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Abstract 

Background: Hospitalizations for exacerbations of congestive heart failure (CHF), 
chronic obstructive pulmonary disease (COPD) and diabetic ketoacidosis (DKA) are 
costly in the United States. The purpose of this study was to predict in-hospital charges 
for each condition using machine learning (ML) models.

Results: We conducted a retrospective cohort study on national discharge records 
of hospitalized adult patients from January 1st, 2016, to December 31st, 2019. We 
constructed six ML models (linear regression, ridge regression, support vector machine, 
random forest, gradient boosting and extreme gradient boosting) to predict total 
in-hospital cost for admission for each condition. Our models had good predictive 
performance, with testing R-squared values of 0.701-0.750 (mean of 0.713) for CHF; 
0.694-0.724 (mean 0.709) for COPD; and 0.615-0.729 (mean 0.694) for DKA. We identi-
fied important key features driving costs, including patient age, length of stay, number 
of procedures, and elective/nonelective admission.

Conclusions: ML methods may be used to accurately predict costs and identify 
drivers of high cost for COPD exacerbations, CHF exacerbations and DKA. Overall, our 
findings may inform future studies that seek to decrease the underlying high patient 
costs for these conditions.

Keywords: Machine learning, Health informatics, Clinical informatics, Algorithms, 
Healthcare costs

Background
Healthcare costs associated with our outcomes: CHF, COPD, DKA

In the United States, hospital expenditures account for approximately one-third of over-
all healthcare expenditures, with an estimated total of US$1.192 billion in 2019 according 
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to the Center for Medicare & Medicaid Services [1]. Healthcare costs are disproportion-
ately concentrated among a small group of high-cost patients [2–4]. High-cost patients 
often have significant unmet critical healthcare needs despite the substantial healthcare 
costs they incur [5, 6].

Congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD) and 
diabetes mellitus are life-altering, high-cost, high-volume conditions that affect mil-
lions of people and result in many hospitalizations per year [7]. According to Medical 
Expenditure Panel Survey data for 2017 to 2018 published by the American Heart Asso-
ciation (AHA), diabetes mellitus, heart disease, CHF and respiratory conditions, includ-
ing COPD, were among the top 10 leading diagnoses for direct health expenditures [8].

CHF is one of the leading causes of hospitalization in the U.S., affecting 6 million 
adults as of 2018 and costing the nation an estimated $30.7 billion in 2012 according to 
the American Heart Association, with these costs deriving largely from exacerbations 
requiring emergency visits and hospitalizations [8–10]. Similarly, COPD is a high-cost 
disease–as COPD progresses, patients often experience acute exacerbations, character-
ized by dyspnea, cough, sputum production and worsening lung function; COPD exac-
erbations cause frequent hospital admissions and readmissions, reportedly accounting 
for 90.3% of the total medical cost related to COPD and leading to US $32.1 billion in 
total medical cost [11, 12]. Finally, diabetic ketoacidosis (DKA) is one of the acute, life-
threatening complications of diabetes mellitus, a disease affecting 37.3 million people 
as of 2019 according to the CDC [13]. DKA is a common cause of hospitalization in 
patients with diabetes and is characterized by uncontrolled hyperglycemia, metabolic 
acidosis, and increased serum ketone concentrations [14, 15].

Prior machine learning methods studying our outcomes: CHF, COPD, DKA

Machine learning (ML) techniques have emerged as a mechanism for analyzing high-
dimensional medical data to understand the factors underlying patient-, hospital- and 
health system-level outcomes [16]. Specifically, for our three cohorts of patients, ML 
techniques have been utilized to identify at-risk patients, predict the risk of readmission 
and readmission rates, and predict the length of inpatient stay [11, 12, 17–21]. Work 
has been done to develop predictive models to identify major underlying drivers of high 
healthcare costs for patients in generalized cohorts as well as several other cohorts of 
patients, such as breast cancer patients and coronary artery bypass graft patients [22–
26]. To date, however, robust machine learning algorithms for predicting in-hospital 
expenditures and the factors that influence them have not been evaluated in patients 
experiencing CHF exacerbations, COPD exacerbations or DKA.

Methods
The purpose of our study was to build and evaluate ML models to predict in-hospital 
charges associated with hospitalizations for these conditions, as this has not been done 
previously. Furthermore, based on the model output, we provide recommendations for 
model optimality in modeling in-hospital expenditures in each cohort and identify fac-
tors that underlie high-cost in-hospital admissions for each of the three diseases.

An overview of the methodology employed is shown in Fig.  1. All data processing 
and statistical and machine learning analyses were conducted on a MacBook Air (2022) 
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equipped with an Apple M2 chip, 8  GB of unified memory, running macOS Sonoma 
(version 14.4.1). To optimize computational efficiency, we implemented parallel pro-
cessing in R (version "Kick Things", released August 8, 2021) using the RStudio (version 
1.4.1717) integrated development environment. We implemented models with tidymod-
els, ranger, xgboost, glmnet and kernlab packages of R.

Dataset and Study Design

The National (Nationwide) Inpatient Sample (NIS) is a large, publicly available all-payer 
inpatient care database in the United States that contains data on more than seven mil-
lion hospital discharges each year and is maintained as part of the Healthcare Cost and 
Utilization Project (HCUP) [27–29]. We used the HCUP-NIS Core, Severity, Hospital 
and Cost Charge datasets and queried the datasets for all hospitalizations between Janu-
ary 1, 2016, and December 31, 2019. Patients who were discharged from the hospital, 
patients aged < 18 years or who died were excluded.

We identified patients who met the three disease conditions using the International 
Classification of Diseases version 10 (ICD-10) codes: 1) chronic obstructive pulmo-
nary disease (COPD) exacerbation via the ICD-10 code J441; 2) congestive heart failure 
(CHF) exacerbation via the ICD-10 codes I5021, I5023, I5031, I5033, I5041, and I5043; 
and 3) diabetic ketoacidosis without coma (DKA) via the ICD-10 codes E1010, E1011, 
E1111, and E1110 [30]. Supplemental Table  1 shows the extracted ICD-10 codes and 
principal diagnoses for each of these conditions.

We identified a total of 26,190 unique discharges across the three conditions, including 
9,552 discharges for COPD, 14,688 for CHF and 1,950 discharges for DKA. The primary 
outcome for this study was total in-hospital charges.

Predictor Variables

We conducted a preliminary literature review to determine potential factors that may 
affect in-hospital charges and that could be used as predictors in our analysis. The ini-
tial predictors for analysis included 46 variables, including 29 unique ICD-10 diagno-
sis code groupings extracted from the HCUP-NIS dataset, which included demographic 
characteristics, hospital-related variables, health care utilization six months before index 
admission, and discharge-related variables. A brief description of each predictor variable 
is given in Supplemental Table  2. Further descriptions of the potential values of each 
variable can be found on the NIS Description of Data Elements page (https:// www. hcup- 
us. ahrq. gov/ db/ nation/ nis/ nisdde. jsp).

The ICD10 diagnosis codes were transformed into Agency for Healthcare Research 
and Quality (AHRQ) comorbidity categories using the icd R package. If a patient had 
at least one ICD10 code in one of the AHRQ comorbidity categories, then they were 
considered positive for that category. A list of AHRQ comorbidity categories is shown in 
Supplemental Table 3.

Univariate Analysis of Predictor Variables

The relationships between each of the predictor variables and total charges were ana-
lyzed using two-sample t tests. Statistical significance was determined at the 95% con-
fidence level, with p < 0.05 indicating statistical significance. We also calculated the 

https://www.hcup-us.ahrq.gov/db/nation/nis/nisdde.jsp
https://www.hcup-us.ahrq.gov/db/nation/nis/nisdde.jsp
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correlations between each predictor variable in the dataset using the Pearson method. 
To reduce the quantity of variables without having to choose variables a priori, only vari-
ables with a Pearson correlation coefficient above 0.2 were visualized.

Model Specification

We investigated six ML algorithms: linear regression (LM), ridge regression (Ridge), 
support vector machine (SVM), random forest (RF), gradient boosting (GBM) and 
extreme gradient boosting (XGB). These are popular models used in machine learning 
for healthcare classification and prediction. First, we preprocessed the variables using 
common feature engineering steps as described in “Preprocessing and Feature Engineer-
ing of Predictor Variables” section. Then, we split the data for each condition into train-
ing and testing datasets, with 75% of the derivation sample for in-sample training and 
25% for out-of-sample testing. Next, we performed hyperparameter tuning for our six 
algorithms using a randomized grid search and 5-fold cross-validation and determined 
the best hyperparameters as described in “Hyperparameter Tuning” section. The final 
model with tuned hyperparameters for each algorithm was then fit to the testing data 
using 5-fold cross-validation as described in “Model Finalization” section. We then 
evaluated the performance of each model as described in  “Model Performance Evalu-
ation and Comparison” section, then examined the final feature importance rankings as 
described in “Assessment of Feature Importance” section.

Preprocessing and Feature Engineering of Predictor Variables

Due to the asymmetric distribution of characteristics and predictor variables, cases with 
missing data for any of the dependent or independent variables were excluded from this 
analysis, a common, though controversial, approach for dealing with missing values [31]. 
Then “one-hot encoding” was performed, transforming each categorical variable into a 
numerical dummy variable, a common preprocessing step to aid analyses with different 
ML models [32]. Next, within the dataset for each condition, variables with zero vari-
ance and those with large absolute correlations with other variables were determined 
and excluded from the datasets [33]. Finally, all continuous or numerical predictor 
variables were standardized such that their mean was 0 and standard deviation was 1 
(Z-score standardization). This is a common preprocessing method used to decrease the 
likelihood of bias of the model due to very large or small numeric variables [34]. After 
this preprocessing, the preprocessed datasets for each condition contained the 46 pre-
processed predictor variables.

Hyperparameter Tuning

Where applicable, we performed a randomized grid search for hyperparameter tun-
ing to optimize model performance, generalizability and robustness on unseen data 
[33]. An overview of the considered hyperparameters is displayed in Supplemental 
Table  4. Hyperparameter ranges were chosen based on those used in prior work [33, 
35, 36]. Model performance for each hyperparameter permutation was assessed using 
fivefold cross-validation to determine the optimal settings that achieved the best bal-
ance between bias and variance. The top-performing model was determined as that 
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hyperparameter permutation for each model that produced the best R-squared when fit-
ted to the out-of-sample test dataset.

Model Finalization

The tuning hyperparameter combinations with the best mean R-squared values across 
fivefold cross validation was used in the final model for each algorithm for each condi-
tion. These final models were then fit to the training dataset, then used to predict total 
charges based on the testing dataset.

Model Performance Evaluation and Comparison

Performances of the final models were estimated by their R-squared and root-mean 
square error (RMSE), which are common metrics used to measure the accuracy of pre-
diction models [37, 38]. R-squared is a measure of the goodness of fit of a model and has 
a maximum value of 1. Models with R-squared values closer to 1 are more well fitted to 
the data. RMSE measures the quality of predictions by determining how far predictions 
fall from measured true values using the Euclidean distance. It is a standard metric for 
measuring the error of a model, with smaller values indicating less random noise and 
thus higher accuracy. Model performance according to these two metrics on the in-sam-
ple training set and out-of-sample testing set were determined. Top-performing models 
were determined best on R-squared estimates.

Assessment of Feature Importance

Importance of the predictors in the final models were determined from their variable 
importance (VI) scores. VI scores demonstrate how much the prediction changes as the 
feature values vary, with higher feature importance indicates greater importance of the 
feature to the model prediction [39]. For linear models, the relative importance is deter-
mined by the absolute value of the t-statistic. For gradient boosting models, the relative 
importance is determined from the absolute value of the coefficients corresponding to 
the tuned model. Based on this relative feature importance, we visualized the top twenty 
most influential features in VI plots (VIPs).

Results
Sample characteristics

In total, 26,190 unique hospital discharge records with complete data were available for 
the analysis from January 1, 2016, to December 31, 2019–14,688 patients hospitalized 
for CHF exacerbation, 9,552 patients hospitalized for COPD exacerbation and 1,950 
patients hospitalized for DKA without coma. The characteristics of the sample cohorts 
are summarized in Table  1. The average costs for hospitalizations were US$18,196 
(± $29,248) for CHF exacerbations, US$13,572 (± $17,598) for COPD exacerbations and 
$13,650 (± $16,778) for DKA episodes. The mean length of stay and number of inpatient 
procedures were highest in the CHF cohort at 6.36 days and 1.90 procedures, respec-
tively; the mean length of stay was 5.32  days in the COPD exacerbation cohort and 
5.08 days in the DKA cohort, and the number of procedures was 1.32 for both COPD 
patients and DKA patients. As shown in Fig. 2, the mean cost charges for each condition 
steadily increased for each condition over the four-year period from 2016 to 2019.
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Table 1 Patient sample characteristics

CHF Exacerbation COPD Exacerbation DKA Episode Overall

n 14688 9552 1950 26190

Total Charges ($, 
mean (SD))

18196.21 (29247.63) 13572.25 (17598.13) 13650.48 (16777.65) 16171.31 (24876.85)

Length of Stay in days 
(mean (SD))

6.36 (7.26) 5.32 (5.74) 5.08 (6.75) 5.89 (6.73)

Number of Proce-
dures (mean (SD))

1.90 (2.82) 1.32 (2.13) 1.32 (2.31) 1.64 (2.57)

Elective Admis-
sion = Yes (%)

1910 (13.0) 1155 (12.1) 194 (9.9) 3259 (12.4)

Sex = Female (%) 7521 (51.2) 5385 (56.4) 1029 (52.8) 13935 (53.2)

Age (mean (SD)) 66.77 (17.84) 64.92 (16.51) 50.11 (19.78) 64.85 (18.03)

Race (%)
 White 10500 (71.5) 7243 (75.8) 1208 (61.9) 18951 (72.4)

 Black 2166 (14.7) 1165 (12.2) 402 (20.6) 3733 (14.3)

 Hispanic 1197 (8.1) 663 (6.9) 214 (11.0) 2074 (7.9)

 Asian Pacific Islander 374 (2.5) 195 (2.0) 54 (2.8) 623 (2.4)

 Native American 73 (0.5) 56 (0.6) 23 (1.2) 152 (0.6)

 Other 378 (2.6) 230 (2.4) 49 (2.5) 657 (2.5)

Insurance status (%)
 Medicare 9621 (65.5) 6086 (63.7) 707 (36.3) 16414 (62.7)

 Medicaid 1827 (12.4) 1345 (14.1) 504 (25.8) 3676 (14.0)

 PrivateInsurance 2570 (17.5) 1647 (17.2) 514 (26.4) 4731 (18.1)

 SelfPay 375 (2.6) 268 (2.8) 162 (8.3) 805 (3.1)

 NoCharge 23 (0.2) 22 (0.2) 10 (0.5) 55 (0.2)

 Other 272 (1.9) 184 (1.9) 53 (2.7) 509 (1.9)

Median household income quartile for patient ZIP Code (%)
 0 to 25th percentile 4017 (27.3) 2877 (30.1) 635 (32.6) 7529 (28.7)

 26th to 50th per-
centile

3771 (25.7) 2613 (27.4) 498 (25.5) 6882 (26.3)

 51st to75th per-
centile

3767 (25.6) 2314 (24.2) 464 (23.8) 6545 (25.0)

 76th to 100th per-
centile

3133 (21.3) 1748 (18.3) 353 (18.1) 5234 (20.0)

Discharge (%)
 Routine 7633 (52.0) 5545 (58.1) 1393 (71.4) 14571 (55.6)

 Transfer to Hospital 321 (2.2) 175 (1.8) 38 (1.9) 534 (2.0)

 Transfer to Other 
Facility

3578 (24.4) 1917 (20.1) 278 (14.3) 5773 (22.0)

 Home Health Care 3155 (21.5) 1914 (20.0) 241 (12.4) 5310 (20.3)

 Unknown 1 (0.0) 1 (0.0) 0 (0.0) 2 (0.0)

Patient Location (%)
 "Central" counties 
of metro areas of >  = 1 
million population

4421 (30.1) 2712 (28.4) 626 (32.1) 7759 (29.6)

 "Fringe" counties of 
metro areas of >  = 1 
million population

3688 (25.1) 2404 (25.2) 449 (23.0) 6541 (25.0)

 Counties in metro 
areas of 250,000-
999,999 population

2953 (20.1) 1876 (19.6) 408 (20.9) 5237 (20.0)

 Counties in metro 
areas of 50,000-249,999 
population

1361 (9.3) 981 (10.3) 195 (10.0) 2537 (9.7)
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Univariate analyses

Tables 2 and 3 show the univariable results for the categorical and continuous vari-
ables, respectively. A longer inpatient stay and greater number of procedures were 
associated with greater in-hospital total charges. Older patients also incurred higher 
total charges. For several features, such as sex, payment method, hospital bedsize, 
hospital control, hospital location, All Patients Refined Diagnosis Related Groups 
(APRDRG) severity score and APRDRG risk mortality score, the differences in total 
charges between groups of patients within each cohort were often statistically sig-
nificant (for example, patients in large hospitals incurred greater charges than those 
in smaller hospitals in each disease cohort, p < 0.05). Notably, black patients incurred 
more charges than white patients did (p < 0.01).

The Pearson coefficients of the most correlated variables are visualized in Fig. 3. The 
data show that collinearity exists between several variables. For each of the three con-
ditions, the number of procedures and APRDRG risk mortality were the most strongly 
positively correlated with the nondiagnosis variables (with correlation coefficients of 
0.80 for CHF, 0.79 for COPD and 0.77 for DKA), while age and payment method were 
the most negatively correlated with the nondiagnosis variables (with correlation coef-
ficients of -0.50 for CHF, -0.50 for COPD and -0.44 for DKA).

Table 1 (continued)

CHF Exacerbation COPD Exacerbation DKA Episode Overall

 Micropolitan coun-
ties

1160 (7.9) 811 (8.5) 141 (7.2) 2112 (8.1)

 Not metropolitan or 
micropolitan counties

1105 (7.5) 768 (8.0) 131 (6.7) 2004 (7.7)

Hospital Division (%)
 New England 1190 (8.1) 546 (5.7) 92 (4.7) 1828 (7.0)

 Middle Atlantic 3094 (21.1) 2100 (22.0) 368 (18.9) 5562 (21.2)

 East North Central 866 (5.9) 547 (5.7) 79 (4.1) 1492 (5.7)

 West North Central 3581 (24.4) 2480 (26.0) 493 (25.3) 6554 (25.0)

 South Atlantic 1370 (9.3) 871 (9.1) 166 (8.5) 2407 (9.2)

 East South Central 1240 (8.4) 942 (9.9) 165 (8.5) 2347 (9.0)

 West South Central 716 (4.9) 375 (3.9) 130 (6.7) 1221 (4.7)

 Mountain 522 (3.6) 377 (3.9) 102 (5.2) 1001 (3.8)

 Pacific 2109 (14.4) 1314 (13.8) 355 (18.2) 3778 (14.4)

Hospital Bedsize (%)
 Small 2044 (13.9) 1621 (17.0) 278 (14.3) 3943 (15.1)

 Medium 3497 (23.8) 2526 (26.4) 467 (23.9) 6490 (24.8)

 Large 9147 (62.3) 5405 (56.6) 1205 (61.8) 15757 (60.2)

Hospital Location/Teaching Status (%)
 Rural 916 (6.2) 808 (8.5) 126 (6.5) 1850 (7.1)

 Urban Non-Teaching 2431 (16.6) 1931 (20.2) 323 (16.6) 4685 (17.9)

 Urban Teaching 11341 (77.2) 6813 (71.3) 1501 (77.0) 19655 (75.0)

Hospital Control/Ownership (%)
 Government, non-
federal

1653 (11.3) 1101 (11.5) 295 (15.1) 3049 (11.6)

 Private, not-profit 11710 (79.7) 7396 (77.4) 1464 (75.1) 20570 (78.5)

 Private, invest-own 1325 (9.0) 1055 (11.0) 191 (9.8) 2571 (9.8)
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Model results

Table 4 and Fig. 4 show the comparison of the RMSE and R-squared values and their 
confidence intervals for training and testing each model applied to each medical 
diagnosis.

Supplemental Fig.  1 show the top 20 features in each final model for each condi-
tion as determined by their V1 scores. Length of stay had the highest V1 scores in all 

Fig. 2 Mean Cost Charges: Trends in mean cost charges for hospitalization for each condition, 2016-2019
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Table 2 Univariable results for categorical variables

* indicates statistical significance at the 5% level (p < 0.05), ** indicates statistical significance at the 1%level (p < 0.01), *** 
indicates statistical significance at the 0.01% level (p < 0.001), and **** indicates statistical significance at the 0.001% level (p 
< 0.0001)

CHF COPD DKA

Mean Charges p-value Mean Charges p-value Mean Charges p-value

Sex
 Male $20,362 $14,909 $14,095

 Female $16,132 0.00 **** $12,538 0.00 **** $13,253 0.27 ns

Race
 White $18,067 $13,319 $13,926

 Black $17,379 0.60 ns $13,645 0.84 ns $10,917 0.01 **

 Hispanic $18,139 0.94 ns $13,812 0.84 ns $15,967 0.48 ns

 Asian Pacific Islander $21,378 0.24 ns $17,079 0.16 ns $14,833 0.84 ns

 Native American $18,276 0.94 ns $14,366 0.84 ns $18,703 0.60 ns

 Other $23,489 0.16 ns $17,326 0.16 ns $15,487 0.84 ns

Payment Method
 Private Insurance $19,193 $13,285 $12,951

 Medicare $18,070 0.35 ns $13,758 0.48 ns $16,398 0.00 **

 Medicaid $17,609 0.31 ns $13,264 0.98 ns $12,071 0.48 ns

 Self-Pay $15,916 0.11 ns $11,673 0.35 ns $9,106 0.00 **

 No Charge $9,612 0.00 ** $11,102 0.48 ns $5,410 0.00 **

 Other $21,041 0.42 ns $15,327 0.21 ns $14,246 0.64 ns

Hospital Bedsize
 Small $13,775 $12,446 $12,447

 Medium $15,270 0.00 ** $12,862 0.41 ns $11,750 0.51 ns

 Large $20,303 0.00 **** $14,242 0.00 **** $14,665 0.04 *

Hospital Location
 Rural $11,894 $11,007 $10,736

 Urban Non-Teaching $13,773 0.00 ** $11,706 0.13 ns $11,896 0.30 ns

 Urban Teaching $19,653 0.00 **** $14,405 0.00 **** $14,273 0.00 ***

Hospital Control
 Government $18,839 $14,660 $14,077

 Private Not Profit $18,593 0.87 ns $13,649 0.29 ns $13,905 0.87 ns

 Private Inves tOwn $13,887 0.00 **** $11,896 0.00 ** $11,043 0.06 ns

APRDRG Severity
 Minor LOF $16,181 $11,425 $10,375

    Moderate LOF $16,092 0.88 ns $11,796 0.38 ns $11,615 0.15 ns

 Major LOF $18,092 0.00 ** $14,015 0.00 **** $14,894 0.00 ****

 Extreme LOF $29,323 0.00 **** $23,751 0.00 **** $26,027 0.00 ****

 No Class $21,596 0.65 ns $10,116 0.80 ns

APRDRG Risk Mortality
 Minor Likelihood 
of Dying

$16,550 $11,534 $10,724

 Moderate Likeli-
hood of Dying

$16,349 0.72 ns $12,733 0.00 *** $13,435 0.00 **

 Major Likelilhood 
of Dying

$18,513 0.00 *** $14,786 0.00 **** $16,753 0.00 ****

 Extreme Likelihood 
of Dying

$28,668 0.00 **** $23,321 0.00 **** $23,799 0.00 ****

 No Class $21,596 0.68 ns $10,116 0.72 ns
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Fig. 3 Correlation plots with Pearson coefficients for variables each disease condition dataset. Only those 
variables with a Pearson coefficient > 0.2 are displayed
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Table 4 Comparison of the evaluation metrics of the ML models

CHF COPD DKA

Train Test Train Test Train Test

Model RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

LM 0.581 0.659 0.580 0.703 0.543 0.681 0.603 0.724 0.633 0.605 0.563 0.717

Ridge 0.580 0.659 0.585 0.701 0.544 0.681 0.616 0.722 0.631 0.605 0.565 0.715

SVM 0.614 0.661 0.647 0.701 0.568 0.683 0.670 0.724 0.634 0.625 0.560 0.729

RF 0.568 0.676 0.542 0.750 0.519 0.710 0.622 0.694 0.589 0.646 0.575 0.706

GBM 0.586 0.671 0.591 0.693 0.536 0.688 0.601 0.714 0.583 0.651 0.620 0.679

XGB 0.566 0.681 0.558 0.730 0.545 0.680 0.631 0.677 0.608 0.634 0.687 0.615

Mean 0.582 0.668 0.584 0.713 0.542 0.687 0.624 0.709 0.613 0.628 0.595 0.694

Fig. 4 Comparison of Evaluation Metrics: Comparison of the RMSE and R-squared values and their 
confidence intervals for each final model each condition
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models for all conditions, indicating it was the most important predictor in each of 
the models. The number of procedures during hospitalization was consistently the 
second most important feature, with age and elective/nonelective admission also con-
sistently being strong predictors across the models. This finding aligns with our uni-
variable analyses (Tables 2 and 3).

Discussion
Although many studies have employed ML techniques to predict at-risk patients, read-
mission risks, readmission rates and length of stay for CHF, COPD and DKA patients, 
the development of a predictive model of in-hospital cost charges in these disease 
cohorts is a novel contribution of this study.

We constructed 6 ML models that had good predictive performance. The R-squared 
values ranged from 0.659 to 0.681 with a mean of 0.668 during training and 0.701 to 
0.750 with a mean of 0.713 during testing for the CHF dataset; from 0.680 to 0.710 with 
a mean of 0.687 during training dataset and 0.694 to 0.724 with a mean of 0.709 during 
testing for COPD; and from 0.605 to 0.651 with a mean of 0.628 for training and 0.615 to 
0.729 with a mean 0.694 during testing for DKA. As such, on average, models similarly 
for all three conditions and, on average, models performed better on the unseen testing 
data than on the training data.

Unsurprisingly, length of stay was the most important predictor in each of the models, 
disproportionately affecting hospital charges in each model. This was followed by the 
number of procedures performed during hospitalization. Age and elective/nonelective 
admission were also important predictors in at least one model for each disease condi-
tion. Feature selection indicates that although these variables are extremely influential 
in any model, many other patient-level and hospital-level features also have small but 
measurable impacts on hospital charges.

Strengths of our study

The strengths of our study include the large sample size of the HCUP NIS datasets. 
Furthermore, the availability of many demographic characteristics, diagnosis-related 
variables, and hospital characteristics for use as predictors allowed for the building of 
supervised prediction models. The use of advanced ML techniques represents the robust 
use of data science to characterize complex clinical issues. The ability to predict expen-
ditures at the patient level with good accuracy can allow for targeted care by anticipating 
the health care needs of patients. This will provide insights into designing effective and 
tailored interventions to meet the needs of high-cost patients and reduce costs.

Limitations of our study

Despite its strengths, we recognize that this work has several limitations. Missing data 
are a well-known limitation of utilizing EMR data for research, for which the HCUP-NIS 
is susceptible. Additionally, we chose to use only complete data without missing values 
for all predictor variables, thereby eliminating a substantial number of possible discharge 
events. Future work can involve employing data imputation methods rather than data 
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exclusion. This could help to address the potential selection bias that can result from 
categorically excluding cases with missing data.

Additionally, the discharge data used may include discharge from readmissions of the 
same patient. The NIS data contain discharge-level records, which, per the HCUP-NIS 
documentation, means that “individual patients who are hospitalized multiple times in 
one year may be present in the NIS multiple times… this will be especially important to 
remember for certain conditions for which patients may be hospitalized multiple times in 
a single year” [29, 40]. As discussed, our target patients often experience numerous hospi-
talizations, and initial versus recurrent hospitalizations might differ in their character. As 
such, we considered limiting the analysis to initial discharge; however, “…there is no uni-
form patient identifier available that allows a patient-level analysis with the NIS.” Therefore, 
for the purposes of this study, we included all the discharge data and performed the analysis 
at the discharge level.

Conclusion
We demonstrated the use of ML models to predict in-hospital charges for patients hospi-
talized for CHF exacerbation, COPD exacerbation and DKA. We found that length of stay, 
number of procedures during hospitalization, age and elective/nonelective admission were 
important predictors in these models for these diseases. This research can provide helpful 
information for medical management, which may decrease health insurance burdens in the 
future.
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