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Abstract 

The use of prior knowledge in the machine learning framework has been considered 
a potential tool to handle the curse of dimensionality in genetic and genomics data. 
Although random forest (RF) represents a flexible non-parametric approach with sev-
eral advantages, it can provide poor accuracy in high-dimensional settings, mainly 
in scenarios with small sample sizes. We propose a knowledge-slanted RF that inte-
grates biological networks as prior knowledge into the model to improve its perfor-
mance and explainability, exemplifying its use for selecting and identifying relevant 
genes. knowledge-slanted RF is a combination of two stages. First, prior knowledge 
represented by graphs is translated by running a random walk with restart algorithm 
to determine the relevance of each gene based on its connection and localization 
on a protein-protein interaction network. Then, each relevance is used to modify 
the selection probability to draw a gene as a candidate split-feature in the conventional 
RF. Experiments in simulated datasets with very small sample sizes (n ≤ 30) comparing 
knowledge-slanted RF against conventional RF and logistic lasso regression, suggest 
an improved precision in outcome prediction compared to the other methods. The 
knowledge-slanted RF was completed with the introduction of a modified version 
of the Boruta feature selection algorithm. Finally, knowledge-slanted RF identified more 
relevant biological genes, offering a higher level of explainability for users than conven-
tional RF. These findings were corroborated in one real case to identify relevant genes 
to calcific aortic valve stenosis.

Keywords: Prior knowledge, Random forest, Gene selection, High-dimensional, 
Feature selection, Explainability, Protein-protein interaction, RNA-Seq

Introduction
The main goal of gene expression analysis is to identify genes that could determine 
the risk and prognosis of a particular disease among thousands of other genes when 
only a subset of them is biologically important [1]. This can be performed only based 
on the information collected (data-driven) or involving some prior knowledge, such as 
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encapsulated knowledge through protein-protein interaction networks (PPI) [2]. Ensem-
ble methods, such as random forest (RF), have gained popularity because they allow 
identifying relevant genes (or features) using variable importance measures [3]. Despite 
the RF model represents a flexible non-parametric approach with several properties, in 
high-dimensional settings large P-variables small N-sample size, RF may provide poor 
accuracy, especially if complex variable interactions (e.g., gene-gene) exist in small sam-
ple sizes because similar information gain coefficients are likely to be obtained [4–6]. In 
addition, the curse of dimensionality (COD) is an inherent problem in analyzing high-
dimensional spaces, leading to two main effects called data sparsity and distance concen-
tration. Both effects make it more demanding to find similarities and patterns between 
samples, affecting the performance of the models, especially in classification tasks [7]. 
To handle the COD effects, the use of prior knowledge and dimensionality reduction 
techniques with feature selection have been explored.

The current literature has described that the use of biological information could 
improve the feature selection during the analysis of genomics data and some attempts 
to involve prior biological knowledge have been made using RF algorithm [2, 8, 9]. 
Guan et  al. [10] proposed a knowledge-based guided regularized RF (Know-GRRF) 
that performs a regularized RF using a penalty coefficient for each feature from differ-
ent domains, deriving a composite score between 0 and 1 (higher biological relevance). 
Know-GRRF allows the identification of a subset of relevant and irrelevant features after 
multiple runs, achieving a better performance compared to regularized RF and Lasso 
logistic regression [10]. However, the composite score used in the application made 
by Guan et al. [10] was not computed using the information accumulated in biological 
networks. Furthermore, Guan et al. [10] only performed experiments considering large 
sample sizes (100, or 200) with a small number of input features (maximum 1000), so 
the actual performance of Know-GRRF on extreme high-dimensional data is unknown. 
Another approach, called NetBiTE (Network-based Biased Tree Ensembles) for drug 
sensitivity biomarker identification, uses prior knowledge through a probabilistic bias 
weight distribution constructed with the information from a biological network using 
random walk with restart (RWR). NetBiTE modifies the selection probability of each 
feature to split a node in RF regression, without implementing a mechanism to identify 
relevant features or genes reporting better accuracy compared to RF, XGBoost, and lin-
ear regression [11].

In this study, we developed a comprehensive knowledge-slanted tree ensemble that 
allows the integration of biological networks as prior knowledge into the model to 
improve its performance and explainability. The RF algorithm is the focus of analysis 
in scenarios with very small sample sizes (n ≤ 30) for gene selection or classification 
problems. A RWR algorithm is used to determine the relevance of each feature (gene) 
in the RF model by modifying the selection probability to be in the subset of features 
to split a node. The last approach is called knowledge-slanted RF, which represents a 
way to prioritize features and mitigate the COD effects. In addition, extensive simulation 
studies are performed to identify the conditions to obtain its best performance. Simi-
lar to this research, Ghosh & Cabrera [12] recently developed a data-driven approach 
called Enriched Random Forest in which the algorithm of conventional RF is modified 
by applying weighted random sampling for each feature to choose the eligible subset for 
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splitting at each node. However, the weights are computed based on the ability of each 
feature to discriminate between groups in training data through filter methods based on 
hypothesis testing, which represents a data-driven method, whereas the proposed RF is 
slanted by prior knowledge.

In biological applications, it is more important to understand the mechanisms related 
to the event of interest than to build the best predictive model based on a black box 
method [13]. In the RF algorithm, there are two main variable importance measures 
(VIM) developed by Breiman L [14], the mean decrease in impurity importance (MDI) 
and the mean decrease in accuracy (MDA). While MDI is based on the decrease of 
impurities achieved at each node using a specific variable, MDA measures the impor-
tance based on predictive accuracy. However, empirical analysis have demonstrated that 
these measures are influenced by masking effects, the correlation between the input 
features, and the number of categories [15–18]. To overcome this drawback, Nem-
brini et al. [19] proposed the actual impurity reduction (AIR) in which a modification 
of the conventional Gini MDI is made seeking to quantify the bias generated by certain 
sources. AIR measure decomposes the Gini MDI into two parts: the true importance of 
each feature and the impurity reduction achieved by chance as a consequence of recur-
sive partitioning during RF construction [19, 20].

In order to face the problem of feature selection in knowledge-slanted RF, a new eval-
uation approach is proposed to identify relevant features in the knowledge-slanted RF 
in order to involve over- or under-representation of features. Basically, this new assess-
ment is a mixture of a wrapper algorithm and a measure of importance with the Gini 
MDA using the conventional Boruta selection feature algorithm with the use of the AIR 
measure[21]. In general, Boruta creates shadows as a permuted version of the original 
features and then compares the VIM values between them to define whether a specific 
contribution is significant to the model. In genomic applications, other feature selec-
tion methods, such as ReliefF or minimal-redundancy-maximum-relevancy, have been 
widely used. However, Boruta algorithm has proven to be more reliable in identifying 
relevant genes mainly in high-dimensional dataset, which has attracted attention among 
available feature selection algorithms [22–24]. The knowledge-slanted RF framework is 
implemented in the kslboruta package of the R software to facilitate its application to 
real-world problems.

Methods
The proposed approach, called knowledge-slanted RF, is a combination of two stages 
as an attempt to implement a knowledge-guided supervised learning approach. In the 
first stage, prior knowledge represented by graphs (e.g., PPI networks) is translated by 
running an RWR algorithm in order to identify which variables could be relevant to the 
model. In the second stage, this information is involved in the conventional RF, prioritiz-
ing the selection of some features or genes during the RF construction.

Knowledge‑slanted random forest

Suppose there are i–th samples with i = 1, ...,m , for which the feature vectors {xij}
p
j=1

 
and the label yi are measured. The goal is to find a classification model that allows to 
predict the label and identify which features are most relevant for the classification task. 
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Formally, knowledge-slanted RF predicts yi by combining the results of tree-structure 
classifiers ft(x)Tt=1 . In conventional RF, for each node within each tree, a subset of fea-
tures denoted mtry, is randomly selected with equal probability (1/p), while in knowl-
edge-slanted RF the mtry subset of variables is selected with probability {pj}

p
j=1

∈ (0, 1) . 
More specifically, pj is determined based on the prior knowledge that is represented 
through a PPI network. This is relevant because the genes associated with a specific dis-
ease share similar functions and tend to be located in neighboring regions on the PPI 
network, which helps to identify new disease-related genes and perform candidate-gene 
prioritization. The structure of a PPI network is equivalent to an undirected weighted 
graph G = (V ,E) , where nodes i, j ∈ V  correspond to each gene, and edges or connec-
tions (i, j) ∈ E are weighted with a weight matrix W that represents the strength of the 
relationship between each pair of edges or connections. Consequently, W is known as 
the weighted precision matrix of G, where all entries in W are in (0,1).

For gene prioritization, an RWR algorithm is applied to rank the genes on the PPI net-
work, allowing that the random walker can move from i node to a randomly neighbor 
node or goes back to the initial node with a back-probability θ ∈ (0, 1) . RWR simulates 
a random walker that explores the PPI network from node i to node j using a transition 
probability matrix A = WD−1 , where D is a diagonal matrix with elements dij = j wij . 
RWR Algorithm can be represented by equation 1, where p is the converged probabil-
ity of each node or gene j being a candidate-gene. At each step s, the RWR algorithm 
updates the probability p(s) that the walker is at a specific node (or gene) at step s, until 
convergence is reached for a given threshold �p(s+1)

− p(s))�L1 ≤ δ . θ ∈ (0, 1) represents 
the probability of returning to a specific set of nodes in each interaction of the algorithm, 
called seed nodes, and the vector p(0) is the initial distribution probability.

In knowledge-slanted RF, the selection probability is modified using the probabilities 
obtained after executing the RWR algorithm with p(s+1) . Therefore, the most informa-
tive genes can be selected in the first steps of the algorithm. A relevant aspect of the 
RWR algorithm is the setting of seed notes at s = 0 to allow the random walker to visit 
all nodes, using a higher probability of being at a specific node at time s = 0 for relevant 
features. Consequently, the seed nodes must be selected using features (or genes) that 
have been established with a statistically significant difference between the labels of the 
classification task in the literature. The algorithm of knowledge-slanted RF is shown in 
Algorithm 1. The proposed ensemble is constructed using the Classification and Regres-
sion Tree (CART) algorithm with the Gini index as a splitting rule and the bootstrap 
aggregation procedure.

(1)p(s+1)
= (1− θ)ATp(s) + θp(0),
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Algorithm 1 Knowledge‑slanted Random Forest algorithm

Boruta approach for the knowledge‑slanted

Boruta feature selection algorithm is a flexible method for finding all relevant variables 
[21]. To summarize, Boruta replicates the original set of features X, generating a per-
muted version denoted by X∗ , known as the shadow subset. Then, Boruta built a model 
using X ∪ X∗ and compares the relevance of the original version of xj with the maximum 
score among shadow features (MSF) X∗ , using any VIM measure. If VIM(xj) > MSF  , 
then, the feature xj stores a hit. After performing a minimum of iterations nruns, the 
total of hits stored for each feature (Hj) is tested using a two-sided test of equality based 
on the binomial distribution in order to compare the observed value with respect to the 
expected number of hits in nruns iterations, thus is Hj ∼ Binomial(p = 0.50, n = nruns).

Using the central idea of the Boruta algorithm and AIR measure, an extended approach 
was developed to ensure that each variable’s relevance will be evaluated, taking into 
account the under- or over-representation during the construction of the knowledge-
slanted RF based on pj ∈ (0, 1) . The procedure is summarized in the following steps: 

1. Step 1: Run a Knowledge-slanted RF using X ∪ X∗ preserving that each pair xj and 
x∗j  have the same level of over and under-representation according to the original 
prior weight (pj) of xj . The new prior weights are determined by: 

 where, Rj = pj/(1/p).

2. Step 2: Calculate the maximum of the AIR measure [19] among the shadow features 
(MSF).

p∗j = Rj/(2p),
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3. Step 3: Assign a hit to every feature Hj = 1 if the respective AIRj from each xj is 
greater than MSF.

4. Step 4: Perform a two-sided test to compare the accumulated hits for each variable 
in each nrun. Rejected or accepted based on the results from a binomial test.

5. Step 5: Remove the original xj and its respective shadow x∗j  when the status is 
rejected. Repeat the process until all features get status or the maximum number of 
iterations is reached.

A multiple testing adjustment can be done using Bonferroni, Benjamini, and Hochberg 
(BH), or Benjamini and Yekutieli (BY) methods [25, 26]. The Boruta approach for the 
knowledge-slanted RF is implemented in the kslboruta package of the R software. The 
AIR measure is calculated with the Gini MDI using the following equation:

where, MDI(x∗j ) is the estimator of the impurity reduction of xj achieved by chance and 
therefore, AIR(xj) quantifies the true importance of xj.

Experimental evaluation

To simulate the prior information represented by graphs,more specifically the PPI net-
work, a Gaussian Graphical Model was assumed G ∼ N (0,� = �−1) with the preci-
sion matrix � , which means that the conditional independence relationship between the 
nodes follows a multivariate Gaussian distribution. Because � = BBT

+ L , the precision 
matrix was generated by a random sparse lower triangular matrix (B) and a random 
diagonal matrix (L) using the algorithm proposed by [27]. To control the sparsity grade 
of � , B was divided into three submatrix of equal size ( I1, I2, I3 ). In each submatrix Ik , a 
random number of nonzero connections with probability η was established, and then, 
these connections were sampled from U ∼ (0, 1) due to STRING scores ranging from 0 
to 1 [28]. Similarly when (i, j) /∈ Ik , a random number of connections with nonzero val-
ues were defined with probability extraη = η/5 . The diagonal values of L were sampled 
from U ∼ (10−3, 5× 10−3) . Finally, a matrix � was obtained, and the adjacency matrix 
of G was retrieved by setting all diagonal values of � to 0. Thus, the weighted adjacency 
matrix W was generated, which represented the prior knowledge stored in a biological 
PPI network. When an element of W was less than 0.20 ( wij < 0.20) , its value was set to 
zero. According to [29], the number of interactions in a PPI network is approximately 
10−3 , so we consider four cases: when the proportion of non-zero connections in W is 
10−5 , 10−4 , 0.02 and 0.1.

Synthetic data was simulated assuming X ∼ N (0,�) and � = f (G) to describe the 
existing relationship between genes or features based on information from the simulated 
PPI network. We generate 100 datasets with p = 1000 , each with a training sample of 
size n = 15 , n = 30 , and n = 100 . An additional one-third of the sample size was gener-
ated to use as a test sample. To create a binary result y with two classes, each data set was 
divided into two subsets representing a group of cases and a group of controls. For the 
case group, 100 genes or features were randomly selected from the set of all features (1, 
2, ..., p) and then, their means were modified and sampled from (−2,−1,−0.5, 0.5, 1, 2) 
to define small, medium, and large effects. Therefore, only 100 features were considered 

AIR(xj) = MDI(xj)−MDI(x∗j ),
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as relevant for the classification task. Using the above strategy, easy and medium clas-
sification scenarios were generated (Fig.  1). In the medium scenario an additive noise 
E ∼ N (0, Ip) for each feature was considered. A third case study simulating a hard clas-
sification scenario was achieved, generating y through a probit model. Thus, the binary 
response y for each i–th sample was generated by:

on each generated dataset, we apply three models: knowledge-slanted RF, Conventional 
RF, and logistic Lasso regression. For RF models, mtry parameter was equal to √p and 
ntree = 500 . All RF models were grown to maximum depth with a minimum terminal 
node size of 1, using the Gini index to measure impurity at each node. The ranger pack-
age was used for all simulations [30]. Lasso was implemented using glmnet R package, 
which fits the model via penalized maximum likelihood [31]. The penalty parameter 
� ∈ [0, 1] was set with the cross-validation method by cv.glmnet function. The perfor-
mance of the models was measured in the test sample, through prediction error (PE), F1 
score, sensitivity (S), and specificity (E).

In the knowledge-slanted RF, the seed nodes in the RWR algorithm were the relevant 
features used in the generation of y in the three scenarios. We investigated the influ-
ence of prior knowledge on the performance of knowledge-slanted RF selecting a pro-
portion of the (q) relevant features and (1− q) non-relevant features as seed nodes to 
obtain a new probability of selection for each feature (or gene). To study the behavior 
of AIR measure and modified Boruta under the knowledge-slanted RF, we performed 
simulations using a sample size of n = 30 , p = 5000 , and 100 relevant features. Since the 
knowledge-slanted RF combines RWR algorithm with RF model and the resulting prob-
abilities of selection or prior weights {p}pj=1

∈ (0, 1) of each feature may depend on the 
selected seed nodes to initialize RWR algorithm, it investigates the effects of choosing 
the seed nodes using 50 relevant features and 50 false relevant in the behavior of VIM. 
Knowledge-slanted RF and conventional RF were constructed by combining 5000 trees 
and using a size of mtry =

√
p for a medium classification task, with a proportion of 

non-zero connections between the features X of η = 10−4.

P(y = 1|X) = �(β0 + Xβ),

Fig. 1 T-distributed Stochastic Neighbor Embedding representation of the simulated three scenarios with 
n = 30 , p = 1000 y η = 10

−4 . Red points correspond to cases
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Results
Performance comparison on simulated data

As can be seen in Figs. 2 and 3, the results on the simulated datasets showed that knowl-
edge-slanted RF reported good metrics on easy and medium classification tasks, outper-
forming conventional RF with the highest accuracy. While in hard classification tasks, its 
behavior was limited and similar to that reported by conventional RF. As the proportion 
of non-zero connections (η) between nodes increased, the performance of knowledge-
slanted RF was better than the other approaches. The performance of the RF algorithm 
with and without involving prior knowledge was better than Lasso regression.

The detailed results on simulated datasets are shown in Tables 1, 2, and 3 for a sample 
size of 15, 30 y 100, respectively. Knowledge-slanted RF worked best in small sample 
sizes (n ≤ 30) , reporting good results in terms of PE, S, E, and F1 score. Although, the 
mentioned tables displayed the findings only for η ≤ 10−4 , the observed performance 
did not vary for η to 10−5, 0.02 and 0.1. The effect of prior knowledge was irrelevant 
when the sample size reached 100 observations during the training process.

As mentioned in the Methods section, the strategy evaluated for identifying relevant 
features in the knowledge-slanted RF is the extended Boruta approach with and with-
out correction for multiple testing. Findings after applying this strategy are reported in 
Table  4. The AIR measure under knowledge-slanted framework reported a high per-
centage (40.6%± 6.4%) of relevant features among the ones erroneously flagged as seed 
nodes, but with no real effect on the result (β = 0) , so they are false discoveries. With 
the extended Boruta approach, the percentage of false discoveries decreased compared 
to the unmodified AIR measure for knowledge-slanted RF, ranging from 24.2% (Bonfer-
roni adjustment) to 32.9% (simple Boruta version). The percentage of relevant features 
was always higher in features labeled as seed nodes than in features not labeled as seed 
nodes.

There was a tendency to detect a higher percentage of relevant features as the effect 
size increased for those with a true effect on y. It also observed large variability in the 
results for features with small (β = 0.5) and moderate (β = 1) effect sizes. Among vari-
ables with a small effect, the performance between the AIR measure and the extended 
Boruta was similar ( β = 0.5 ). When the effect size increases to moderate ( β = 1 ) and 
strong ( β = 2 ), the extended Boruta showed a tendency to identify a higher percentage 
of relevant features compared to the AIR measure, even if the features were set as non-
seed nodes at the beginning of the algorithm (Table 4).

Performance on real data: calcific aortic valve stenosis

Calcific aortic valve stenosis (CAVS) is a fatal disease and there is no pharmacological 
treatment to prevent the progression of CAVS. The objective of this subsection is to 
identify genes potentially implicated with CAVS in patients with congenital bicuspid 
aortic valve (BAV) and tricuspid aortic valve (TAV) in comparison with patients hav-
ing normal valves, using a knowledge-slanted RF. CAVS dataset was obtained from 
the primary study performed by [32] and approved by the ethics committee of the 
Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, 
Quebec, Canada. Written informed consent was obtained from all participants. The 
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main characteristic of the data structure is described in [32] and [33]. Knowledge-
slanted RF was applied with the extended Boruta approach using as input features 
the expression data of 15,191 genes from 8 controls, 10 BAV, and 9 TAV cases. To 
increase the probability that a relevant feature will be selected to split a node, the 
model was built with 5000 trees using a mtry =

√
15, 191 . A conventional RF with AIR 

measure was also fitted for comparative purposes and a Leave-one-out cross-valida-
tion was implemented due to the limited sample size.

Results in the CAVS dataset can be found in Fig. 4 and Table 5. It is clear that the 
conventional RF with AIR method identified a greater number of relevant genes than 
the extended Boruta approach in the knowledge-slanted RF with and without cor-
rection for multiple testing; all five approaches simultaneously identified 330 genes. 
However, genes obtained from knowledge-slanted RF ranked better in RWR based 
on PPI information with a median position ranging from 548 to 569 compared to 
3820 from conventional RF, so users could more easily interpret the results from 
knowledge-slanted RF because the prediction can be attributed mainly to associated 
genes that could participate in important molecular mechanisms according to the 
information from PPI network. Additionally, when only relevant genes were used as 

Table 1 Comparison of models with p = 1000 in easy, medium and hard classification scenarios 
using η = 10

−4 and n = 15

PE S E F1

Method Mean SD Mean SD Mean SD Mean SD

Easy scenario
     Lasso 0.16 0.2 0.71 0.35 0.98 0.11 0.76 0.33

     Conv. RF 0.11 0.2 0.94 0.19 0.92 0.21 0.88 0.21

     Slanted (0) 0.28 0.24 0.8 0.31 0.19 0.3 0.71 0.28

     Slanted (0.1) 0.19 0.22 0.85 0.25 0.87 0.24 0.8 0.24

     Slanted (0.5) 0.03 0.08 0.98 0.07 0.98 0.09 0.97 0.1

     Slanted (0.8) 0.01 0.03 1 0.03 0.99 0.04 0.99 0.04

     Slanted (1) 0.01 0.03 1 0 0.99 0.04 0.99 0.04

Medium scenario
     Lasso 0.3 0.25 0.61 0.35 0.88 0.21 0.63 0.32

     Conv. RF 0.38 0.27 0.74 0.37 0.7 0.37 0.6 0.3

     Slanted (0) 0.48 0.23 0.65 0.38 0.61 0.4 0.5 0.27

     Slanted (0.1) 0.42 0.23 0.7 0.35 0.66 0.37 0.57 0.27

     Slanted (0.5) 0.23 0.23 0.84 0.28 0.84 0.26 0.77 0.24

     Slanted (0.8) 0.15 0.17 0.87 0.22 0.92 0.18 0.85 0.18

     Slanted (1) 0.11 0.17 0.92 0.18 0.93 0.18 0.89 0.17

Hard scenario
     Lasso 0.49 0.18 0.38 0.38 0.68 0.39 0.34 0.31

     Conv. RF 0.47 0.16 0.63 0.43 0.4 0.43 0.47 0.31

     Slanted (0) 0.48 0.17 0.62 0.42 0.4 0.4 0.47 0.31

     Slanted (0.1) 0.48 0.17 0.61 0.41 0.41 0.42 0.47 0.31

     Slanted (0.5) 0.47 0.18 0.64 0.41 0.42 0.42 0.5 0.29

     Slanted (0.8) 0.47 0.17 0.6 0.42 0.44 0.42 0.46 0.32

     Slanted (1) 0.45 0.17 0.61 0.42 0.47 0.42 0.48 0.32
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input features, knowledge-slanted RF outperformed conventional RF to discriminate 
between BAV, TAV, and control groups (Table 5).

For knowledge-slanted RF using different adjusting methods in the extended Boruta 
approach, the performance of the models was similar, but the BY adjustment selected 
more interconnected genes in the PPI network, offering the same results and higher bio-
logical explainability. Further evidence of the higher level of explainability in the knowl-
edge-slanted RF compared to the conventional RF was the lower depth found in the trees 
constructed with the relevant genes identified by our approach using any adjustment for 
multiple comparisons (Table 5).

Discussion and conclusion
This research contains the development and application of an analysis framework 
for incorporating prior knowledge into the RF algorithm, called Knowledge-slanted 
RF, with the main objective of achieving better accuracy and explainability for clas-
sification tasks in high dimensional data with a small number of samples (n ≤ 30) . 
In addition, it addresses the problem of identifying and selecting features (or genes) 
that are relevant to an event of interest or outcome. Although the entire development 
was intended for genetic and genomic field due to the high probability of producing 

Table 2 Comparison of models with p = 1000 in easy, medium and hard classification scenarios 
using η = 10

−4 and n = 30

PE S E F1

Method Mean SD Mean SD Mean SD Mean SD

Easy scenario
     Lasso 0.10 0.13 0.82 0.22 1.00 0.00 0.88 0.17

     Conv. RF 0.01 0.03 0.99 0.04 1.00 0.02 0.99 0.03

     Slanted (0) 0.08 0.13 0.91 0.17 0.97 0.10 0.92 0.15

     Slanted (0.1) 0.04 0.09 0.95 0.11 0.98 0.07 0.96 0.09

     Slanted (0.5) 0.01 0.03 0.99 0.04 1.00 0.02 0.99 0.03

     Slanted (0.8) 0.00 0.02 0.99 0.02 1.00 0.00 1.00 0.01

     Slanted (1) 0.00 0.01 1.00 0.01 1.00 0.01 1.00 0.02

Medium scenario
     Lasso 0.13 0.13 0.78 0.21 0.98 0.06 0.84 0.16

     Conv. RF 0.10 0.15 0.87 0.19 0.96 0.13 0.89 0.15

     Slanted (0) 0.23 0.19 0.72 0.26 0.90 0.20 0.74 0.22

     Slanted (0.1) 0.16 0.14 0.81 0.20 0.92 0.14 0.83 0.16

     Slanted (0.5) 0.05 0.07 0.94 0.11 0.98 0.05 0.95 0.07

     Slanted (0.8) 0.03 0.04 0.97 0.07 0.99 0.04 0.97 0.04

     Slanted (1) 0.03 0.05 0.97 0.08 0.99 0.03 0.97 0.06

Hard scenario
     Lasso 0.49 0.15 0.28 0.33 0.78 0.30 0.27 0.29

     Conv. RF 0.49 0.16 0.56 0.41 0.46 0.42 0.45 0.30

     Slanted (0) 0.48 0.15 0.54 0.38 0.48 0.38 0.45 0.28

     Slanted (0.1) 0.48 0.16 0.56 0.38 0.47 0.40 0.47 0.28

     Slanted (0.5) 0.46 0.15 0.57 0.39 0.50 0.37 0.48 0.29

     Slanted (0.8) 0.46 0.16 0.58 0.38 0.51 0.38 0.49 0.28

     Slanted (1) 0.45 0.16 0.57 0.38 0.54 0.38 0.49 0.29
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high-dimensional structures, our approach can be applied in several fields if prior 
knowledge is available to guide the RF algorithm.

Knowledge-slanted RF is a combined approach that leverages the advantages of 
RWR algorithm and conventional RF. In biological contexts, the RWR algorithm is 
often employed to search for unknown genes based on existing connections to known 
genes that are referred to as seed nodes [34, 35]. From the RWR results it is possi-
ble to infer novel genes if the probability of visiting that gene (node) by the random 
walker is high. In this work, the resulting RWR probabilities guided the construction 
of the RF model. Simulation results infer that good performance of the knowledge-
slanted RF remains when at least 50% of the features (genes) indicated as seed nodes 
are behind the true mechanism of y.

Similar to [11], we showed that the RF algorithm, when prior knowledge is incor-
porated to modify the feature selection probability during the construction of tree 
ensembles, outperforms the conventional RF, which uses an equal selection probabil-
ity for each feature. The integration of gene interaction data could offer a better pre-
diction performance, specifically when class overlap exists (e.g., TAV vs. BAV ). In 
scenarios with easily separable classes (e.g., TAV/BAV vs Control) or larger sample 
sizes (e.g., sample size equal to 100 observations), we believe that the use of prior 

Table 3 Comparison of models with p = 1000 in easy, medium and hard classification scenarios 
using η = 10

−4 and n = 100

PE S E F1

Method Mean SD Mean SD Mean SD Mean SD

Easy scenario
     Lasso 0.05 0.07 0.90 0.14 1.00 0.00 0.94 0.09

     Conv. RF 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

     Slanted (0) 0.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01

     Slanted (0.1) 0.00 0.01 1.00 0.01 0.99 0.02 1.00 0.01

     Slanted (0.5) 0.00 0.00 1.00 0.01 1.00 0.00 1.00 0.00

     Slanted (0.8) 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

     Slanted (1) 0.00 0.00 1.00 0.01 1.00 0.00 1.00 0.00

Medium scenario
     Lasso 0.04 0.05 0.93 0.10 1.00 0.01 0.96 0.06

     Conv. RF 0.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01

     Slanted (0) 0.02 0.03 0.98 0.04 0.98 0.04 0.98 0.03

     Slanted (0.1) 0.02 0.03 0.98 0.04 0.98 0.04 0.98 0.03

     Slanted (0.5) 0.01 0.01 0.99 0.02 0.99 0.02 0.99 0.02

     Slanted (0.8) 0.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01

     Slanted (1) 0.00 0.01 1.00 0.01 1.00 0.01 1.00 0.01

Hard scenario
     Lasso 0.47 0.09 0.31 0.23 0.77 0.21 0.36 0.22

     Conv. RF 0.44 0.10 0.63 0.31 0.46 0.33 0.55 0.21

     Slanted (0) 0.46 0.09 0.61 0.30 0.46 0.31 0.54 0.19

     Slanted (0.1) 0.44 0.09 0.62 0.30 0.47 0.31 0.55 0.19

     Slanted (0.5) 0.42 0.09 0.65 0.27 0.49 0.29 0.59 0.16

     Slanted (0.8) 0.41 0.09 0.66 0.27 0.50 0.29 0.59 0.17

     Slanted (1) 0.39 0.09 0.68 0.25 0.52 0.28 0.62 0.15
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knowledge would not be useful to achieve better performance because the algorithm 
can learn directly from the data as shown in [33].

Due to the large number of genes (features), the process of network reconstruction 
through exhaustive search may require high computational costs, which is a limitation 
of this method. Based on simulation studies, knowledge-slanted RF could be better 

Table 4 Proportion of relevant features identified using the extended Boruta approach for the 
knowledge-slanted RF

Non‑seed node Seed node

Effect Method Mean SD Mean SD

β = 0 AIR 0.05 0.00 0.41 0.06

Boruta 0.04 0.00 0.02 0.02

Boruta Bonferroni 0.02 0.01 0.24 0.06

Boruta BH 0.04 0.01 0.31 0.07

Boruta BY 0.03 0.01 0.28 0.06

β = 0.5 AIR 0.08 0.06 0.49 0.13

Boruta 0.09 0.07 0.47 0.12

Boruta Bonferroni 0.05 0.05 0.37 0.13

Boruta BH 0.07 0.06 0.46 0.13

Boruta BY 0.07 0.07 0.41 0.13

β = 1 AIR 0.23 0.10 0.73 0.12

Boruta 0.25 0.12 0.76 0.11

Boruta Bonferroni 0.17 0.09 0.69 0.11

Boruta BH 0.24 0.12 0.75 0.11

Boruta BY 0.21 0.10 0.73 0.12

β = 2 AIR 0.74 0.10 0.98 0.04

Boruta 0.79 0.11 0.99 0.02

Boruta Bonferroni 0.69 0.11 0.98 0.05

Boruta BH 0.79 0.10 0.99 0.03

Boruta BY 0.75 0.10 0.99 0.04

Fig. 4 Venn diagrams showing the number of identified relevant features in the four version of 
knowledge-slanted RF and conventional RF for CAVS Dataset
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than conventional RF under the following conditions: 1) there is a low or moderate 
similarity in feature space between classes in high-dimensional datasets (p >> n) , 2) 
the sample size is limited (n ≤ 30) , and, 3) the prior information is correctly specified.

Identifying features involved in outcome prediction has been the main way in which 
machine learning models have provided researchers with explanations of how deci-
sions are made within the model [36]. Consequently, the design of an approach to 
assess the importance of features for knowledge-slanted RF was a critical stage and 
an important problem to address in this work. The performance of knowledge-slanted 
RF with extended Boruta was tested in specific situations that may be more realistic 
for biological applications, assuming that half of the seed nodes are erroneous, lead-
ing to biases. Overall, the extended Boruta approach with the AIR measure allowed 
a decrease in the proportion of false features identified as relevant to y, as well as an 
increase in the identification of true relevant features.

The extended Boruta approach was constructed using the original method pro-
posed by [21]. The original version of the Boruta algorithm identifies relevant fea-
tures by setting an importance threshold determined by the highest importance 
among the mimic features or shadows generated from the original data. Thus, in 
each run of Boruta, the method generates an RF model and compares whether each 
original feature offers an importance value higher than the threshold, storing a hit. In 
the extended Boruta approach for knowledge-slanted RF, the relevance of each fea-
ture (or gene) obtained from the RWR is preserved by assigning equal prior weight 
to the original feature and its respective shadow. This allows the threshold from the 
shadow features to be generated while preserving the selection probability of each 
original feature (gene) in the RF construction, so comparability is fair. By definition 
of knowledge-slanted RF, it is hoped that this method will identify a greater number 
of relevant features among seed node features even if they do not have a significant 
relationship on y. For this reason, the simulations showed a higher percentage of false 
relevant features among the seed nodes with no effect on y when the proposed RF was 
implemented with the AIR measure. This limitation was mitigated with the extended 
Boruta approach.

Boruta originally determines the relevance of a feature after n runs of the algo-
rithm by comparing the observed cumulative hits with respect to the expected value 
using a binomial exact test. Because Boruta performs p multiple tests at once, the use 
of adjustment for multiple comparisons was evaluated with Bonferroni, BH, or BY 

Table 5 Performance of knowledge-slanted RF and conventional RF using only identified relevant 
genes as input features for CAVS dataset

Method Number of 
relevant genes

Rank in RWR Accuracy Depth

P25 Median P75 Mean SD

Slanted Boruta 536 298 569 896 0.704 1.602 0.613

Slanted Boruta Bonferroni 391 260 566 876 0.741 1.208 0.416

Slanted Boruta BY 412 268 548 875 0.741 1.222 0.430

Slanted Boruta BH 499 297 574 897 0.704 1.242 0.433

Conv. RF 1181 750 3820 9798 0.592 1.542 0.563
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methods [25, 26]. Although the overall type I error rate was adequately controlled in 
all versions of the extended Boruta approach, the Bonferroni method achieved better 
control of the false discovery rate among seed features. These results are explained 
by the fact that the Bonferroni correction controls the family-wise error rate (FWER) 
or type I error and is a conservative method that does not reject many hypotheses. 
On the other hand, BH and BY adjustments were proposed to control the false dis-
covery rate (FDR), which can be interpreted as the expected proportion of false posi-
tives among the rejected hypotheses. In the knowledge-slanted RF framework, Boruta 
extended with BH and BY adjustments increased the proportion of relevant features 
identified compared to the AIR measure, improving its performance as the effect size 
(β) between X and y increases. Both adjustment methods are recommended in bio-
medical studies, as they can lead to a higher probability of identifying causal features 
compared to FWER methods, especially when a large number of multiple tests are 
performed [37, 38].

Regarding the level of explainability achieved with the knowledge-slanted RF framework, 
the results of the models built on the CAVS dataset evidenced that this approach prefers to 
select highly interconnected genes (features) compared to conventional RF. This can lead to 
the successful identification of biologically relevant genes for a specific disease or event of 
interest, which represents the main advantage of the proposed RF. In addition, this frame-
work allows the prioritization of biological features based on prior knowledge, which helps 
address COD by reducing the possibility of selecting redundant features that are correlated 
with true features.
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