued)

Method Model 
architecture

Data source Modalities 
handled

Handles 
incomplete 
data

Task

Tulder and Brui-
jne [58]

CNN OAI [91], BRATS 
[92]

radiomics 
(multiple MRI 
modalities)

Yes classification

Morar et al. [59] FNN ADNI [87] radiomics (MRI, 
PET), biospeci-
men (CSF), cogni-
tive scores

No regression

MildInt [60] RNN ADNI [87] radiomics, longi-
tudinal cognitive 
scores, biospeci-
men (CSF)

No classification

Xu et al. [61] RNN ADNI [87] longitudinal radi-
omics (MRI, PET), 
demographics

Yes regression; trajec-
tory prediction

MCNetWang 
et al. [62]

RNN ADNI [87], 
OASIS-3 [93]

longitudinal 
radiomics (MRI, 
PET)

Yes classification

LSN [63] FNN ADNI [87], AIBL 
[90]

longitudinal 
radiomics (MRI), 
genetics, clinical

No classification

CNV copy number variation, CNA copy number alteration
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first performing gene co-expression analysis to derive eigengene modules which reduce 
the dimension of the original feature space into biologically meaningful latent features. 
Then, these eigengene matrices are input to separate hidden layers in the NN before 
being combined with copy number burden, tumor mutation burden, demographic and 
clinical covariates in the Cox proportional hazards regression network. This method 
enables biological interpretation at the level of co-expression modules rather than indi-
vidual genes, highlighting potential biological pathways important for breast cancer 
survival.

Two other methods, MiNet [22] and DeepOmix [23], explicitly incorporate prior bio-
logical knowledge. MiNet uses a NN structure that follows a biological system, with a 
multi-omics layer, followed by a gene layer connecting the multi-omics features to their 
associated genes, and finally a pathway layer connecting the genes in the gene layer to 
their corresponding known pathways. These hidden layers represent the hierarchical 
representations of multiple pathways, and a final hidden node models the interaction 
effects between pathways, before being input to a Cox layer for cancer survival predic-
tion. Thus, this method captures the interactions between multi-omics data in a man-
ner that reflects true biological organization and is interpretable due to its use of known 
omics to gene and gene to pathway mappings.

Similarly, DeepOmix [23] is a DNN (deep neural network) including an input gene 
layer, which takes multi-omics data at the gene-level, and a functional module layer, 
which utilizes prior biological knowledge to create edges between this layer and the 
input gene layer that reflect true functional relationships. Each node in the functional 
module layer is a nonlinear function of different -omics data of the genes it contains. 
Extracting significant modules corresponding to the prediction result enables interpre-
tation and identification of potential underlying mechanisms of the disease of interest. 
Thus, allowing for interactions between modalities based on prior biological knowl-
edge allows for more realistic representation of the underlying biological processes and 
enhances the interpretability of the model.

Based on the methods reviewed in this section, we can see that FNN-based methods 
are most suited to handle tabular molecular -omics modalities, including gene expres-
sion, DNA methylation, miRNA expression, mutation, and CNV. Additionally, FNNs are 
capable of handling tabular imaging-derived features such as ROI measurements [55, 59, 
63] (see Incorporating imaging modalities section). Additionally, some methods can uti-
lize known biological networks to inform their architectures - for these methods, it is 
ideal that this information is available. Notably, all but one of these methods require all 
modalities to be measured for every sample. Only GLUER handles incomplete data, as 
its main goal is to match cells in which different data modalities were measured. How-
ever, the FNN in GLUER was used to map different modalities onto a common feature 
space that had been previously derived using nonnegative matrix factorization, rather 
than to derive the feature space itself. FNN-based methods make use of all three integra-
tion approaches: early, intermediate, and late. Early and late integration strategies do not 
exploit inter-modality relationships, which is a limitation of these methods. Addition-
ally, the FNN-based methods generally do not handle incomplete data and are limited 
to tabular -omics data. On the other hand, many of these methods do take into account 
inter-modality intereactions via intermediate integration. Furthermore, FNNs are simple 
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relative to the other deep learning approaches in this review, and their architectures can 
be designed to recapitulate biological structure for better interpretability.

Graph convolutional neural networks

Although several of the FNNs in the previous section attempt to share information 
between modalities in order to learn inter-modality interactions, they may not fully 
exploit the correlations between samples [10]. Another set of methods based on graph 
convolutional neural networks (GCNs) have been developed to more effectively take 
advantage of both the omics features and the correlations between samples or data types 
through the use of similarity networks. These similarity networks impose biologically 
meaningful structure on the model and thus have the advantage of being more interpret-
able. They also provide a mechanism for incorporating prior biological knowledge, such 
as interaction networks, into the model. We organize the GCN-based methods reviewed 
in this paper by how they utilize the graph structure: (1) to incorporate patient similarity 
network information, or (2) to integrate external biological network information.

Data-Driven Connectivity. Some methods generate a patient similarity network 
(PSN) as part of the GCN in order to take advantage of relationships between samples. 
For example, Wang et al. [10] introduce MOGONET, a method designed to exploit both 
multi-omics features and the correlations among samples for biomedical classification 
tasks. It uses a late-integration approach by first constructing a patient similarity net-
work from each omics data type and then using them to train modality-specific GCNs 
on the classification task to get initial predictions. It then uses these initial predictions as 
input to a View Correlated Discovery Network (VCDN) to explore the cross-omics cor-
relations in the label space and generate a final label prediction.

Li et al. [24] also utilize patient similarity information in their method, MoGCN, but 
take an intermediate integration approach by integrating the modalities before perform-
ing classification. They use an autoencoder (AE) to integrate the modalities into a single 
representation by using multiple encoders and decoders that share the same layer. Simi-
larity network fusion (SNF) was used to construct separate patient similarity networks 
for each modality before fusing them into a single network. Finally, a GCN takes the 
patient similarity network and the features of each node output by the AE as inputs for 
the final prediction. The use of the patient similarity matrix was also beneficial for inter-
pretability: visualizing the PSN provides an intuitive explanation for the clinical diagno-
sis of a given patient.

Knowledge-guided Connectivity. Other methods take advantage of the similarity 
between biological network structures and graph topology to infuse prior knowledge 
into the GCN. Peng et al. [25] introduce MOFGCN, which constructs a heterogeneous 
network utilizing a cell line similarity network, drug similarity network and known drug-
cell line associations in order to predict drug response in cell lines. In a similar manner 
to some methods that construct a patient similarity matrix, they construct the cell line 
similarity matrix by computing similarity between cell lines for each modality to produce 
a separate kernel matrix for each data type and then taking the average of the modality-
specific matrices to obtain the similarity fusion matrix. Drug similarity is based on their 
substructure fingerprints. Finally, known drug-cell line associations were incorporated 
into the model as edges between drugs and cells to help the model learn associations 
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between drugs and cell lines based on their attributes. Drug response was then predicted 
by reconstructing the cell line-drug association matrix from GCN-derived features.

Another method, proposed by Guo et  al. [94] utilizes an attention-based GCN 
(AGCN) to integrate multi-omics data and prior knowledge from a protein-protein 
interaction (PPI) network for breast cancer molecular subtype classification. It uses the 
PPI information to construct a graph with genes as its nodes, where each node is associ-
ated with a set of multi-omics features. Associations between data modalities were mod-
eled using two different attention mechanisms. For prediction, the model generates a 
global graph representation from a global pooling layer and uses this to output predic-
tions for each sample.

Althubaiti et al. [27] also utilize PPIs as background knowledge along with multi-omics 
data in the context of cancer survival prediction. Their model, DeepMOCCA, integrates 
germline and somatic variants, methylation, gene expression, and copy number variants 
using a graph in which nodes represent genes, and edges represent functional interac-
tions between them. They design a set of mapping functions to map the information 
from the multi-omics data to these nodes. They then use this graph to predict patient 
survival time using a GCN combined with Cox regression. Besides encouraging biologi-
cal plausibility in the model, the incorporation of prior knowledge enhances interpreta-
bility. Edges between nodes represent functional relationships and may capture dynamic 
interactions occurring within a cell, as measured by the multi-omics data.

The GCNs covered in this section demonstrate the suitability of these methods for 
tabular -omics modalities, including gene expression, miRNA expression, DNA meth-
ylation, and CNV data, as well as PPI networks for those which incorporate biological 
knowledge. For the methods that generate cell line or patient similarity networks, hav-
ing a very large number of cell lines/patients may make the calculation of PSNs very 
computationally intensive; thus, these methods may only be able to handle a limited 
number of samples. Furthermore, because of their use of sample similarity information, 
these methods are most ideal for applications in which structure and similarity among 
samples is useful. Other limitations of these methods include the fact that none of them 
handle missing data, although perhaps the use of PSNs could aid in missing data imputa-
tion in future approaches. Additionally, the late integration-based approaches may not 
as effectively learn inter-modality relationships, and even some of the intermediate inte-
gration methods simply use SNF or averaging to combine information across modalities 
rather than learning more complex interactions between them. However, GCN methods 
have the advantage of better exploiting relationships among samples while integrating 
multiple modalities, and their network structure is amenable to incorporating biological 
network information, giving them an advantage over traditional feedforward NNs.

Autoencoders

Autoencoders (AEs) are another type of non-generative model that have been applied 
in several methods to integrate multi-omics data. They are commonly used for dimen-
sionality reduction, which is especially useful in dealing with multi-omics data due to 
the large number of features resulting from combining multiple data types. AEs are use-
ful in learning nonlinear mappings to a low-dimensional latent space. They are typically 
comprised of two main neural network components: (1) an encoder, which performs the 
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projection to the latent space and (2) a decoder, which projects the latent embedding 
back to the original space to reconstruct the input data. Two of the important consid-
erations when combining multi-omics data are the principles of (1) consensus, which 
assumes that model errors are upper-bounded by disagreement between modalities, and 
(2) complementary, which rules that each modality contains unique information [34]. 
Using an autoencoder model is advantageous in its ability to account for these proper-
ties, and each of the methods reviewed in this paper consider one or both.

Complementary Learning. Some methods that are primarily concerned with using 
AEs for dimensionality reduction for downstream clustering tasks only consider the 
complementary principle. These methods were developed with the goal of identifying 
survival-related low-dimensional features that can be used in downstream clustering 
to determine potential disease subtypes with significant differences in survival [28–31]. 
Their approach is to concatenate the data across the modalities, use Cox regression to 
select an initial set of survival-related features, and then input the selected features to an 
AE to map these features non-linearly to low-dimensional representations. Cox regres-
sion is then used a second time to determine a final set of AE-derived features, which are 
then used for clustering. Since these methods simply concatenate the features across all 
data types, they extract any unique information held within each data type (complemen-
tary), but they do not enforce similarity between modalities (consensus).

Munquad and Das [31] uses a similar pipeline but goes further to incorporate prior 
knowledge to integrate gene expression and DNA methylation data using known CpG-
gene pairs. The use of prior knowledge linking the modalities based on their common 
associated genes helps to build consensus among them.

Another method, DRIM [32] uses an autoencoder architecture to combine multi-
omics data via late-integration to identify potential drug response mediator genes. 
Rather than inputting the raw data to an encoder, it first encodes each modality sepa-
rately via omics-specific encoders, and then it concatenates these features and inputs 
it to an omics-integration encoder to learn relationships among the modalities. LASSO 
regression is used to select features associated with drug response, and then the decoder 
is applied to reconstruct the omics data. The significant genes related to the selected fea-
tures are chosen as potential mediator genes. Thus, DRIM only considers complemen-
tary information, but it incorporates prior knowledge linking the multiple omics layers 
to their associated genes.

Consensus Learning. Another method has been developed to only handle the con-
sensus principle. Tong et al. [33] developed an AE with consensus learning to implicitly 
model the interactions among the modalities by maximizing their agreement. They do 
this by introducing a consensus regularization to minimize the difference between hid-
den features learned by each modality, thus integrating the multi-omics data into a com-
mon latent space. This method is useful in that it can detect and account for relationships 
among data types that may reflect biological pathways without having to explicitly model 
every possible interaction. However, emphasis on maximizing the agreement between 
modalities without considering the complementary principle may also mean that it does 
not fully exploit the modality-specific information that is available.

Complementary and Consensus Learning. Tong et  al. [34] considered both prin-
ciples when developing concatAE and crossAE, which are separate models designed 
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to handle the complementary and consensus learning, respectively. ConcatAE trains 
an independent AE with separate reconstruction loss for each modality, then concat-
enates the features output by each AE for the downstream task-specific model. This 
allows each of the modalities to have separate influence on the prediction. On the other 
hand, CrossAE uses the hidden features from each modality to reconstruct the features 
of every other modality using cross-modality reconstruction loss, which aims to maxi-
mize similarity between the latent space representations of every modality. The final 
representation is the average of the latent space representations from each of the modal-
ities. Although the authors consider both principles, they do not propose a model that 
accounts for both principles simultaneously.

Some methods have been developed to handle both complementary and consensus 
principles. Chen et  al. [35] developed MOCSS, a method that learns both shared and 
specific information from multi-omics data for clustering and cancer subtyping. To do 
this, it applies two autoencoders to extract shared and specific information. Then, it uses 
an orthogonality constraint to separate the shared and specific information, in addi-
tion to contrastive learning on the representations encoded by the shared information 
autoencoder to align the shared information and enforce consistency between different 
omics data. Then, a unified representation is derived using both the shared information 
and specific information representations.

Similarity Learning. Other methods handle the consensus principle by extracting and 
utilizing similarity information from the data, while also incorporating modality-specific 
information. For example, Zhang et  al. [36] propose DLSF, a deep latent space fusion 
method using a deep cycle autoencoder to learn robust latent representations for each 
modality, followed by a shared self-expression layer to integrate all modalities by learn-
ing a consistent sample manifold. The self-expression layer learns a matrix representing 
sample similarity that is consistent across all modalities, and then this matrix is used for 
clustering to identify subtypes. Thus, by learning representations for each modality first 
and then combining them in a way that enforces consistency across all data types, DLSF 
incorporates both the specific and shared information across multiple omics data types.

Zhang et al. [37] also use a similarity graph in their clustering and subtyping method, 
MultiGATAE. This method uses multi-omics data to generate separate similarity graphs 
among samples, followed by similarity network fusion to derive a fused similarity graph. 
Then, it uses this network along with the multi-omics data as input to a graph AE, which 
uses both graph attention and omics-level attention to learn an embedding representa-
tion. To help encode a given sample, graph attention exploits similar samples, whereas 
omics-level attention helps to aggregate the output across modalities while considering 
inter-modality relationships. The representation is then learned to reconstruct the origi-
nal similarity graph and then used as the input for clustering.

Ma and Zhang [38] took another approach to incorporate network information into 
their model: rather than directly encode similarity networks into their model, as is done 
in graph-based models, they incorporate both domain knowledge and patient similarity 
networks as constraints. Their proposed method, multi-view factorization autoencoder 
(MAE), uses separate encoders for each modality as well as a submodule that combines 
individual views. It uses a linear decoder on which it imposes graph biological knowl-
edge constraints, as well as the fused patient similarity network to constrain the latent 
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representations to be consistent across modalities, thus enforcing consensus. The final 
representations are derived by taking the sum of the representations from the view-
specific autoencoders. In both MultiGATAE and MAE, the use of both view-specific 
information as well as patient similarity helps to encode both the specific and shared 
information across modalities. Furthermore, MAE’s use of prior biological knowledge 
helps guide the model to capture biologically meaningful relationships.

All of the AE-based methods reviewed in this section were designed to handle vec-
torized input, and therefore, they are well-suited to handle tabular -omics modalities 
including gene expression, miRNA expression, DNA methylation and CNV data. As 
demonstrated by MAE, these methods may also be capable of integrating information 
from molecular interaction networks. All three integration frameworks are utilized 
among the AE-based methods, where early and late integration approaches that concat-
enate features across modalities are useful for the complementarity principle by preserv-
ing modality-specific information. Some intermediate integration approaches adhere to 
the consensus principle by maximizing similarity between latent representations of dif-
ferent modalities, while others incorporate both principles. The ability to impose desired 
properties such as complementarity and consensus on the latent representation is one 
of the advantages of AEs. Another is that their use of decoders to reconstruct the input 
helps to ensure that the representations they learn retain the most relevant and discrimi-
native information. This makes them useful for both supervised and unsupervised tasks 
such as clustering, which was not among the tasks handled by FNNs and GCNs. Among 
the limitations of these methods is that none of them handle missingness, making them 
more suited for datasets in which all modalities are measured for each sample. They are 
also more complex models, consisting of both encoders and decoders, thus increasing 
their reliance on large sample sizes to sufficiently train their many parameters.

Generative methods
The next set of methods we will review in this paper are generative. What distinguishes 
these methods from non-generative methods is that they model not only the distribution 
of the label space, but also the distribution of the data. That is, generative methods learn 
the joint probability distribution P(X, Y) of the data X and the labels Y, whereas non-
generative models learn the distribution of the labels conditional on the data, i.e., P(Y|X) 
[95]. While the approach of non-generative methods is simpler, thus requiring fewer 
parameters, and focuses on directly solving the problem of mapping inputs to labels, 
there are also many benefits that can come from modeling the more general distribu-
tion of the data. Recent approaches have used generative methods for the application of 
integrating multi-omics data. Such methods reviewed here encompass variational meth-
ods including variational autoencoders (VAE), as well as generative adversarial networks 
(GANs) and a recently developed generative pretrained transformer (GPT).

Variational methods

Variational methods model the distribution of the data. This is useful for integrating 
multi-omics data by learning a single joint latent distribution across all modalities. This 
joint distribution can then be used to generate a single representation encompassing the 
comprehensive information contained across multiple omics layers. Explicitly modeling 



Page 16 of 29Ballard et al. BioData Mining           (2024) 17:38 

the latent distribution allows for the incorporation of priors that constrain the latent 
space to have desired properties [96], allowing the resulting embeddings to be mean-
ingful, more robust and generative [43]. This gives variational autoencoders (VAEs) an 
advantage over the non-variational AEs discussed previously, which tend to have dis-
continuous latent representations [46] and thus may not be structured in a meaning-
ful manner [43]. Additionally, estimating the latent distribution makes possible the 
combination of multiple modality-specific embedding spaces into a joint latent space 
in addition to constraining the individual latent spaces be consistent. Finally, having an 
estimated latent distribution enables these models to be generative, which can be useful 
for handling incomplete data. The variational methods reviewed here share the goals of 
(a) learning biologically meaningful relationships between different omics layers, and (b) 
dimensionality reduction to overcome the issue of large number of features and small 
sample size (‘large p, small n’) commonly encountered in multi-omics data. Methods 
to do this showed two major trends: (1) unsupervised learning to combine multi-omics 
data into a single integrated representation, and (2) supervised learning to generate rep-
resentations that contain task-relevant information.

Unsupervised learning for modeling inter-modality relationships. Multiple unsu-
pervised methods have been developed with the primary goal of aggregating and learn-
ing the relationships between multiple omics modalities for broad downstream analysis. 
Mitra et  al. [39] developed multi-view neighborhood embedding (MvNE) to learn a 
unified probability distribution of samples across different omics modalities to gener-
ate low-dimensional embeddings that preserve the relationships between samples in the 
new space. They learn probability distributions for each sample for each modality and 
then combine them using a conflation method to create a single unified distribution. 
Combining modalities in the probability space circumvents the issue of different data 
types having incomparable scales.

Zuo et al. [40] take a slightly different approach in their deep cross-omics cycle atten-
tion method (DCCA) to jointly profile single cell multi-omics data for multiple down-
stream analyses. DCCA first encodes each data modality using separate VAEs, and then 
performs cyclical attention transfer to model the associations between modalities. It 
also uses a loss function to encourage representations learned in the latent space to be 
similar to one another while also accurately reconstructing their corresponding origi-
nal modality. These embeddings were then used for multiple downstream tasks includ-
ing clustering and visualization, characterizing transcription factor motif activity, and 
inferring transcriptome regulation from a multi-omics perspective. A limitation of this 
method is that it requires the modalities to be paired, i.e., the sample from which they 
were measured should be known. This is often not the case in single-cell data, where 
the current technologies to simultaneously measure multiple omics are limited and still 
under development.

Handling Unpaired Data. Two other methods, Multigrate [41] and GLUE [42], do 
handle unpaired single-cell multi-omics data. Multigrate learns a joint representa-
tion space that contains information from all modalities. It does this using a product-
of-experts (PoE) framework, where the joint posterior is modeled as the product of the 
conditional marginal posteriors which generate the modality-specific representations. 
Additionally, it includes a maximum mean discrepancy (MMD) loss to minimize the 
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distance between the joint representations learned by different data sets, thus encourag-
ing consistency even when the data are unpaired. GLUE takes a different approach: it 
encodes each modality using separate VAEs to learn low-dimensional cell embeddings 
from each omics type. Rather than use PoE to generate a joint embedding, however, it 
uses a graph containing prior knowledge of regulatory interactions to associate different 
omics features to link the omics-specific embedding spaces: a separate graph VAE learns 
feature embeddings from the prior knowledge graph, and these embeddings are com-
bined with the modality-specific embeddings to integrate them into a common space. 
GLUE additionally uses adversarial learning to align the cell embeddings of different 
omics data types. Both Multigrate and GLUE apply their learned representations to con-
structing multi-modal reference atlases, contributing to an improved understanding of 
inter-omics relationships.

Unsupervised learning for dimensionality reduction. Other unsupervised meth-
ods primarily sought to learn low-dimensional latent features to ameliorate the ‘large 
p, small n’ issue in specific downstream tasks. These include methods developed by 
Chung et  al. [43] and Albaradei et  al. [44]. In order to integrate temporal proteomics 
and metabolomics data, Chung et al. [43] develop a long short-term memory (LSTM)-
based VAE architecture (LSTM-VAE) as a dimensionality reduction approach to extract 
temporal trends in each omics data type. The resulting features were clustered to iden-
tify groups of proteins and metabolites that are potentially involved in shared biological 
pathways during cardiac remodeling. Similarly, Albaradei et al. [44] use a convolutional 
VAE (CVAE) to extract features from pan-cancer multi-modal data by first concatenat-
ing across modalities and then inputting them into two convolutional layers to extract 
local patterns via sliding filters. These features were then fed into a separate deep neural 
network to classify tumors as metastatic versus primary. Notably, both of these methods 
use the VAE to learn low-dimensional representations of the original data in an unsu-
pervised manner (via reconstruction loss), but do not further train these representations 
for a specific downstream task.

Supervised learning for generating task-relevant embeddings. While the unsuper-
vised representation learning methods reviewed above have shown success in down-
stream tasks, it is possible that when the data labels are imbalanced, or when the primary 
source of variation in the data is not correlated with the labels being predicted in the 
downstream task, unsupervised dimensionality reduction may discard critical informa-
tion [46]. To combat this, many supervised variational methods have been developed to 
learn low-dimensional representations that are task-oriented.

Zhang et  al. [45] developed OmiVAE, which combines a VAE with a classification 
network that is learned end-to-end. It first concatenates the data across modalities and 
inputs it to a VAE to extract low-dimensional features. Then, the output of the encoder is 
connected to a classification network that encourages the network to learn latent repre-
sentations that contain information relevant to identifying cancer and classifying tumor 
types.

Hira et al. [46] developed a model, Maximum Mean Discrepancy VAE (MMD-VAE), 
which has the same structure as OmiVAE except that it uses MMD loss instead of KL-
divergence to measure the difference between the posterior and prior latent distribu-
tions. This new loss function, which requires all moments of the two distributions to 
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be the same, was proposed to address the issues of uninformative latent features and 
overestimation of the variance in the feature space which may arise when the traditional 
ELBO-based loss function is used.

Another method, OmiEmbed [47] consists of both deep embedding VAE networks 
and downstream task networks, but it extends the task-specific component to multi-
task learning. In doing so, it shares information among a diverse set of tasks to obtain 
embeddings that are adapted to multiple supervised learning problems.

Going beyond the architecture of VAE embedding and supervised learning networks, 
DeepIMV [48] consists of four main components: (1) modality-specific encoders, (2) 
PoE to combine the modality-specific latent representations into a joint representation, 
(3) a multi-view predictor to generate a prediction based on the joint predictions, (3) 
and modality-specific predictors. It uses an information bottleneck (IB) approach to pre-
serve the most relevant task-specific information from both the modality-specific and 
joint representations. In doing so, DeepIMV considers both the consensus and comple-
mentary nature of the multi-omics data.

From methods reviewed here, we can see that while unsupervised methods have the 
advantage of not requiring specific labels and learning the inherent structure in the data, 
supervised methods can be beneficial for extracting specific predictive information, 
either for a single task or multiple tasks.

Overall, the VAE-based methods in this section were all developed for tabular multi-
omics data including gene expression, miRNA expression, DNA methylation, and CNV 
data. Additionally, some of these methods are capable of handling incomplete data and 
thus can be applied to paired or unpaired single-cell multi-omic data. Thus, one of the 
advantages of VAE-based methods is that modeling the latent distribution enables the 
use of techniques that can infer multimodal information from modalities that are availa-
ble while allowing for missingness. PoE generates joint distribution using the modalities 
that are present, and GLUE can link omics-specific embedding spaces from unpaired 
data using prior knowledge. The generative nature of these methods could also poten-
tially be used to generate one modality from the representation of another. Addition-
ally, modeling the latent distribution enables methods to encourage properties such as 
adherence to the prior latent distribution and consistency and between the distributions 
corresponding to different modalities. While most of the methods utilize an early or 
intermediate integration approach, DeepIMV uses both intermediate and late integra-
tion to produce both modality-specific and multimodal predictions, which was shown to 
be beneficial for classification tasks. Despite these advantages, VAEs are more complex, 
making them more difficult to train. Furthermore, the number of parameters increases 
greatly with the number of modalities, which poses limitations on the number of data 
types that can be integrated for a given sample size.

Generative adversarial networks

Generative adversarial networks (GANs) are another type of method that models the 
data distribution, but they are learned via an adversarial procedure. This process uses 
a generative model to capture the data distribution and a discriminative model that is 
often trained to distinguish artificial data generated from the modeled distribution and 
real data [97]. Training the model in an adversarial manner improves both the ability of 
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the generative model to produce realistic data and the discriminative model to distin-
guish real and generated data, ideally resulting in a close fit to the true data distribution.

One GAN-based multi-omics integration method is Subtype-GAN [49], which han-
dles multiple modalities via a multi-input-multi-output network coupled with an adver-
sarial generation network. It first extracts features from each omics data type separately 
using fully connected layers to capture their distinct distributions, before inputting them 
to another fully connected layer which generates the parameters of a distribution for 
the shared latent representation. The decoder is trained to reconstruct each individual 
modality from the shared representation. In this way, Subtype-GAN follows a VAE-
like structure. Also like VAEs, it assumes a prior distribution for the latent variables, 
which acts as a regularizer to prevent overfitting and ensures the smoothness of the 
latent space. However, it also trains a discriminator to distinguish samples of the learned 
shared embedding space from those of the prior distribution. This ensures that the pos-
terior distribution of the shared latent representations matches the prior Gaussian dis-
tribution. Finally, the features from the shared layer are used in consensus clustering to 
identify cancer subtypes. Thus, this method mainly takes advantage of adversarial learn-
ing to constrain the shared embedding space to match the prior, but it does not use it to 
help learn the relationships between different modalities.

On the other hand, omicsGAN [50] directly leverages adversarial learning to learn 
inter-modality relationships. It is designed to integrate two modalities as well as their 
interaction network by learning a Wasserstein GAN for each modality to generate 
updated embeddings that encapsulate information from both omics data types as well 
as their interactions. Using both the real data from a given modality and the adjacency 
matrix of their interaction network, the generator is trained to synthesize the other 
modality. A discriminator is then trained in an adversarial game to differentiate the real 
and synthetic data. The resulting output is taken to be the new feature set for the other 
modality. Experiments demonstrated that the synthetic data containing information 
from both modalities and their interaction network performed better than the original 
data in cancer outcome classification. Another method, CLUE [51], combines the VAE 
architecture with adversarial learning. It learns inter-modality relationships using both 
self-encoders and cross-encoders that learn latent representations of each modality from 
itself and from each of the other modalities, respectively. A discriminator is also trained 
to distinguish which modality a latent representation is derived from to enforce consen-
sus between latent representations inferred from different modalities.

Therefore, we can see that GAN-based methods use adversarial loss by training a dis-
criminator to distinguish data generated by two different distributions in order to learn 
representations that better recapitulate some desired distribution. This type of learning 
can be leveraged for the purpose of regularization, as was done in Subtype-GAN, or to 
help ensure consensus between different data types, as was done in omicsGAN.

As with all other method types reviewed thus far, the GAN methods in this section 
were designed for tabular -omics data, including gene expression, miRNA expression, 
and CNV. Additionally, CLUE can handle unpaired single-cell -omics modalities, and 
omicsGAN requires an interaction network. Other GANs have been applied to imaging 
data such as MRI and PET [57] (see Incorporating imaging modalities section). Although 
omicsGAN requires complete data for training, its ability to generate synthetic data for 
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each modality using the other modality suggests that it could potentially be applied to 
incomplete data at test time. All methods in this section use the intermediate integration 
approach, in which they generate representations of each modality while also learning 
the relationships between data types to encourage their agreement. As we have seen, the 
adversarial learning strategy utilized by GANs allows them to enforce consensus among 
latent distributions corresponding to different modalities and can also serve as a regu-
larization mechanism. Despite these advantages, GANs are more complex, requiring the 
training of both generators and discriminators, and thus they are limited in the number 
of modalities they can handle while requiring a large sample size.

Generative pretrained transformer

A rapidly growing area in artificial intelligence is the development of foundation models 
such as generative pretrained transformers (GPTs) which are trained on vast data sets to 
learn the general patterns inherent in the data before being fine-tuned for specific tasks. 
Taken from the field of natural language processing (NLP), these models are now being 
adapted to other disciplines, including the biomedical domain. For NLP applications, 
the transformer architecture [98] has enabled representation learning from sentences 
by using an attention mechanism that can relate elements between any two locations of 
arbitrary distance in the sequence. Multi-head attention enables the learning of multi-
ple such relationships. Additionally, the transformer architecture is amenable to paral-
lelization, increasing its computational efficiency. For application to biomedical data, the 
transformer is still useful for relating components that make up a larger biological entity, 
such as genes in a cell. In the case of multi-omics integration, the attention mechanism 
can also be used to capture relationships between different modalities.

Recently, Cui et  al. [52] proposed scGPT, a foundation model for single-cell omics 
data. Whereas NLP-based models are trained to model text composed of words, scGPT 
models cells composed of genes and their protein products. Through pre-training on 
large-scale non-sequential single-cell omics datasets composed of over 33 million cells, 
it learns cell and gene representations simultaneously, which capture the general bio-
logical patterns and interactions in single-cell data. It can then be fine-tuned for specific 
tasks, including multi-omics integration. Its architecture consists of stacked transformer 
blocks with specialized attention masks [98] for generative pretraining via self-super-
vised learning. The input layers include gene tokens, expression values and condition 
tokens, which can represent attributes such as modality, batch, and experimental condi-
tion. In the case of multi-omics integration, the condition tokens represent the modality 
from which the features are taken. These tokens are concatenated with the transformer 
output before being input to task-specific fine-tuning modules. This prevents the trans-
former from biasing attention to be greater within features of the same modality while 
underestimating associations with features in different modalities.

In experiments, scGPT achieved state-of-the-art performance in multi-omics integra-
tion. Its performance on downstream tasks also improves as the pretraining data size 
increases, indicating that as more data becomes available, GPTs are likely to become 
even more powerful, and thus are a promising approach for multi-omics integration, 
among other tasks.
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scGPT was designed for single-cell -omics, including transcriptomics, epigenomics, 
and proteomics, and thus is limited to these data types. However, other transformer-
based methods have been applied to imaging modalities such as radiomics [56] or clini-
cal text [99, 100]. As scGPT is a large foundation model, it requires vast amounts of data 
for pre-training, and thus, GPT models in general are limited to data types for which 
such volumes are available. As a result, they are also very computationally expensive to 
train. On the other hand, pre-training on a vast dataset has been shown to enable better 
performance on a variety of specific downstream tasks, as scGPT exhibits superior per-
formance on both paired and unpaired datasets.

Recent advancements and future directions in deep learning for multi‑omics 
integration
Deep learning-based approaches build off of previous statistical methods to integrate 
multi-omics data by enabling the modeling of complex and nonlinear interactions 
between data types, as we have seen in this review. In some of these methods as well 
as additional approaches, we see emerging themes that point toward future directions 
in the field of multi-omics integration. These include the ability to handle incomplete 
multi-omics data as well as going beyond the use of molecular omics to utilize imaging-
based omics.

Handling incomplete multi‑omics data

A common challenge in analyzing multi-omics data is that samples are often missing one 
or more modalities. Many multi-omics integration methods either exclude samples that 
are missing any modalities or impute missing values as a data preprocessing step. The 
former results in a reduced sample size while not allowing the full usage of all informa-
tion contained in the dataset, and the samples with missing values may not be a random 
subset of the data [101]. The latter may bias the relationships between features toward 
similarities in imputation, potentially negatively impacting downstream analyses [101]. 
To combat this, some of the deep learning methods in this review have been developed 
to handle incomplete multi-modal data within their frameworks. Each method reviewed 
here takes one of following strategies: (1) learning a joint probability distribution from 
the available modalities, (2) cross-learning, and (3) combining unpaired single-cell 
multi-omics data using inter-modality relationships.

DeepIMV [48], Multigrate [41], and MvNE [39] learn joint probability distributions 
of the latent variables that can handle the case of missing modalities. Both DeepIMV 
and Multigrate take the product-of-experts approach, which represents the joint latent 
distribution as the product of the single-modality latent distributions. When a specific 
modality is missing, the joint distribution can still be determined from the modalities 
that are present while ignoring missing modalities. Thus, this enables the generation 
of a joint embedding regardless of a sample’s modality-missing pattern. DeepIMV still 
preserves modality-specific predictive information by training modality-specific predic-
tors as well as the PoE-derived joint representation. Multigrate can even impute missing 
modalities from the joint representation using its decoder to reconstruct all modalities, 
even if some were missing in the input. MvNE takes a different approach by modeling 
and combining probability distributions for each sample for each modality into a unified 
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probability distribution using a conflation method. In the case of incomplete data, this 
approach simply changes the definition of unified probability based on the modality-
missingness pattern.

Other methods use cross-learning approaches that enable the inference of one modal-
ity’s representation from another. In addition to using self-encoders that generate a 
latent representation from each modality, CLUE [51] uses cross-encoders which ena-
bles all modalities to generate latent representations for every other modality. When a 
given modality is missing, its latent representation can still be inferred from the available 
modalities. DCCA [40] can also handle missing modalities by generating missing omics 
from the omics that are present. This is because it uses cyclical attention transfer to min-
imize the distance between latent features corresponding to different modalities. For a 
given modality, it learns representations of each omics data that has similar embeddings 
with and accurate reconstruction of that modality. In experiments, scATAC-seq data 
generated from scRNA-seq data was positively correlated with the true scATAC-seq 
data 100% of the time, and correlations were 0.9 and above on two different data sets.

Moreover, methods designed for unpaired data handle incomplete data by default. 
GLUER [18] and GLUE [42] both use the relationships between different omics modali-
ties to generate representations that share information across them. GLUER projects all 
datasets onto a subspace with shared structure, then identifies pairs of similar cells in 
that space based on the mutual nearest neighbor algorithm. Based on these cell pairs, it 
then learns nonlinear mapping functions between modalities using a deep neural net-
work. Finally, it computes a co-embedded data matrix using these nonlinear mapping 
functions which can be used for data imputation. GLUE learns new feature embeddings 
that link all omics data by incorporating both omics dataset-specific encoders and infor-
mation derived from a guidance graph of prior knowledge about regulatory interactions.

Finally, single-cell multi-omics data analysis often encounters challenges due to spar-
sity, where not every cell expresses each gene. To address this, the typical approach 
involves two key steps: first, dimension reduction techniques are applied to simplify the 
data while preserving important features. Second, advanced integration methods, possi-
bly including machine learning or neural networks, are used to combine data from differ-
ent modalities. This helps to learn from different modalities to impute or fill in missing 
data, utilizing the strengths of diverse data types to enhance the analysis. GLUER [18] 
effectively handles sparsity in single-cell -omics and imaging data by leveraging Non-
negative Matrix Factorization (NMF) to learn lower-dimensional shared factors among 
diverse data sets while enhancing data interpretability. GLUE [42] applied linear dimen-
sionality reduction as the first transformation layers in the encoder in addition to utiliz-
ing a guidance graph encoding regulatory interactions to link the different -omics data 
types. CLUE[51] uses modality-specific encoders and cross-encoders trained on par-
tially paired single-cell multi-omics data to be able to generate lower-dimensional inte-
grative representations from sparse, modality-incomplete data.

The ability to leverage all samples in a dataset regardless of their patterns of missing 
modalities is an important characteristic of multi-omics integration methods. The meth-
ods reviewed here demonstrate some current approaches that have been developed to 
handle this, and it is expected that we will see even more development in this area as the 
field advances.
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Incorporating imaging modalities

Additional deep learning methods go beyond the multi-omics data discussed earlier in 
this review to analyze imaging modalities. There are many clinical settings where images 
are available, including pathomics (e.g. histology slides) and radiomics (e.g. magnetic 
resonance imaging (MRI), positron emission tomography (PET), and computed tomog-
raphy (CT)). These data contain rich visual information that can be leveraged for pre-
dictive insights. For example, Lu et  al. [102] used a U-net-based convolutional neural 
network to identify and extract cell-level lymphocytic regions in H&E-stained images 
and found that spatial features derived from these regions had strong associations with 
gene expression and somatic mutations and were also predictive of patient outcomes. 
Notably, when raw images are used as inputs, convolutional neural network (CNN) 
architectures are often utilized to process them. CNNs have the same basic structure as 
FNNs, but they additionally use convolutional layers consisting of filters that perform 
downsampling by aggregating local regions of the image before vectorization. Thus, the 
representations learned using convolutional filters preserve spatial contextual infor-
mation not captured by the molecular multi-omics modalities discussed earlier in this 
review. To take advantage of the available visual information provided by pathomics 
and radiomics data, several deep learning methods have been developed that (1) extract 
imaging and multi-omics features separately before combining them via late fusion for 
downstream tasks, (2) extract both imaging and multi-omics while modeling interac-
tions between modalities, (3) utilize multiple imaging modalities, and (4) utilize longitu-
dinal multi-modal imaging data.

A commonly used approach to integrating imaging with multi-omics data has been via 
“late fusion”, in which features from each modality are extracted separately before being 
combined for downstream tasks. Deep learning methods are often important for extract-
ing features from images or deriving latent features from multi-omics data. To classify 
non-small-cell lung cancer (NSCLC) subjects, Carrillo-Perez et  al. [53] fused whole-
side imaging with RNA-seq, miRNA-seq, copy number variation, and DNA methylation 
data by training an independent machine learning model for each modality: they used a 
CNN for feature extraction and prediction for the histology images, and SVMs for the 
molecular data modalities. They then fused the probabilities via weight-sum optimiza-
tion to obtain a final prediction. Similarly, Chen et al. [54] combined CT images, gene 
expression, and clinical factors to predict survival in NSCLC patients. They manually 
extracted features from the segmented CT images and used an autoencoder framework 
to learn latent features from the gene expression data. Then, they calculated risk scores 
from each modality separately and fused them for the final prognosis prediction. While 
the late fusion approach can easily handle inter-modality differences by using separate 
feature extraction models for each data type, it ignores interactions between modalities.

Other methods do account for these interactions: GLUER [18], which we have pre-
viously discussed in this review, is designed to handle multiplexed molecular imaging 
data as well as multi-omics, treating it as an additional modality that undergoes the 
same processing alongside the other omics data: joint NMF for identifying common 
factors shared across data sets, mutual nearest neighbor algorithm for mapping rela-
tionships among cells across data sets, and deep learning NNs to capture the nonlinear 
relationships between datasets. Additionally, Chen et al. [55] present Pathomic Fusion, 
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an end-to-end integrated framework to fuse histology image with mutation, CNV, and 
RNA-seq features for cancer survival outcome prediction. Features are extracted from 
each modality separately based on the supervised learning task, and then multimodal 
fusion is performed using gating-based attention to control the level of influence of each 
modality on the outcome and the Kronecker product to model pairwise feature interac-
tions between modalities. CNNs or parameter efficient GCNs are used to extract the 
histology features, and a feed-forward network is used for the genomic features. Other 
methods have been developed to integrate radiomics and genomic data: Shirkavand et al. 
[56] propose a framework that utilizes MRI and SNP data to predict cognitive degenera-
tion and disease outcomes in Alzheimer’s disease subjects using a transformer to extract 
imaging features and a GAN to learn the relationship between MRI and SNP data.

In some domain areas, multiple imaging modalities are available. For example, Alz-
heimer’s disease patients often have both MRI and PET imaging modalities available. 
To take advantage of these data, methods have been developed to handle multi-modal 
imaging data. Liu et  al. [57] propose a joint neuroimage synthesis and representation 
learning (JSRL) framework to predict conversion from subjective cognitive decline 
(SCD) to MCI using MRI and PET data. It uses a GAN to to handle incomplete data by 
synthesizing missing PET images and generate multi-modal features, as well as a clas-
sification network to fuse the multi-modal features for prediction. Tulder and Bruijne 
[58] combine multiple MRI sequences using an axial CNN, which is an autoencoder-like 
model that learns a shared representation across multiple modalities by averaging the 
representations from each separate modality.

Additional methods have gone even further to leverage longitudinal multi-modal 
imaging data. Morar et al. [59] use a deep fully connected NN to predict cognitive score 
at multiple future time points using MRI neuroimaging measurements, cerebral spinal 
fluid (CSF) measurements, PET measurements, and cognitive scores but do not leverage 
multiple time points as input to the model. Methods that do take longitudinal input data 
rely on sequential model architectures such as recurrent neural networks (RNNs). RNNs 
share the same architecture as FNNs, except they can process sequential data by repeat-
edly applying the neural network to each element of the sequence one-at-a-time while 
also considering the output of the previous time point. Lee et al. [60] present MildInt, 
a method to integrate longitudinal cognitive performance and CSF data, as well as MRI 
and demographic information using an RNN-based architecture to learn longitudinal 
feature representations in each modality separately, before concatenating the represen-
tations across modalities for final classification. Xu et al. [61] and Wang et al. [62] also 
utilize RNN-based architectures to model temporal patterns in the longitudinal data and 
impute missing time points, while using other deep learning techniques to learn cross-
modality representations. Bhagwat et al. [63] use longitudinal cognitive scores to model 
Alzheimer’s disease progression trajectories and then develop a longitudinal Siamese 
network (LSN) to combine MRI data from two time points, along with genetic and clini-
cal information, to predict the prognostic trajectories of individual subjects. The LSN 
network consists of two FNNs, each corresponding to multi-modal data from one time 
point (baseline or follow-up), with weight-sharing branches to combine information 
across the two times. This allows the LSN to produce an output that is representative of 
the change in the subject over time (e.g., brain atrophy).
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Thus, many deep learning methods have been developed to integrate modalities other 
than the common molecular omics data seen in the majority of this review paper. As 
we have seen, images contain rich information that can complement these molecular 
-omics data types. In medical domains that heavily rely on imaging data, such as cancer 
and neurodegenerative disease, these modalities are particularly useful. As the field pro-
gresses and even more data becomes available, as well as methods that can handle miss-
ing modalities, we expect to see further development combining all of these data types 
to leverage all available information from a given sample for predictive insights.

Conclusions
In this review, we presented several recent deep learning-based approaches to integrate 
multi-omics data for various downstream applications. Deep learning methods are valu-
able to the problem of fusing diverse datasets with complex interactions. We categorized 
the approaches into two main types: non-generative and generative, where generative 
methods learn distributions of the data and their latent representations, enabling the 
use of constraints on the embedding space to impose certain desired properties. Non-
generative methods included feedforward neural networks, graph convolutional neural 
networks, and autoencoders, and generative methods included variational methods, 
generative adversarial networks, and a recently developed generative pretrained model.

Although all model architectures discussed in this paper are capable of handling tabular 
data, including multi-omics and imaging derived features, some are better suited for data 
with missing modalities, including GANs, VAEs, and the GPT. These model types are able 
to learn inter-modality relationships that allow for either cross-modality or joint represen-
tation inference. For methods that incorporate sample similarity or biological interaction 
information, GCN-based methods may be preferable, as their graph-based architecture 
matches the network structure of the data. Additionally, convolutional neural networks 
(CNNs) and transformers are particularly well-suited for handling radiomics, as they are 
better capable of processing 2D and 3D data via convolutional filters and attention, respec-
tively. Finally, recurrent neural networks (RNNs) are most prominently used for handling 
longitudinal data, as we have seen in the case of Alzheimer’s disease. The sequential nature 
of RNNs makes them amenable to future trajectory and prognosis prediction. In order to 
handle longitudinal and multimodal data, a combination of RNN and VAE-based methods 
[61, 62] may be ideal to handle both the temporal and cross-modal dimensions.

One of the pervasive issues when handling large and diverse data types is sparsity as 
well as various patterns of missing modalities. Numerous recent methods have been 
developed to handle this, most of which are generative due to their ability to produce 
synthetic data for all modalities from a joint representation. As data incompleteness is a 
common and important issue, we expect to see more methods that can handle this in the 
future. Additional methods go beyond the traditional molecular -omics data types (e.g. 
genomics, transcriptomics, epigenomics) to consider imaging modalities (e.g. pathomics, 
radiomics). Fewer methods combine both molecular omics and imaging modalities, and 
we expect to see more development in this area to leverage all available data and pro-
vide an even more complete picture of each subject. Being able to comprehensively cap-
ture the state of each sample should enable a more nuanced understanding of the biology 
underlying disease outcomes, improving performance on downstream predictive tasks.
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