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Background
Genome-wide association studies (GWAS) enable the simultaneous testing of thousands 
of genetic variants, usually SNPs, across the genome in order to find variants associated 
with a trait or a disease [1]. The GWAS methodology, so far, has generated many robust 
associations for various traits and diseases and has revolutionized our understanding of 
the genetic architecture of complex traits. With increasing sample sizes, new sequenc-
ing technologies and the accumulation of large biobanks it is expected that our ability to 
investigate the effects of human genetic variation in complex traits will increase in the 
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near future [2]. In the first years of the development of the field, efforts were oriented 
towards the statistical aspects of the analysis [3], which involved thousands of SNPs 
simultaneously, including the methodology for multiple testing and quality control. This 
task was successful and enabled the discovery of associations replicated in subsequent 
studies, and in several cases, validated experimentally and functionally using a wide vari-
ety of methods [4]. However, it was soon clear that most variants discovered via GWAS 
have small overall effects on disease susceptibility [5]. Thus, it became evident that inte-
grating data from multiple sources and developing reliable bioinformatics tools was a 
necessary step in order to address the complexity of the underlying genetic basis of com-
mon human diseases [5].

Soon after the publication of the first GWAS it also became evident that, at least theo-
retically, individuals could be identified in such cohorts even if only the summary sta-
tistics are available [6]. This led to imposing strict control access for sharing individual 
patients’ data (IPD) from GWAS. Subsequent works found that privacy attacks are pos-
sible in theory but unsuccessful and unconvincing in real practice. For instance, even 
sharing 1,000 SNPs for datasets with more than 500 individuals generally leads to a low 
power of the “attack” [7]. A more thorough investigation is given in [8]. In practice, how-
ever, not all studies share their data, at least when it comes to the studies published in 
the first decade of GWAS. It has been estimated that the proportion is only 13%, which 
increased from 3% in 2010 to 23% in 2017 [9]. On the contrary, researchers sharing their 
summary data has been shown to receive on average 81.8% more citations, an effect that 
probably is related, at least partially, to the usability of the data in downstream analyses 
[10]. Summary statistics do not only offer the additional protection of privacy, but also 
offer significant advantages in computational cost when using the data in downstream 
analyses, which does not scale with the number of participants in the study [11]. Thus, 
it is of no surprise that during the last years a large variety of methods have been devel-
oped to perform a so-called post-GWAS analysis using the summary results of a sin-
gle study, or of several studies, and in most cases integrating data from other sources 
[11]. The majority of these methods use the summary data in the form of per-allele SNP 
effect sizes (log odds ratios or betas) along with their standard errors, or equivalently 
the z-scores (per-allele effect sizes divided by their standard errors). These methods 
seek to go a step further from the simple analysis, or re-analysis of a study, and aim to 
improve our understanding about the functional role of the identified variants [12]. The 
most important factors that played significant role in the development of such methods, 
in this so-called post-GWAS era, is the linkage disequilibrium (LD) information from a 
population reference panel such as HapMap or 1000 Genomes Project, the gene expres-
sion variation in the form of eQTL, and the integration of functional information on 
biological pathways [13–15].

The methods developed so far cover a broad range of different types of analysis, either 
in the study of a single trait or in the combined analysis of multiple traits. For a sin-
gle trait, we may have methods for meta-analysis [16, 17], methods for inferring her-
itability [18, 19], gene-based tests [20], methods for Gene Set (or Pathway) Analysis 
[21], or methods for fine-mapping causal variants [22]. Regarding the analysis of mul-
tiple traits there is also a variety of methods [23], ranging from those that estimate the 
genetic correlation between traits [24], the joint analysis of multiple traits [25], or the 
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methods that try to estimate causality between traits such as Mendelian Randomization 
[26], transcriptome-wide association studies [27], or colocalization [28]. Of course, the 
data standards [29] used to facilitate these analyses and the databases that the results are 
stored in, are also of great importance for the community.

In order to provide a comprehensive overview of the currently available software tools 
and databases for GWAS summary statistics we performed a systematic review fol-
lowing the PRISMA guidelines [30]. We conducted a comprehensive search of the lit-
erature to identify relevant software tools and databases. We categorized the tools and 
databases by their functionality, in categories related to data, single-trait analysis, and 
multiple-trait analysis, along with their sub-categories mentioned in the previous para-
graph. We also compared the tools and databases based on their features, limitations, 
and user-friendliness. Our review identified a wide range of software tools and databases 
for GWAS summary statistics analysis, each with unique strengths and limitations. We 
provide descriptions of the key features of each tool and database, including their input/
output formats, data types, and computational requirements. We also discuss the overall 
usability and applicability of each tool for different research scenarios. This comprehen-
sive review will serve as a valuable resource for researchers who are interested in using 
GWAS summary statistics to investigate the genetic basis of complex traits and diseases. 
By providing a detailed overview of the available tools and databases, we aim to facili-
tate informed tool selection and maximize the effectiveness of using GWAS summary 
statistics.

The systematic review
In order to collect all the available published papers, we performed a systematic review 
of the literature following the PRISMA guidelines [30]. The search was performed in 
PubMed (https:// pubmed. ncbi. nlm. nih. gov) with the following query: ("Summary Sta-
tistics" OR "Summary Data" OR "Summary Association Statistics" OR "Summary Asso-
ciation Data") AND (GWAS OR genomewide OR genome-wide). The abstracts initially, 
and then the full articles were scrutinized in order to collect the necessary information. 
The inclusion criteria state that methods, software tools and databases, suitable for the 
analysis of GWAS summary data are suitable for inclusion. Methods papers that do 
not report software, or software pages not currently available are excluded. Additional 
searches were performed in the reference lists of the identified articles in order to iden-
tify additional studies that were missing. In many cases multiple articles regarding a sin-
gle tool were found, so we kept only one. We decided to include reports deposited in 
preprint servers like medRxiv/bioRxiv, but some of these papers were eventually pub-
lished in peer-review journals, so in such cases we retained only the latter reference. 
Tools regarding Polygenic Risk Scores (PRSs) and visualization were excluded. For all 
included tools we recorded the URL, the PMID, and the main functionality/es along 
with comments regarding its main methodological features. The initial search identified 
2942 articles (22/12/2023).

In total we identified 305 tools and databases (Fig. 1). We classified them in three 
broad categories: data, tools for single traits and tools for multiple traits, along with 
the various sub-categories. The total breakdown is given in Table 1. Several tools may 
perform different tasks and thus they can be considered for more than one category; 

https://pubmed.ncbi.nlm.nih.gov
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so, we classified them to the one most closely related to the primary goal of the analy-
sis they claim to perform. Other tools do not fit exactly to the general description of 
the category, but we nevertheless classified them to the most similar one. The largest 
sub-category consists of the tools for pleiotropy analysis, whereas the smallest one 
is related to reconstruction of genotypes and effect sizes. Most tools are written in R 
(56.4%) with the largest proportion being in the multiple traits category, followed by 
Python (12.5%) and C/C +  + (8.2%) (Fig.  2). Apart from the publicly available data-
bases only a handful of tools are offered as webservers (6.95%). Most of the tools were 
published after 2015 (Fig. 3). Nearly 60% of the tools and databases were published 
in: Bioinformatics, American Journal of Human Genetics, Nature Genetics, Nature 
Communications, Nucleic Acids Research and PloS Genetics (Fig. 4). In the following 

Table 1 The broad categories and the sub-categories of tools and databases

Category Type N

Data Database 17 5.57%

QC 13 4.26%

Reconstruction 6 1.97%

Imputation 10 3.28%

Single trait Meta-analysis 29 9.51%

Heritability 18 5.90%

Gene-based tests 30 9.84%

GSA 29 9.51%

Fine-mapping 25 8.20%

Multiple trait Genetic correlation 14 4.59%

Pleiotropy 38 12.46%

MR 31 10.16%

Colocalization 16 5.25%

TWAS 29 9.51%

Fig. 2 Number of Tools and Databases included in the review Published Per Year
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sections we proceed with the detailed description of the various tools identified, clas-
sified in the different categories and sub-categories. The complete list of identified 
tools along with the relevant information is given in Supplementary Table 1.

The data
Firstly, we are going to present the tools dedicated to the data themselves. We include 
here tools for quality control of GWA summary statistics, tools for imputation and geno-
type reconstruction as well as the publicly available databases of summary results.

Standards and quality control

The need for sharing and re-using GWAS summary statistics has been an issue for the 
community during the last years. Generally, it is acceptable that the minimum informa-
tion (“mandatory”) contained in GWAS summary statistics should include: the chromo-
some and the base-pair location, the p-value of the association, the risk allele and the 
other allele, the risk allele frequency, and an estimate of the effect size (odds ratio or 
beta) along with its standard error [29]. Other important summary statistics that never-
theless termed as “encouraged” ones include the sample size, the variant ID, the rsID, the 
confidence interval of the effect size and so on. Such specifications were considered for 
the GWAS-SSF format [31], which was developed to meet the requirements settled by 
the community. GWAS-SSF consists of a tab-separated data file with well-defined fields 
and an accompanying metadata file. Most repositories and programs use some vari-
ant of the GWAS-SSF. However, such tabular formats in several cases lead to ambigu-
ity or incomplete storage of information, or other times lack essential metadata. This 
leads to poor performance and increased risk of possible errors in downstream analyses. 
To address these issues, an adaptation of the well-known variant call format [32] was 
developed, capable of storing GWAS summary statistics which was called GWAS-VCF 
along with software tools to apply it in downstream analyses [33]. The VCF contains a 
file header with metadata and a main file containing variant-level (one locus per row 

Fig. 4 The journals in which the studies including in the review were published
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with one or more alternative alleles/variants) and sample-level (one sample per column) 
information. This way, the VCF was adapted to include GWAS-specific metadata uti-
lizing the sample column to store variant-trait association data. The GWAS-VCF is the 
standard used by the MRC-IEU OpenGWAS database [34] and it comes with appro-
priate tools to map GWAS summary statistics to VCF with on-the-fly harmonization 
(https:// github. com/ mrcieu/ gwas2 vcf ).

Despite these efforts, not all available data are in line with the standards, especially 
when dealing with data from older studies. Thus, there is a need for additional tools to 
harmonize the data, as well as to identify and correct errors. Tools belonging to the for-
mer class were developed early and were focused mainly on harmonizing data in prepa-
ration of a meta-analysis. These include QCGWAS [35], GWAtoolbox [36] and EasyQC 
[37]. GEAR [38] is very interesting in that it incorporates ideas from population genetics 
which allow verification of the genetic origin and geographic location of each cohort and 
identifying significant sample overlap. More recent tools like MungeSumstats [39] and 
GWASlab [40] perform standardization and quality control handling the most common 
formats, SumStatsRehab [41] can be used for data validation, restoration of missing data, 
correction of errors or formatting, and GWASinspector [42] provides extensive QC 
reports and perform harmonization being compatible with recent reference panels and 
by handling insertion/deletion and multi-allelic variants. The latter class of methods, 
additionally, leverages information from the LD among SNPs. One such tool is GQS [43] 
which identifies suspicious regions and prevents erroneous interpretations by compar-
ing the significance of the association for each SNP to its LD value for the reported index 
SNP. Similar functionalities are offered by DENTIST [44] which uses LD to detect and 
eliminate errors and disagreements between GWAS data and the LD reference panel. 
EXTminus23andMe [45] evaluates the quality of summary statistics after data removal 
and the suitability of the down sampled summary statistics for typical follow-up genetic 
analyses.

Databases

The publicly available biological databases played and continue to play a central role in 
bioinformatics and in biological research in general [46–48]. The same is the case for 
databases related to human research [49] and in particular those involved in GWAS [50]. 
The databases we identified can be roughly divided in two categories: databases that con-
tain summary statistics from GWAS and databases that contain important secondary 
analyses on those data with some of the methods that we will describe in later sections.

Regarding the databases of the first category, NCBI’s dbGAP [51] was developed to 
contain the results of studies investigating the interaction of genotype and phenotype, 
which include GWAS. One of the dbGAP’s primary objectives was to house individual 
level GWAS data, but the database also contains summary data as well. Summary sta-
tistics are generally available to the public, whereas access to IPD requires varying levels 
of authorization. The NHGRI-EBI GWAS Catalog [52], which was established in 2008 
is considered for years the central repository of GWAS summary statistics. It is a high-
quality curated collection of all published GWAS and as of 2023–12-20, contains 6,680 
publications, 566,798 top associations and 66,825 full summary statistics (Fig.  5). The 
database played an important role in the community efforts leading to the development 

https://github.com/mrcieu/gwas2vcf
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of GWAS-SSF format. GWAScentral [53] previously known as the Human Genome 
Variation (HGV) database of Genotype-to-Phenotype information is a database that 
contains over 72.5 million P-values for over 5,000 studies, with over 7.4 million unique 
genetic markers involved in more than 1,700 unique phenotypes. The database con-
tains data from several sources (including NHGRI-EBI GWAS Catalog, OpenGWAS, 
Japanese GWASdb, dbGaP, WTCCC and so on). The IEU MRC OpenGWAS [34] is a 
new addition and contains 346 million genetic associations from 50,037 GWAS sum-
mary datasets. It contains complete data from various consortia and the UK Biobank 
and comes with a lot of tools for harmonizing the data and storing them in the GWAS-
VCF format. At the time of writing there are 4,126 binary traits, 725 metabolites, 3,371 
proteins, 3,143 brain imaging phenotypes, and 3,217 other continuous phenotypes. In 
addition to the complete GWAS summary data, it also contains independent top hits 
for every dataset, totaling 116,918 independent signals in which 7,109 datasets have at 
least one hit. GeneATLAS [54] and GBE [55] contain associations from the UK Biobank 
cohort. GeneATLAS currently contains data for 452,264 individuals, 778 traits and 30 
million variants, whereas GBE contains summary statistics from over 750,000 individu-
als combining data from the UK Biobank, the Million Veterans Program and the Biobank 
Japan. GTEx [56] and QTLbase [57] are the primary resources for xQTL data. The GTEx 
project has been expanded over time, and currently contains data of genetic associations 
for gene expression and splicing in 838 individuals in 49 tissues. QTLbase, similarly, con-
tains genome-wide QTL summary statistics for many molecular traits across 95 tissue/

Fig. 5 A snapshot of the data. A A view of the Type 2 Diabetes Mellitus studies deposited in NHGRI-EBI GWAS 
Catalog. B Type 2 Diabetes Mellitus studies contained in GWAS Central, depicting the significant hits in the 
chromosomes. C The SFF format
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cell types and multiple conditions. Contains tens of millions of significant genotype-
molecular trait associations under different conditions. Other resources of this category, 
related to various large consortia (GIANT, WTCC, PGC etc.) as well as other biobanks 
(FinnGen etc.) can be found in Supplementary Table 2.

The second category contains databases of important secondary analyses performed 
on GWAS summary statistics with some of the methods that we describe in detail in 
later sections, such as gene-based tests, heritability analysis, TWAS, colocalization and 
so on. TSEA-DB [58] and PCGA [59] use information from gene-expression in various 
tissues to perform tissue or cell-type enrichment analysis of the GWAS association sta-
tistics. webTWAS [60] and COLOCdb [61] also use information on eQTL but in differ-
ent fashion. webTWAS currently contains data for over 1,389 full GWAS for which it 
calculates the causal genes using single tissue expression imputation (using MetaXcan 
and FUSION), or cross-tissue expression imputation (using UTMOST). COLOCdb on 
the other hand is the most comprehensive colocalization analysis by integrating publicly 
available GWASs with different types of xQTL and different algorithms (COLOC, SMR). 
GWAS ATLAS [62] contains results of 4,756 GWAS from 473 unique studies across 
3,302 unique traits accompanied by useful information obtained from downstream 
analysis. Each study is accompanied by MAGMA results (see also “gene-based tests”), 
SNP heritability estimation and genetic correlations with other traits in the database. 
GWASROCS [63], on the other hand, contains a large and comprehensive set of SNP-
derived AUROCs and heritabilities. Currently includes 579 simulated populations (cor-
responding to 219 traits) and SNP data (odds ratio, risk allele frequency, and p-values) 
for 2,886 unique SNPs. Phenome-wide association studies (PheWAS) invert the idea of 
a GWAS by searching for phenotypes associated with specific variants across the range 
of thousands of human phenotypes, or the “phenome [64–66]. Thus, it is expected that 
a PheWAS will need large databases of GWAS results. PhenoScanner [67] is the most 
complete such database with publicly available results from over 65 billion associations 
and more than 150 million unique genetic variants. Similar functionalities are offered 
also by OpenGWAS, GWAS ATLAS and PheWAS Catalog [68]. Lastly, we need to men-
tion LD Hub [69], a centralized database of publicly available GWAS results for 173 dis-
eases/traits which offers a web interface that automates the LD score regression (LDSC) 
analysis pipeline (see also “Genetic correlation”).

Imputation and genotype reconstruction

Although some of the methods for quality control mentioned previously can cor-
rect errors and alter the data, the methods used for imputation go one step further. As 
expected, imputation methods were developed initially for individual data for handling 
studies genotyped with different platforms [70–72]. Such methods can infer missing 
genotypes using LD information from reference samples genotyped using denser arrays 
or sequencing. Genotype imputation increases the coverage of SNPs and thus can be 
used to increase statistical power, increase the accuracy of fine-mapping and harmo-
nize the data in order to facilitate meta-analysis [70]. Several factors can influence the 
imputation accuracy: the sample size, the suitability of the reference panel for the par-
ticular sample, the genotyping chip and the allele frequency [71]. In general, however, 
these methods are time-consuming since they process individuals one at a time, and 
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thus methods that impute directly the summary statistics were developed. These meth-
ods utilize only the information provided in the sample regarding the studied population 
(p-value, z-score or odds-ratio/beta) and require additional information regarding the 
LD structure. Nearly all methods perform a kind of multiple regression assuming the 
multivariate normal distribution for the test statistics and utilizing the theoretical result 
pointing that the correlation of such test statistics equals the correlation of the corre-
sponding variables [73], that is the genotype correlation, available through the reference 
panel. Such methods include FAPI [74], ImpG [75], RAISS [76], DIST [77] and SSimp 
[78] with most of the differences lying in the choice of the reference panel and the exact 
details of the mathematical methods used to handle matrix inversions in the multivariate 
normal. DISSCO [79] uses a similar framework but allows for covariates. Such methods 
may perform poorly in cases where the sample has a different LD structure compared 
to the reference panel. Thus, extensions such as DISTMIX [80] and ARDISS [81] were 
developed to handle mixed ethnicity cohorts, improving the imputation performance. 
Adapt-Mix [82] estimates the correlation structure in both admixed and non-admixed 
individuals using simulated and real data and allows the use of this matrix with other 
imputation methods. Other methods such LS-meta [83] and LSimputing [84] offer addi-
tional advantages; LS-meta imputes both genetic and environmental components using 
information from additional omics-trait association summary data, whereas LSimputing 
implements a non-parametric method that allows for nonlinear SNP-trait associations 
and predictions in case a sample of IPD is available. Using the same principles, simG-
WAS [84] allows simulation of whole GWAS summary data, without generating indi-
vidual data as an intermediate step.

Genotype reconstruction methods take a different approach. Given the summary 
statistics for a SNP (either directly measured or imputed), one can reconstruct the 
genotype counts that produced it. This will offer many advantages, since with the recon-
structed genotypes the researchers could perform additional analyses using other statis-
tical methods suitable for grouped data and test different hypotheses [85]. For instance, 
one can calculate grouped Polygenic Risk Scores (PRS) [85], perform logistic regression 
for grouped data [85, 86], perform multivariate meta-analysis [87], or implement robust 
tests for association that is expected to work better when the underlying model of inher-
itance deviates from the additive which is usually assumed [88, 89]. The details and the 
success of the reconstruction depend heavily on available summary statistics. As one can 
easily understand, p-values and z-scores cannot be used, and one must rely on available 
effect sizes such as the odds ratio (OR). When the OR, the standard error and the sample 
size is given, methods are available in epidemiology that allow the reconstruction of the 
allelic 2X2 table [90]. If z-scores, confidence intervals or p-values are available one can 
use them to obtain the standard error. React [85] uses an equivalent method relying on 
solving a system of nonlinear equations. If the allele frequency in one group (usually the 
controls) is also known, the allelic counts may easily be obtained with a simple calcula-
tion. In all cases the accuracy of the reconstruction may depend on the precision of the 
available summary statistics. After the allelic 2X2 table is reconstructed, it is straightfor-
ward to obtain the genotype counts, assuming HWE (which as one might expect adds 
another source of potential bias). MetaSustract [91] is a tool that recreates analytically 
the results of the validation cohort from meta-analysis summary statistics, allowing the 
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researchers to compute meta-analysis summary statistics that are independent of the 
validation cohort, without requiring access to the IPD. Spkmt [92] works in similar fash-
ion but in families; it can be used to derive the summary statistics of one parent from 
the data of the offspring and the other parent. Finally, we need to mention two tools that 
work in somewhat different modes. OATH [93] is used to reproduce reported results 
from a GWAS and recover underreported results from other alternative models with a 
different combination of nuisance parameters, whereas LMOR [94] performs transfor-
mations from the genetic effects estimated under the Linear Mixed Model to the Odds 
Ratio that only rely on summary statistics.

Analysis of a single trait
In this section we are going to present the various types of methods and tools dedicated 
to the analysis of a single trait. These include tools for meta-analysis, tools for the esti-
mation of heritability, tools for implementing gene-based tests, gene set methods and fine 
mapping methods.

Meta‑analysis

One of the most obvious uses of GWAS summary data is to combine them and perform 
a meta-analysis. Meta-analysis is the statistical procedure used to combine evidence 
from multiple studies in order to increase statistical power and it is a methodology 
widely used in medical research for decades [95]. A meta-analysis can be performed 
with various methods [16] using IPD or summary data; the former offers many advan-
tages, but the latter is far more easy to be performed taking into account the various 
restrictions imposed on sharing GWAS IPD and the difficulties in the logistics of such 
a project [17]. Moreover, given the large samples usually encountered in GWAS it has 
been shown, both theoretically and empirically, that meta-analysis using summary sta-
tistics has the same efficiency as the joint analysis of IPD [96]. A compromise between 
these two extremes arises when a research group has access to individual-level geno-
type data of a limited sample size and wants to integrate these with existing summary 
data available in the databases. Such methods are in use in epidemiology for years [97] 
and several tools have been developed especially for handling GWAS data, for instance 
IGESS [98], metaGIM [99] and LEP [100]. PolyGIM [101] can be applied with or without 
IPD and uses polytomous logistic regression to investigate disease subtype heterogeneity 
in situations when only summary data is available.

Regarding summary-data meta-analysis of GWAS, the most commonly used meth-
ods includes standard methods, such as combining p-values, z-statistics or effects 
sizes like Odds Ratio (for binary traits) or mean differences (for continuous traits) 
using fixed or random effects models [16, 102]. These statistical methods are straight-
forward to implement, and are available in general purpose statistical packages such 
as STATA and R. However, there are several specialized tools that facilitate the pro-
cess and provide integration with useful bioinformatics or visualization functions. 
Such widely used tools include METAL [103], GWAMA [104] and PLINK [105]. Other 
tools are oriented to more specialized cases offering advanced options. For instance, 
YAMAS performs meta-analysis including missing SNPs identified with LD with-
out performing imputation [106] and rareMETALS [107] uses a partial correlation 
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based score to perform meta-analysis in the presence of large amounts of missing val-
ues. There is also a class of tools which focus on the replication of GWAS and the 
combined analysis of data from primary and replication studies. Such tools include 
rfdr [108] and Jlfdr [109] which control for False Discovery Rate (FDR), Rrate [110], 
which determines the sample size of the replication study and checks the consist-
ency between the primary and the replication study, and MAJAR [111] which jointly 
test prognostic and predictive effects in meta-analysis without the need of using an 
independent cohort. metaGAP [112] is an online tool for calculating the statistical 
power of a meta-analysis of GWAS (Fig. 6). METACARPA works with overlapping or 
related samples, even when details of the overlap or relatedness are unknown [113], 
MAGENTA [114] performs meta-analysis with gene set enrichment analysis (GSEA), 
whereas GWASmeta [115] and MetABF [116] work in a bayesian framework calculat-
ing the Approximate Bayes Factor (ABF). Other tools offer more advanced options 
such as meta-analysis with multiple traits (see also “multiple traits”), like nGWAMA 
[117], metaCCA [118], CPASSOC [119], metaUSAT [120] and CPBayes [114] (and its 
extension GCPBayes [121]), and others are designed for meta-analysis under different 
genetic models, like GWAR [89] which uses robust methods (like MIN2 or MAX) in 
order to handle the uncertainty in the underlying genetic model, or like the simula-
tion tool [122] which implements an alternate strategy for the additive genetic model 
simulating data for the individual studies. Finally, we need to mention sPLINK [123] 
which performs privacy-aware GWAS on distributed datasets, and XPEB [124] which 
is an empirical Bayes approach designed to improve the power GWAS in minority 

Fig. 6 Tools for meta-analysis. A GWASmeta (SMetABF) for performing Bayesian meta-analysis. B The 
MetaGAP power calculator. C GWAR for robust analysis and meta-analysis of GWAS
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populations by exploiting information from GWASs performed in populations of dif-
ferent origin.

Inferring heritability

Heritability is generally defined as the fraction of phenotypic variation explained by 
genetic variation. Heritability is a dimensionless parameter of the population, and it was 
introduced by Sewall Wright and Ronald Fisher in the previous century. Traditionally, 
heritability is estimated using family-based designs such as twin studies. However, there 
are controversies regarding the various methodologies for estimation and interpretation 
of the results [125]. Despite all these, heritability is an important aspect of research in 
modern genetics, and regarding the prediction of disease risk from genomic data [126]. 
The technological advancements have facilitated the development of methods that use 
large samples of unrelated, or related, individuals. Thus, family-based designs using 
genomic data (trio-genome-wide complex trait analysis, and so on) have emerged. Such 
methods are discussed and compared in [127]. Of course, heritability can also be esti-
mated via the results obtained in a traditional GWAS using unrelated individuals. The 
gap between these estimates and those obtained from classical heritability estimation 
methods has been termed the "missing heritability problem" and it is an important open 
question in current research [128]. Recent reviews of the methods that use GWAS data, 
are given in [18, 19] focusing on their modeling assumptions, their similarities, and their 
applicability.

One of the first and simplest methods to calculate heritability from allele frequency, 
odds ratio and prevalence of the disease was implemented in the SumVg package [129]. 
This method, however, utilizes only the significant SNPs. The same authors extended 
the method later in order to allow calculation using the z-statistics from the whole 
GWAS sample [130]. A disadvantage of this method is that LD is not taken care of, 
and highly correlated SNPs need to be filtered manually. AVENGEME [131] is a tool 
that treats causal effect sizes as fixed effects and models the genotypes as random cor-
related variables. HESS [132] which was presented later built upon the same ideas and 
can be viewed as a weighted sum of the squares of the projection of effect sizes onto 
the eigenvectors of the LD matrix at the particular locus, with weights inversely pro-
portional to the corresponding eigenvalues. LD Score Regression (LDSC) has been 
frequently applied to summary statistics from GWAS and one of its functionalities is 
to estimate the SNP heritability of a trait [133]. LDER [134] extends LDSC making full 
use of the information from the LD matrix providing more accurate estimates, whereas 
s-LDSC [135] is an extension suitable for partitioning heritability. SumHer [136] pre-
sented later and offers the same functionalities, with the main difference being that it 
allows for different so called “heritability models”. According to these, a SNP with high 
MAF is expected to contribute more to the total heritability compared to one with low 
MAF, whereas on the other hand, a SNP in a region of low LD is expected to contrib-
ute more compared to one in a region of high LD. On the contrary, LDSC estimates are 
obtained by assuming that all SNPs contribute equally. HEELS [137] is a new tool using 
REML to produce accurate and precise local heritability estimates and RSS, is a multiple 
regression-based fine-mapping tool (see “Fine-mapping”), can also calculate SNP her-
itability from the regression model. VarExp [138] and GxESum [139] are methods for 



Page 15 of 40Kontou and Bagos  BioData Mining           (2024) 17:31  

estimating the phenotypic variance explained by genome-wide gene-environment (GxE) 
interactions. There are also tools like GWIZ [63] and SummaryAUC [140] that calculate 
the Receivers Operator’s Characteristic (ROC) curve and the associated Area Under the 
Curve (AUC). GWIZ generates ROC curves and the AUC using simulations and then 
estimates heritability using the square of the Somers’ rank correlation D. SummaryAUC 
on the other hand approximates the AUC of a PRS and its variance. HAMSTA [141] 
is a tool that, among others, estimates heritability explained by local ancestry using 
data from admixture mapping studies. Estimating the Effect size distribution is also a 
related important concept. GENESIS [142] uses LD and a Likelihood-based approach 
to estimate effect-size distributions. It also allows predictions regarding yield of future 
GWAS with larger sample sizes. GWEHS [143] calculates the distribution of effect sizes 
of SNPs, as well as their contribution to trait heritability. Furthermore, it performs pre-
dictions for the change in the effect size as well as in the heritability when new variants 
are identified. FMR [144] is a method-of-moments for calculating the effect-size distri-
bution and GWAS-Causal-Effects-Model [145] is a random effects model for estimating 
the causal variants and their effect size distribution. Finally, there are tools to implicate 
gene-expression in heritability analysis: MESC [146] which estimates the proportion of 
heritability mediated by gene expression levels using linkage disequilibrium (LD) scores 
and eQTL, and GCSC [147] which uses results from a TWAS (see “TWAS and Colo-
calization”) in the so-called gene co-regulation score regression, to identify gene sets 
enriched for disease heritability.

Gene‑based tests

Historically, association tests are oriented towards single variants, and this was the case 
for both traditional association studies as well as for GWAS. However this approach has 
some limitations that were noted earlier and a call for a shift towards gene-based tests 
was made [148]. Gene-based tests aggregate individual variant associations within a 
gene, providing a more comprehensive assessment of the gene’s overall contribution to 
a trait or disease. This approach helps prioritize genes with multiple associated variants, 
enhancing the biological relevance of findings, and it has proven to be useful particularly 
in case of low frequency variants [148]. There are plenty of different methods for com-
bining the association statistics or p-values within a gene, ranging from simple Fisher’s 
method or the minimum p-value approach, to more advanced methods like the Burden 
Test (BT) [149] or quadratic tests like SKAT [150] with variations in power [151]. Never-
theless, there is a consensus regarding the importance of incorporating LD information 
of the nearby variants into the methods for controlling the type I error rate at the desired 
level [20].

VEGAS, GATES, fastBAT and GCTA are among the oldest tools available for sum-
mary data, which remain efficient and widely used. SKAT (Sequence Kernel Associa-
tion Test) is a well-known regression method for testing association between variants 
and traits adjusting for covariates. As a score-based variance-component test, it calcu-
lates p-values analytically by fitting the null model containing only the covariates [150]. 
The original SKAT method uses only IPD, but later implementations like metaSKAT or 
SKAT-O have been extended to handle summary data. GCTA and VEGAS also use the 
multivariate normal framework adjusting the estimates for LD using a reference panel 
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[152, 153]. Of note, GCTA also offers methods for conditional analysis (see “Fine map-
ping”), and same also holds for KGG [154], whereas VEGAS’s new version allows for 
mixed ethnicity populations. GATES [155], on the other hand, uses an extended Simes 
procedure that integrates functional information and association evidence to combine 
p-values, whereas fastBAT [156] offers fast analytical p-value computations. The gene 
analysis in MAGMA (Multi-marker Analysis of GenoMic Annotation) is based on 
a multiple linear principal components’ regression model to account for LD and uses 
an F-test to compute the overall gene p-value [157]. Its extension, nMAGMA, extends 
the lists of genes that can be annotated by integrating local signals, long-range regula-
tion signals, and tissue-specific gene networks. It also provides tissue-specific risk sig-
nals, which are useful for understanding disorders with multi-tissue origins [158]. 
H-MAGMA [159] and eMAGMA [160] are two other extensions. The former integrates 
3D chromatin configuration, whereas the latter leverages significant tissue-specific cis-
eQTL information to assign SNPs to putative genes. EPIC [161] and GAMBIT [162] also 
utilize functional data for gene-based analysis; the former using cell-type-specific gene 
expression data obtained from single-cell RNA sequencing and the latter using coding 
and tissue-specific regulatory annotations. Such methods share several features in com-
mon with TWAS methods (see respective section). AgglomerativLD [163] also captures 
LD between SNPs of nearby genes, which induces correlation of the gene-based test sta-
tistics. DOT [164] is one of the few methods that applies a decorrelation-based approach 
before combining SNP-level statistics or p-values. Tools like GPA [165], oTFisher [166], 
TS [167] and aSPU [168] implement some type of so-called adaptive tests (AT), that 
is, they account for possibly varying association patterns across SNPs, whereas some 
modern tools like MKATR [169], COMBAT [170], MCA [171], OWC [172], FST [173], 
ACAT [174], HYST [175], GBJ [176] and sumFREGAT [177] perform analysis with mul-
tiple statistical methods and test and combine the results. Notably, tools like aSPU [168], 
snpGeneSets [178], Pascal/PascalX [179, 180], MAGMA, chromMAGMA [181] and 
FUMA [182], also offer the option of performing gene-set analysis after performing the 
gene-based analysis (see next section), whereas HSVS-M [168, 183] tests the association 
of a gene with multiple correlated traits.

Gene Set analysis

Gene set analysis (GSA), or Pathway Analysis, extends the concept of gene-based meth-
ods by jointly analyzing groups of functionally related genes and identifying biological 
pathways enriched with trait-associated genes. By considering the collective impact of 
multiple genes within a pathway, researchers can obtain a clearer picture of the under-
lying biological mechanisms influencing the phenotype under investigation. The first 
applications of such methods borrowed ideas from the microarray data analysis lit-
erature, and since then they became widespread in analysis of GWAS [184]. Any GSA 
method needs to address some issues. Firstly, how to handle SNPs of the same gene; sec-
ondly, how to define the appropriate gene-set or pathway, and finally how to combine the 
effects from multiple SNPs/genes within the same set/pathway [185]. Thus, the choices 
made by different methods can be very diverse leading to a wide variety of different 
approaches. For instance, some methods operate with SNP-level statistics (effect sizes, 
z, or p-values) assigning the SNP to the closest gene (usually within a range of ± 20 K 
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bases), whereas others take as input a gene-level statistic or simply a gene list obtained 
by a gene-based method (of course, several tools allow for both a gene-based and a GSA 
approach). Regarding the choice of set there is a plethora of databases containing biolog-
ical pathways (KEGG, PANTHER etc.), or other types of gene-set representation like PPI 
interactions, ontologies and so on [186]. Finally, regarding the statistical method used to 
aggregate evidence there is also a wide range of different methods that handle with dif-
ferent approaches the gene set size and gene length, the LD patterns and the presence 
of overlapping genes within pathways, or apply different statistical approaches such as 
those using the so-called competitive null hypothesis, or those using the self-containing 
one [14, 187]. A tutorial regarding the use of such methods is given in [21].

Among the most easily used and frequently cited are the tools that utilize a webserver. 
FUMA [182] and iGSE4GWAS [188] are tools specialized in GWAS and use SNP-
level statistics as inputs, differing in the subsequent analyses: FUMA uses MAGMA 
for gene-based testing and allows for ORA and Kologorov-Smirnov test (GSEA), 
whereas iGSE4GWAS maps the most significant SNP to a gene and then performs an 
improved GSEA with label permutation to obtain accurate p-values. Tools like Enrichr 
[189], g:Profiler [190], DAVID [191], WebGestalt [192] and PANTHER [193] are gen-
eral purpose enrichment tools that provide functionalities for different types of omics 
data (Fig. 7). They accept gene or SNP-list as input and provide Application Program-
ming Interface (API) ensuring interoperability, whereas for the statistical analysis they 
all use some version of ORA and/or GSEA (WebGestalt also uses Network Topology-
based Analysis). A major feature of these tools is that they incorporate a large number 
of biological and pathway databases, with g:Profiler and Enrichr offering the most com-
plete collection. GSA-SNP2 is one of the first methods to be developed for GWAS and 
has seen several improvements regarding the calculation of the combined gene score 
and the execution time, being among the fastest methods [194]. aSPUpath2 [195] and 
GIGSEA [196] are two methods that integrate expression data (eQTL) in the pathway 
analysis. The former uses an adaptive test that extends the aSPU methodology based on 

Fig. 7 Enrichment. A Summary view in g:Profiler of the significant SNPs for Type 2 Diabetes Mellitus. B 
Enrichr results for the same set. C Output of GWAB for Type 2 Diabetes Mellitus SNPs. D Detailed results from 
g:Profiler
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chi-square, whereas the latter uses a regression-based approach coupled with permu-
tations to calculate accurate p-values. In a similar fashion, deTS [197] and PGCA per-
form tissue-specific enrichment analysis (TSEA) for detecting tissue-specific genes and 
for enrichment test of different forms of query data. Other methods use different def-
initions of the gene-sets, in some cases utilizing additional information. For instance, 
dmGWAS [198] integrates PPI networks and uses a search method to identify subnet-
works. Compared with standard pathway methods it offers to the users the flexibility in 
the definition of a gene set and can utilize local PPI information. GEMB [199] defines the 
gene-sets using gene weights from model predictions and gene ranks from GWAS, and 
GENOMICper [200] uses permutations of the identified SNPs by rotation with respect 
to the genomic locations. GWAB [201] uses network connections to reprioritize candi-
date genes by integrating the GWAS and network data, whereas GenToS [202] searches 
for trait-associated variants in existing human GWAS. We also need to mention PAPA 
[203] which is a flexible tool for pleiotropic pathway analysis. As we already mentioned, 
aSPU, snpGeneSets, PascalX/PASCAL and MAGMA/chromMAGMA are gene-based 
methods that also perform GSA, whereas MAGENTA is a tool that performs meta-
analysis and subsequently GSA (see “meta-analysis”). Lastly, we need to mention Inferno 
[204] and Mergeomics [205] which are webservers offering a variety of options, extend-
ing typical GSA applications. Inferno integrates a variety of functional genomics sources 
to identify causal noncoding variants using COLOC, WebGestalt, LDSC and MetaXcan. 
Mergeomics uses summary statistics of multi-omics association studies (GWAS, EWAS, 
TWAS, PWAS, etc.) and performs correction for LD, GSEA, meta-analysis and identifi-
cation of regulators of disease-associated pathways and networks.

Fine‑mapping

While GWAS can identify broad genomic regions associated with the trait, it doesn’t 
pinpoint the exact causal variant within those regions. Fine mapping, working in the 
opposite direction of that of the gene-based approaches, is a process aimed at narrow-
ing down and identifying causal variants, that is the specific genetic variants responsi-
ble for the observed associations between genomic regions and traits of interest. The 
plethora of statistical methods and study designs makes it difficult to choose an optimal 
approach. The different approaches that have been proposed to perform fine-mapping 
can be divided in three broad categories: heuristic methods that select SNPs based on 
LD patterns, conditional or penalized regression models that perform variable selection, 
and Bayesian methods that calculate posterior probabilities or Bayes Factors. Based on 
theoretical and empirical evidence it seems that Bayesian methods have superior perfor-
mance [22]. Several factors may influence the performance of fine-mapping approaches, 
including the true number of causal SNPs in a region and their effect sizes, the local LD 
structure, the sample size, and the SNP density [22, 206]. Functional annotations are also 
of great importance leading to the so-called functionally informed fine-mapping (FIFM) 
methods [206]. The hypothesis of a single causal variant is also very restrictive, and sev-
eral methods have been developed to allow multiple causal variants in a region as well 
as to incorporate additional layers of functional annotations, like eQTL [207]. Moreo-
ver, methods for fine-mapping of multiple datasets have been proposed, either exploiting 
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different LD patterns across ethnic groups or borrowing information between different 
traits [207].

As we already noted Bayesian methods seem to have superior performance [22] and 
thus it is of no surprise that most of the currently available methods operate in a Bayes-
ian framework calculating Posterior Inclusion Probabilities (PIP) and/or Bayes Factors 
(BFs) in various settings: PAINTOR [208], DAP [209], fgwas [210], FINEMAP [211], 
flashfm [212], FINMOM [213], CARMA [214] and CAVIAR/CAVIARBF [215]. MsCAV-
IAR [216] is an extension of the latter method leveraging information from multiple 
studies, useful in trans-ethnic fine mapping. Similarly, XMAP [217] performs cross-
population fine-mapping by leveraging genetic diversity and accounting for confounding 
bias. BEATRICE [218] is a unique method that combines a hierarchical Bayesian model 
with a deep learning-based inference procedure, whereas RIVIERA-beta [219] performs 
Bayesian fine-mapping using Epigenomic Reference Annotation. On a different level, 
PolyFun/PolyLoc [220] do not perform fine-mapping per se but are used for estimat-
ing the prior causal probabilities of SNPs, which can then be used by other Bayesian 
fine-mapping methods. SusieR [221], BVS-PICA [222] and JAM [223], operate also in 
a Bayesian regression framework performing variable selection and penalized regres-
sion. Other regression-based methods, like SOJO [224] and ANNORE [225] work in a 
frequentist framework and perform lasso-type and differential shrinkage via random 
effects, respectively, whereas GSR utilizes a gene score regression approach [226] and 
RSS performs multiple regression utilizing the so-called summary statistics likelihood 
[227]. AHIUT [228] performs an intersection–union test based on a joint/conditional 
regression model with all the SNPs in a region. Lastly, we need to mention PICS2 [229], 
which performs probabilistic identification of causal SNPs and is the only of the methods 
that is available as a web-server, and echocolatoR [230] which requires minimal input 
from users and integrates a suite of fine-mapping tools to identify consensus variants, 
test enrichment and visualize the results.

Analysis of multiple traits
In this section we analyze methods developed for handling multiple traits. Depending 
on the type of data and the purpose of the analysis the methods can be divided into plei-
otropy methods, methods that calculate the genetic correlation, methods for mendelian 
randomization, transcriptome-wide association and colocalization methods.

Pleiotropy

Pleiotropy is the phenomenon in which a single variant influences several traits [231]. 
Such methods are of great importance in genetic research and several methods have 
been developed during the last years. A major goal of such methods is to increase the 
statistical power over single trait methods. Imagine for instance a variant that produces 
a near-significant effect when analyzed separately for two or three traits. A method that 
can combine these estimates may produce significant results. Another application of a 
joint analysis would be to identify variants that influence both traits, or variants that 
influence only one of them. When all the relevant variants are considered, one can also 
estimate the kind of relationship between the traits (see “genetic correlation”). A review 
of the statistical methods to detect pleiotropy in complex traits can be found in [25]. 
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Usually, the methods that allow for multiple trait analysis are oriented toward quanti-
tative traits like BMI, SBP, DBP and so on, that traditionally are measured on a single 
cohort, resulting in the existence of cross-trait correlation that needs to be taken into 
account in the analysis. However, there are also methods for performing the same anal-
ysis with summary estimates derived from different cohorts, as well as methods that 
allow for binary traits with the case–control design, using overlapped or non-overlapped 
controls.

All methods base their inference on the assumption that the z-statistics follow a mul-
tivariate normal distribution (MVN) and perform different types of tests and/or differ-
ent procedures to estimate or approximate the correlation structure. ACA [232] one of 
the first methods, estimates the traits covariance from a subset of the phenotypic data 
or from published studies, p_ACT [233] integrates the MVN using the trait correlation, 
PAT [234] uses a likelihood-ratio test, and PLEI [235] uses the union-intersection testing 
method, but in addition to the likelihood ratio test, it also applies generalized estimat-
ing equations under the working independence model; it can be applied for both mar-
ginal analysis and conditional analysis. USAT [236] uses a score-based test, JaSPU [237] 
uses an adaptive test which is robust to violations of the MVN assumptions and MTAR 
[238] uses a Principal Components (PC)-based test. BMASS [239] on the other hand is 
a Bayesian multivariate method, whereas TWT [240], MTAFS [241] and EBMMT [242], 
which are among the newer tools, perform a Cauchy Combined Test (CCT) to handle 
the correlation structure and obtain accurate p-values. SHAHER [243] uses a linear 
combination of traits by maximizing the proportion of its genetic variance explained by 
the shared variants and allows both shared and unshared variants to be effectively ana-
lyzed and HIPO [244] performs heritability-informed power optimization for conduct-
ing multi-trait association analysis. HOPS [245] computes a horizontal pleiotropy score 
by removing correlations between traits caused by vertical pleiotropy and normalizing 
effect sizes across all traits and PDR [246] performs a pleiotropic decomposition regres-
sion to identify shared components and their underlying genetic variants. We also need 
to mention methods like MTAG [247] and PLEIO [248] which use LDSC and apart from 
sample overlap also allow data from multiple studies, something that can be considered 
meta-analysis and methods like MSKAT [249], multiSKAT [250], MGAS [251], MAIUP 
[252] and MTAR (multi-trait analysis of rare variants) [253] which are gene-based meth-
ods specialized for multiple traits. Finally, methods like iMAP [254] and graphGPA2 
[255] use graphical models and are capable of performing analysis of large number of 
traits.

On the other hand, there are several methods that assume independence of the stud-
ied samples. Most of them are designed for larger analyses of many traits from multi-
ple studies, for instance PolarMorphism [256], JASS [257], gwas-pw [258] and FactorGo 
[259], sumDAG [260], combGWAS [261] and GCPBayes pipeline [262]. GCPBayes_
pipeline uses the functionality of GCPBayes to perform cross-phenotype gene-set analy-
sis between two traits. gwas-pw is used for the joint analysis of two GWAS in order to 
identify variants influencing both traits. PolarMorphism is based on a transform from 
Cartesian to polar coordinates and reports a per variant degree of ’sharedness’ across 
traits, whereas FactorGo provides scalable variational factor analysis model that is com-
putationally efficient for large number of traits. JASS provides interactive exploration 
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and visualization of the results of comparison of many traits through a web interface 
(Fig.  8 A-C), sumDAG goes one step further and constructs phenotype networks by 
using a Gaussian linear model and a directed acyclic graph, and combGWAS identifies 
susceptibility variants for comorbid disorders and calculate genetic correlations. EPS 
[263] and GPA [264] differ in integrating Pleiotropy and functional annotation from 
eQTL.

Genetic correlation

Genetic correlation is related to pleiotropy and describes the relationship between two 
traits, that is, the extent to which the genetic variants influencing one trait overlap with 
the genetic variants associated with the other. It thus can quantify the overall genetic 
similarity and provide insights into the polygenic genetic architecture of complex traits 
[23]. As we already saw, analyzing simultaneously multiple traits may increase power in 
case of horizontal pleiotropy; an additional potential application is to use the estimated 
correlation in order to establish causality between traits in case of vertical pleiotropy 
(see also next sections). Since heritability is the proportion of the phenotypic variance 
explained by genotypic variation it is of no surprise that genetic correlation (or, the 
genetic covariance) is related to the traits’ heritabilities. Thus, several of the methods for 
estimating heritability discussed earlier, like HESS and SumHer can also calculate the 
correlation between traits. The most commonly used method, however, for calculating 
genetic correlation is LDSC (LD Score Regression). The method originally developed for 
distinguishing polygenicity from bias by examining the relationship between test statis-
tics and LD score, but it is also used for estimating heritability and genetic correlation 
[133]. LDSC is also available through the LD Hub server. PCGC-s [265] is an adaptation 
of stratified LDSC for case–control studies and can also estimate genetic heritability, 

Fig. 8 Analysis of multiple traits. A JASS analysis for Type 2 Diabetes Mellitus (T2DM), Systolic Blood Pressure 
(SBP) and Diastolic Blood Pressure (SBP), indicating the pairwise genetic correlations between the traits. 
B Manhattan Plot from JASS for the combined analysis of the three traits. C Pairwise analysis of the SNPs 
identified as significant in the univariate analysis and in the combined analysis. D Two-sample Mendelian 
Randomization analysis for the association of SBP and T2DM obtained by MR-BASE
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genetic correlation, and functional enrichment. Another popular tool is GNOVA [266] 
which calculates annotation-stratified covariance using the method of moments and 
allows for sample overlap. Its extension, SUPERGNOVA [267] identifies global and local 
genetic correlations that could provide new insights into the shared genetic basis of 
many phenotypes. Local correlations, among others, can be also computed using LAVA 
[268]. HDL [269] is a likelihood-based method which produces more precise estimates. 
A recent comparison found that LDSC and GNOVA are more similar and robust to LD 
and sample overlap compared to HDL. HDL provides biased estimates of the genetic 
covariance in most cases and could not distinguish genetic from non-genetic correla-
tion. Moreover, HDL restricts the users to using the built-in reference panel, and its 
performs poorly when the number of shared SNPs between reference panel and GWAS 
is small [24]. Other tools provide somewhat different types of analyses. For instance 
Popcorn [270] estimates transethnic genetic correlation, GECKO [271] estimates both 
genetic and environmental covariances, PhenoSD [272] uses LDSC for estimating phe-
notypic correlations and then performs correction for multiple testing using the spectral 
decomposition of matrices, whereas LPM [273] is a latent probit model scalable to hun-
dreds of annotations and phenotypes that integrates functional annotations. ccGWAS 
[274] is a tool for comparing two different disorders with small genetic correlation pro-
viding a case-case association test, and RHOGE [275] estimates the genetic correlation 
between two traits as a function of predicted gene expression effect. LOGOdetect [276] 
uses scan statistics with an LD score-weighted inner product of local z-scores to identify 
small segments that harbor local genetic correlation between two traits. DONUTS [277] 
is a unique method since it operates on summary statistics from families.

Mendelian randomization

Mendelian Randomization (MR) is a method suggested in the pre-GWAS era to inves-
tigate causal relationships between two traits, usually a phenotype and a disease [278] 
using genotype–trait associations to make inferences about environmentally modifiable 
causes of the traits. In technical terms, MR uses genetic variants as instrumental vari-
ables [279] to mimic the random assignment of exposures in a randomized controlled 
trial, similar to the way Mendel’s laws of inheritance dictate the random assortment 
of alleles during gamete formation. By utilizing the natural randomization of genetic 
inheritance, MR aims to minimize biases introduced by confounding factors that usu-
ally affect observational studies when investigating the association of two traits. Usually, 
we are interested in a disease and some other intermediate phenotype, or another dis-
ease. For instance, the MR approach may involve the relationship between hypertension 
and BMI, or between hypertension and diabetes. Traditionally MR was performed with 
one sample (1SMR) using a single variant (usually referred to IPD methods), and sub-
sequently multivariate methods for MR meta-analysis were developed [280]. With the 
emergence of GWAS these methods evolved to the most commonly used two-sample 
MR (2SMR) methods that utilize summary data estimates from several variants regard-
ing the genotype–phenotype and genotype-disease association from different samples 
[26, 281]. To establish connection with the previous sections, MR seeks to analyze cor-
related traits [282] and to provide evidence for causation, in other words to distinguish 
vertical from horizontal pleiotropy.
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Several standard methods for MR in GWAS with summary data have been made avail-
able during the last years: the inverse-variance weighted method (IVW), the various 
types of median estimators (simple or weighted) and the MR-Egger regression approach. 
IVW gives consistent estimates only if all the genetic variants in the analysis are valid 
instruments. The median estimator is consistent even when up to 50% of the information 
comes from invalid instrumental variables, whereas MR-Egger performs equally well but 
provides somewhat less precise estimates [283]. These methods are readily available in 
standard packages like TwoSampleMR [284] and MR [285]. The functionalities of Two-
SampleMR are also offered, at least partially, through the webserver of MRBASE [284], 
which is the only method available as such (see Fig. 8, D). BWMR [286] is a tool that 
performs MR in a Bayesian framework. Besides the issue of weak instruments which is 
of importance, most modern methods also aim to perform the MR analysis accounting 
or correcting for horizontal pleiotropy. For instance, pIVW [287] is an extension of the 
IVW that accounts simultaneously for weak instruments and balanced horizontal pleiot-
ropy and MRmix [288] uses a mixture approach allowing a fraction of the instruments 
to have pleiotropic effect on the outcome. Similarly, MRcML [289], MR-LDP [290], 
MR-Corr2 [291] and MR-PRESSO [292] provide functionalities to account for horizon-
tal pleiotropy, whereas IMRP [293] takes a different approach and searches iteratively 
for horizontally pleiotropic variants and causal effects. MR-APSS [294] differs in that it 
performs MR accounting for both pleiotropy and sample structure which seems to be 
another important confounder (and includes population stratification, cryptic related-
ness, and sample overlap); MRlap [295] considers both weak instrument bias and win-
ner’s curse, accounting for sample overlap. MR.CUE [296] and TS_LMM [297] offer 
additional functionality for handling variability of the estimates. LCV [298] is a method 
that estimates causal associations between traits avoiding confounding by genetic cor-
relation, whereas OMR [299] uses information from all GWAS SNPs for causal infer-
ence and JAM-MR [300] performs variable selection and causal effect estimation in 
MR. CS [301], BiDirectCausal [302], MRCI [303] and LHC-MR [304] constitute another 
important class of methods since they can identify bidirectional causal effects. Another 
important extension is offered by methods like MR2 [305], MV-MR [306], MRBEE [307], 
MVMR-cML [308] and adOMICs [309] which extend the MR framework in the mul-
tivariate setting allowing more than one exposures or outcomes, as well as MR-BMA 
[310] which go one step further performing multivariate MR in a Bayesian framework. 
Finally, other methods like hJAM [311], MR.RAPS [312] and MRPEA [313] offer more 
advanced options. hJAM unifies the framework of MR and TWAS and can be applied 
to correlated instruments and multiple intermediates, MR.RAPS uses a three-sample 
genome-wide design with many independent genetic instruments across the genome to 
handle many weak genetic instruments and pleiotropy, whereas MRPEA uses pathway 
association MR analysis approach using data of environmental exposures.

Colocalization and TWAS

As we already described, the MR approach involves the combination of two types of data, 
a genotype-disease association, and a genotype–phenotype association. If the phenotype 
involves gene-expression, that is the result of an eQTL study, then we have two distinct 
but fundamentally related methods, the Transcriptome-wide association study (TWAS) 
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and the colocalization approach (Fig. 9). TWAS is based on the idea that genetic variants 
can influence gene expression, which subsequently can affect complex traits or diseases 
[27]. Thus, the approach uses information from eQTL to identify associations between 
predicted gene expression levels and complex traits/diseases [314]. Even though there 
are several different methods, the resemblance to MR is obvious; in fact several meth-
ods like SMR that uses a single variant [315], GSMR that uses multiple variants [310], 
and PMR [316] which can account for correlated instruments, horizontal pleiotropy, and 
can accommodate both single traits and multiple correlated outcomes, all use the term 
MR, whereas the authors of TScML [317], which uses two-stage constrained maximum 
likelihood, which is an extension of 2SLS, explicitly state that can be used for both MR 
and TWAS analyses. FUSION and S-PrediXcan are the oldest and most widely known 
methods. FUSION is the current implementation of the first TWAS method [318], 
whereas S-PrediXcan [319] is the summary-data version of PrediXcan. Xu et  al. [320] 
noted that PrediXcan and TWAS can be viewed as a special case of general association 
testing with multiple SNPs in a GLM and proposed the so-called sum of powered score 
(SPU) test implemented in aSPU-TWAS [320]. A subsequent evaluation has shown that 

Fig. 9 Incorporation of eQTL data. A Overview of the gene-expression patterns in T2DM obtained by PCGA. 
B Top associated tissues and cells for T2DM (PCGA). C An example of colocalization output perform by 
LocusFocus. D TSEA-DB view of the analysis of significant SNPs involved in T2DM. E Heat-map for the tissues 
involved in T2DM significant hits obtained by COLOC. F Plots of the genome-wide significant hits obtained 
from GWAS and eQTL (COLOC). G Heat-map for the tissues involved in T2DM (TSEA-DB). H Example of 
fine-mapping regarding a SNP indicated in T2DM obtained by PICS2



Page 25 of 40Kontou and Bagos  BioData Mining           (2024) 17:31  

the original TWAS statistic is equivalent to an LD-aware version of standard MR [321]. 
iFunMed [322] and sMIST [323] formulate the problem within the framework of media-
tor analysis, and similarly PTWAS [324] applies principles from instrumental variables 
analysis. Comm-S* [325] uses a variational Bayesian EM algorithm and a likelihood ratio 
test to assess expression-trait association. Its extension Tiss-Comm [326] leverages the 
co-regulation of genetic variations across different tissues explicitly via a unified proba-
bilistic model and also detects the tissue-specific role of candidate target genes in com-
plex traits. Similar multi-tissue approaches are followed by fQTL [327], sCCA [328] and 
UTMOST [329]. Primo [330], and OPERA [331] extend further the integration by allow-
ing different types of xQTL data (eQTL, pQTL, mQTL etc.) to allow estimation under 
different conditions, whereas SUMMIT [332] uses a large eQTL summary-level dataset, 
penalized regression and Cauchy Combination Test and HMAT [333] aggregates TWAS 
association tests obtained across multiple gene expression prediction models using the 
harmonic mean P-value combination (HMP). BGW [334] and ARCHIE [335] are two 
methods that utilize trans-regulated eQTLs. Other tools use combination of methods, 
like TIGAR [336] which combines DPR and PrediXcan, whereas others, like JEPEG-
MIX2‐P [337] or FOCUS [338], perform TWAS using pathway information, or use LD 
to perform fine-mapping over the gene–trait association signals obtained from TWAS, 
respectively. Even though the various methods discussed here have different modeling 
assumptions and many were initially developed to answer different biological questions, 
a recent technical review of the TWAS methods showed that all can be viewed as ver-
sions of the two-sample MR analysis [339]. Indeed, several recent tools like MRLocus 
[340], TWMR [341], and Mr.MtRobin [342] make explicit use of the MR methodology 
and jargon in order to perform a sophisticated TWAS. MRLocus performs first a colo-
calization step to each nearly-LD-independent eQTL, and then performs an MR analy-
sis step across eQTLs. TWMR performs a multi-gene multi-instrument MR approach 
to identify genes whose expression influence the phenotype. Finally, Mr.MtRobin uses 
multi-tissue eQTL and a reverse regression random slope mixed model to infer whether 
a gene is associated with a complex trait. As we have already noticed, webTWAS, 
apart from the database, also offers a webserver for accessing S-PrediXcan, SMR and 
UTMOST with user supplied datasets.

Another method that also uses GWAS results along with eQTL data is colocalization. 
Colocalization approaches are used to assess whether two different traits or diseases 
share a common causal genetic variant or set of variants at a specific genomic locus 
[13]. Colocalization analysis identifies genetic variants that show significant association 
in both GWAS and eQTL studies. However, unlike TWAS, it does not perform gene 
expression prediction and gene-trait association tests, but it focuses on the colocalized 
SNPs [28]. TWAS and colocalization are related approaches but not identical, since it 
has been shown that may give different results under different conditions (for instance 
in case of horizontal pleiotropy) and thus it has been suggested that they should be used 
complementary [28, 343]. COLOC was one of the first methods for colocalization and 
has seen several improvements [344, 345] (see also Fig. 9). The latest version uses SuSiE 
and allows evidence for association at multiple causal variants to be evaluated simulta-
neously, while at the same time separating the statistical support for each variant con-
ditional on the causal signal being considered. MOLOC [346] is multiple-trait version 
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of COLOC, operating in a Bayesian framework that integrates GWAS summary data 
with multiple xQTL data to identify regulatory effects, HyPrColoc [347] is a determin-
istic Bayesian method that detects colocalization across large numbers of traits, and 
SS2 [348] operates across any number of gene-tissue pairs allowing for sample overlap. 
LLR [349] works for colocalizing genetic risk variants in multiple GWAS and pheno-
types, whereas POEMcoloc [350] is an approximation to the COLOC method that can 
be applied when limited data are available. SparkINFERNO [351], PwCoCo [352] and 
ColocQuiaL [353] are pipelines offering additional functionalities, all using COLOC. 
eCAVIAR is another popular method [354] that uses a probabilistic model that accounts 
for more than one causal variant at a given locus. MSG [355] increases the power using 
a spliced gene approach and SharePro [356] integrates LD modeling and colocalization 
assessment to account for multiple causal variants in colocalization analysis. PESCA 
[357] uses estimates of LD that are ancestry-matched, in order to infer proportions 
of population-specific and shared causal variants in two populations. These estimates 
are then used as priors in an empirical Bayes framework for colocalization and test for 
enrichment of these causal variants in loci of interest. Lastly, we have to mention the 
methods that operate as webservers offering ease of use. Sherlock [358] which is also 
one of the oldest methods, uses a database of eQTL associations from different tissues 
to identify genetic signatures that match those for specific genes. Unlike other methods 
it incorporates information from both cis- and trans- eQTL SNPs. LocusFocus [359] is a 
web-based colocalization tool that tests colocalization using the Simple Sum method to 
identify relevant genes and tissues for a particular GWAS locus in the presence of high 
linkage disequilibrium and/or allelic heterogeneity. Regarding the analysis of eQTL data, 
ezQTL [360] is a webserver performing various tasks like data quality control for vari-
ants matched between different datasets, LD visualization, and colocalization analysis 
using eCAVIAR and HyPrColoc, whereas BAGEA [361] uses a variational Bayes frame-
work to model cis-eQTLs using directed and undirected genomic annotations.

Conclusions
Summary statistics offer protection of privacy over IPD, as well as significant advantages 
in computational cost, which does not scale with the number of individuals in the study 
[11]. Naturally, in the post-GWAS era it is expected that a large number of methods 
would be developed to perform analysis using the summary results of GWAS [11]. The 
particular methods, integrating data from multiple sources such as LD, gene expression 
and biological pathways, aim to provide biological insight and improve our understand-
ing about the functional role of identified variants [12–15]. One thing which we should 
emphasize is the fact that GWAS summary statistics are not mere replacements for 
IPD. Of course, some types of analysis can be applied using both summary data or IPD, 
like meta-analysis, heritability analysis, fine-mapping and so on. In such cases the sum-
mary data methods greatly enhance the applicability and the ease of use overcoming the 
limitations of IPD mentioned earlier. However, methods for other types of analysis, and 
particularly those that use multiple datasets, like TWAS, colocalization or Mendelian 
Randomization were designed having in mind the summary data and the integration of 
data from multiple sources. This is exactly the spirit of the so-called post-GWAS analy-
sis that brought bioinformatics into a central role in genetics research [11]. Most of the 
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“success stories” in GWAS during the last years can be attributed to the development 
and the application of such methods in identifying new variants, in functional annota-
tion, causal discovery or even in medical applications [2, 12, 362].

In this work we conducted, for the first time in the literature, a systematic review in 
order to identify software tools and databases dedicated to GWAS summary data analy-
sis. We categorized the tools and databases by their functionality, in categories related 
to data, single-trait analysis, and multiple-trait analysis, along with their sub-categories 
which we analyzed and reviewed. We also compared the tools and databases based on 
their features, limitations, and user-friendliness. Our review identified a wide range of 
tools, each with unique strengths and limitations. We provided descriptions of the key 
features of each tool and database, including their input/output formats, data types, and 
computational requirements. We also discussed the overall usability and applicability 
of each tool for different research scenarios. We identified families of related tools for 
performing different or complementary tasks, for instance the CAVIAR tools (CAVIAR, 
CAVIARBF, msCAVIAR, eCAVIAR), the EpiXcan tools (S-MultiXcan, S-PrediXcan), 
the LDAK programs (SumHer, GBAT), the MAGMA tools (nMAGMA, H-MAGMA, 
eMAGMA) and so on. We need to emphasize that in many cases a tool, originally devel-
oped for IPD, is later adapted to handle summary data, whereas in other cases a tool is 
succeeded by a newer version with added capabilities. For instance, the original PrediX-
can method uses only IPD, but it is now considered deprecated. S-PrediXcan and S-Mul-
tiXcan are later versions that are designed to be used with summary data. The same is 
the case regarding SKAT. The original method uses only IPD, but later implementa-
tions like metaSKAT or SKAT-O allow for summary data as well. At the same time, it 
is of importance that there are several tools that combine different functionalities. For 
instance there are tools that can perform meta-analysis and GSA (MAGENTA), gene-
based methods that also offer functionalities for conditional analysis (GCTA), methods 
for analysis of multiple traits with gene-based tests (multiSKAT, MSKAT), methods that 
can be seen both as methods for multiple-traits or as meta-analysis (PLEIO, PASCAL), 
methods that perform both GSA and gene-based tests (aSPU, snpGeneSets, PascalX, 
PASCAL,MAGMA, FUMA). Of course, there are several single-purpose methods that 
use and combine different statistical tests or different methods (OWC, MCA, TWT, 
EBMMT, COMBAT, sumFREGAT, MKATR), and we may not forget methods like 
LDSC, with its variants, which was originally developed for distinguishing polygenic-
ity from bias, but it is also used for estimating heritability and genetic correlation being 
integrated in many other tools and pipelines.

As we already mentioned, the tools and databases included in the study were those 
with a functioning URL. In many publications identified through the literature search 
the URL was not working. In some situations, we recovered a valid link by perform-
ing google searches, or by identifying the authors’ websites, but in many cases, this 
was not enough. Similarly, several tools deposited in CRAN had been removed or 
archived. This kind of problem is something already known in the scientific commu-
nity for years [363–365]. However, there is more to it. Even for the tools included in 
the review we could not verify without proper testing that they all work seamlessly, 
especially for the older ones [366]. Operating systems evolve, programming languages 
change, and with these the dependencies of each software also change. Even though 
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there are available best practices [367], it is not always realistic to expect complex 
software to work forever without maintenance. Even for some of the tools having 
valid URLs, for instance deposited on GitHub, or on personal web pages, we found 
statements by the authors indicating that the software is no longer maintained and 
that it is not easy to provide technical support. It is clear that more advanced solu-
tions should be pursued. For instance, among the tools we identified the majority are 
written in R and Python, but only a handful is available as a webserver: ten of the 
tools for GSA, three tools for colocalization, two tools for meta-analysis, and one for 
pleiotropy analysis, MR and fine-mapping. Of course, several of the secondary data-
bases we identified also provide the functionality of performing the analysis using 
data provided by the user (webTWAS, TSEA-DB, PCGA), but even counting these 
the proportion of web-tools is rather low (< 10%). Web servers and web services have 
become of high relevance to the field of bioinformatics during the last 20 years [368], 
so it is expected to have an increasing number of relevant webservers in the near 
future as relevant tools are available to facilitate the incorporation of existing applica-
tions [369–372]. On the other hand, some tools may be too computationally demand-
ing, so other solutions must be found. Container-based applications [373, 374] such 
as Docker can simplify maintenance procedures and add to the reproducibility of 
research [375]. Community efforts such as udocker [376] may promote usability of 
complex software tools by non-experts in multi-user environments.

As data accumulates it is unavoidable to head to analyses on an even larger scale. 
Traditionally the large-scale analysis of many gene-disease associations is modeled 
by the so-called diseasome [377, 378] using graph theoretic methods [379, 380]. The 
gene-disease network is composed of pairwise associations obtained from public 
databases and is a bipartite network [379] consisting of two separate sets of nodes 
and the interactions between nodes belonging to the different sets. The projection 
to the one or the other of the sets may lead to the gene–gene or the disease-disease 
projected networks that inform us about the associations between members of the 
same set (for instance, two diseases are connected if they share common genes, and 
so on). Such methods are available for years, but they treat the associations as fixed 
inputs to the graph. As data accumulate and even more complex statistical methods 
are developed that allow cross-trait comparisons and combined analyses of multiple 
traits, along with the integration of different types of data such as xQTL, it is tempt-
ing to speculate that a fusion of these two traditions may come, in which the statisti-
cal formalism of the tools presented in this review will merge with the graph theoretic 
approaches developed in the systems biology literature. For instance, we may see net-
work approaches leading to causal analyses (similar to MR) that consider simultane-
ously all the diseases and traits for which we have GWAS summary data, or similar 
approaches that integrate xQTL data of various types, different tissues and so on.

We hope that this comprehensive review will serve as a valuable resource for 
researchers who are interested in using GWAS summary statistics to investigate the 
genetic basis of complex traits and diseases, as well as to methodologists that develop 
and test relevant methods. We provided a detailed overview of the available tools and 
databases, and we hope that this work will facilitate informed tool selection and will 
maximize the effectiveness of using GWAS summary statistics.
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