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Abstract
Objective Data imbalance is a pervasive issue in medical data mining, often leading to 
biased and unreliable predictive models. This study aims to address the urgent need for 
effective strategies to mitigate the impact of data imbalance on classification models. 
We focus on quantifying the effects of different imbalance degrees and sample sizes on 
model performance, identifying optimal cut-off values, and evaluating the efficacy of 
various methods to enhance model accuracy in highly imbalanced and small sample 
size scenarios.

Methods We collected medical records of patients receiving assisted reproductive 
treatment in a reproductive medicine center. Random forest was used to screen 
the key variables for the prediction target. Various datasets with different imbalance 
degrees and sample sizes were constructed to compare the classification performance 
of logistic regression models. Metrics such as AUC, G-mean, F1-Score, Accuracy, Recall, 
and Precision were used for evaluation. Four imbalance treatment methods (SMOTE, 
ADASYN, OSS, and CNN) were applied to datasets with low positive rates and small 
sample sizes to assess their effectiveness.

Results The logistic model’s performance was low when the positive rate was below 
10% but stabilized beyond this threshold. Similarly, sample sizes below 1200 yielded 
poor results, with improvement seen above this threshold. For robustness, the optimal 
cut-offs for positive rate and sample size were identified as 15% and 1500, respectively. 
SMOTE and ADASYN oversampling significantly improved classification performance in 
datasets with low positive rates and small sample sizes.

Conclusions The study identifies a positive rate of 15% and a sample size of 1500 as 
optimal cut-offs for stable logistic model performance. For datasets with low positive 
rates and small sample sizes, SMOTE and ADASYN are recommended to improve 
balance and model accuracy.
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Background
With the development of information technology and medical technology, mining big 
data for valuable medical information has become a research hotspot in the fields of sta-
tistics, machine learning, and artificial intelligence. In current research on medical big 
data, predicting and classifying diseases have always been a focus [1, 2]. When establish-
ing prediction models, a prerequisite for using existing classification models is that the 
training sample set is balanced or close to balanced [3, 4]. However, real medical datasets 
often fail to meet this prerequisite [5], especially in studies of rare cases. In the major-
ity of cases, due to sampling difficulties and sample size constraints in clinical practice, 
the number of positive samples in medical datasets is far smaller than the number of 
negative samples, leading to imbalanced data. This imbalance is a particularly common 
problem when diagnosing and predicting malignant tumors [6], heart disease [7], car-
diovascular disease [8], and pregnancy diseases [9].

Imbalanced classification data occur when one class (the majority class) has more 
instances than another class (the minority class) [10, 11]. When constructing medical 
prediction models, the prediction performance of the minority-class samples is crucial 
for determining the model’s quality [12]. However, with real medical data, these posi-
tive samples are often masked by a large number of negative samples that interfere with 
the model’s prediction effect on positive samples. For example, in a diagnostic dataset of 
1000 cancer patients, only 10 samples might be diagnosed as having cancer, whereas the 
others are diagnosed as healthy. In this case, if the classifier predicted that all the sam-
ples were healthy, it would obtain a prediction accuracy of 99%. However such a model 
would not help with the goal of identifying cancer patients.

Currently, traditional classification models such as logistic regression and discriminant 
analysis are widely used in medical research, due to their convenience, strong variable 
interpretability, high prediction accuracy, and generalization [13, 14]. However the logis-
tic model can only function effectively if the distribution of response variables in the 
dataset is balanced. If the probability of occurrence of an event is less than 5%, it is dif-
ficult to establish a good prediction model because there is less information about rare 
events [15]. Therefore, the logistic model is not suitable for the problem of imbalanced 
data classification, especially in datasets where the minority class is extremely small or 
when the data distribution is heavily skewed. In such cases, alternative predictive mod-
els, such as decision trees, support vector machines, or random forests, may provide 
better performance because they are more robust to data imbalance. However, in some 
existing studies, these problems are not considered, and logistic models are directly used 
for analysis due to their simplicity and interpretability. As such, their conclusions may 
be questioned. It is crucial to explore and discuss its performance on imbalanced medi-
cal datasets, even when other predictive models might offer better accuracy in certain 
situations.

At present, methods to address the above-mentioned imbalanced data problem can 
be applied at the algorithmic level [16, 17] or the data level [18, 19]. At the algorithmic 
level, imbalanced data are mainly dealt with by modifying existing algorithms or propos-
ing new classification algorithms, often using cost-sensitive learning [20] or ensemble 
learning [21]. Cost-sensitive learning makes the classifier learn imbalanced data better 
by increasing the cost of misclassifying a few class samples. Ensemble learning integrates 
the results of training multiple learners according to certain standards to improve the 
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generalization ability of the learner. However, compared with the traditional method, 
models established by an algorithm-level method have higher complexity, and the model 
results lack intuitive interpretation. Therefore, processing at the data level may be more 
conducive to the analysis of imbalanced medical data.

Data level methods involve modifying the original dataset through preprocessing 
techniques, which include optimizing the feature space using feature selection methods 
[22, 23] and optimizing the sample space using resampling techniques [24, 25]. Feature 
selection techniques generally fall into three categories: filters, wrappers, and embed-
ded methods [26]. These methods focus on resolving the implicit complexity of the data 
by finding a feature space that better represents the minority class, addressing the issue 
where the original space may inadequately characterize it [27, 28]. However, feature 
space optimization can be challenging. In non-high-dimensional imbalanced datasets, 
feature selection often needs to be combined with resampling and algorithmic meth-
ods to achieve better results. Resampling adjusts the dataset’s imbalance to balance the 
two classes, making it more suitable for traditional classification methods. Studies have 
shown that, for several common standard classification models, the training effect of 
using a balanced dataset is better than the original imbalanced dataset [29]. However, 
some studies have also shown that some classification models trained by the original 
imbalanced dataset are comparable to those trained by the same resampled balanced 
dataset [30, 31]. The biggest controversy about resampling technology to solve the prob-
lem of imbalanced classification is that resampling changes the distribution of the sam-
ple data. According to statistical knowledge, only randomly selected samples can be used 
to estimate the distribution of a population [32]. Although resampling techniques can-
not simulate the true distribution of original data, classification models can obtain more 
useful information from the balanced data than the original data [33]. According to the 
balanced distribution method, resampling techniques can be categorized into unders-
ampling, oversampling, and hybrid sampling. Numerous scholars have conducted com-
parative studies on the performance of undersampling and oversampling techniques, 
but a widely accepted conclusion has yet to be reached. Some researchers have pointed 
out that the advantages of proposed undersampling methods become more pronounced 
when the dataset reaches the PB scale [34]. Conversely, other studies have suggested that 
oversampling outperforms undersampling, particularly for datasets with a very small 
number of minority-class samples [35]. Even for complex datasets, oversampling has 
been shown to significantly enhance classifier performance [36].

Traditional classification models and imbalanced data processing methods both have 
advantages for the problem of imbalanced data. This study explores the trends in clas-
sification performance indices of the models and the differences in methods of treat-
ing imbalanced data under varying degrees of imbalance and different sample sizes. 
Compared with simulated data, real data better reflects data distributions in real envi-
ronments. Therefore, we chose assisted-reproduction data as an example to construct 
datasets in different situations. We constructed datasets with different imbalance 
degrees and sample sizes. Then, we compared the classification accuracy of the models 
under different circumstances and determined the optimal cutoff values for the imbal-
ance degree and sample size. We constructed various datasets with a high degree of 
imbalance and small sample sizes. These datasets were processed by four processing 
methods for imbalanced data: Synthetic Minority Over-Sampling Technique (SMOTE) 
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oversampling, Adaptive Synthetic Sampling (ADASYN) oversampling, One-Sided Selec-
tion (OSS) undersampling, and Condensed Nearest Neighbor (CNN) undersampling. 
The effects of these different processing methods were compared. This study explores 
processing strategies for imbalanced data and provides insights into the selection of 
appropriate imbalanced data processing methods.

Materials and methods
Data source

We retrospectively collected medical records of patients who received assisted reproduc-
tive treatments from January 2015 to December 2020 at the Reproductive Medical Cen-
ter of Jiangxi Maternal and Child Health Hospital in Nanchang City, Jiangxi Province, 
China. The dataset comprised 17,860 samples and 45 variables, covering the following 
seven aspects: basic information, infertility factors and comorbidities, previous treat-
ment and maternal history, pre-pregnancy basic biochemical indicators, basic semen-
quality indicators, biochemical indicators during pregnancy, and transfer information.

The outcome variable was whether cumulative live births occurred. A cumulative live 
birth is defined as the first live birth in a complete treatment cycle. A complete treatment 
cycle is defined as the transfer of all eligible embryos at one time after one ovulation 
induction until termination after a live delivery. If no live birth occurred, the treatment 
cycle was considered to have failed.

The ethical considerations for biomedical research involving humans in this proj-
ect meet the requirements of the Declaration of Helsinki and the Measures for Ethical 
Review of Life Science and Medical Research Involving Humans. The Medical Ethics 
Review Committee of Jiangxi Provincial Maternal and Child Health Hospital approved 
the implementation of this project according to the research plan (SZYX-202305).

Data preprocessing and variable filtering

Data preprocessing

First, non-characteristic variables in the dataset, such as case numbers and admis-
sion dates were removed. Then, duplicate rows in the dataset were removed and 
merged, missing samples were removed, and outliers with statistical errors in the data 
were replaced by the mode. Finally, discrete variables in the dataset were numerically 
encoded.

Variable screening

To avoid problems such as over-dimensionality and model overfitting with the logistic 
model, the random forests algorithm was used to evaluate the importance of variables 
in the preprocessed dataset. There were two main evaluation indicators: mean decrease 
accuracy (MDA) and mean decrease Gini (MDG). MDA represents the degree of decline 
in the accuracy of random forest prediction, where higher values indicate greater impor-
tance of the variable. MDG calculates the effect of each variable on the heterogeneity 
of observations at each node of the classification tree to compare the importance of the 
variable, where higher values again indicate greater importance of the variable. In this 
study, MDA indicators were primarily used to evaluate the importance of variables.
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Construction of different datasets

Construction of datasets with different imbalanced degrees

By randomly sampling the original dataset, datasets with different imbalance degrees 
were constructed, where the ratios of balanced to imbalanced samples were 99:1, 97:3, 
95:5, 90:10, 85:15, 80:20, 75:25, 70:30, 65:35 and 60:40. In medical data, the description 
of the degree of imbalance is more commonly used in indicators such as the positivity 
rate, incidence, and response rate. Therefore, we used the positivity rate to express the 
different imbalance degrees. That is, datasets with positive rates of 1%, 3%, 5%, 10%, 15%, 
20%, 25%, 30%, 35%, 40% were constructed.

To explore the impact of different positive rates on the logistic regression model, we 
needed to determine a sample size that would be meaningful across various scenarios. 
Given that logistic models often perform poorly when the positive rate is below 5% [15], 
we selected a commonly considered extreme imbalance scenario, setting the overall pos-
itive rate (π) at 0.05. The following random sampling formula was used for calculation:

n =
Z2

α /2π (1 − π )

δ 2

Where the test level (α) was set at 0.05 and the allowable error (δ) at 0.01, resulting in a 
calculated sample size of approximately 1825. To facilitate the construction of datasets, 
the sample size was appropriately increased, and the sample size of each positive rate 
dataset was fixed at 2000. Additionally, we conducted studies on datasets with sample 
sizes of 1000 and 5000 to verify the stability and consistency of the positive rate cutoff 
value across different sample sizes.

To construct the datasets, the positive samples and negative samples in the original 
dataset were randomly sampled according to a certain proportion, and then the positive 
samples and negative samples were combined to form datasets with different positive 
rates. For example, 100 positive and 1900 negative samples were selected from the origi-
nal dataset to construct a dataset with a positive rate of 5%, and 200 positive and 1800 
negative samples were selected from the original dataset to construct a dataset with a 
positive rate of 10%, and so on.

In order to avoid the chance of random sampling, 100 datasets were constructed for 
each positive rate, and the 100 datasets were tested separately. Finally, the average value 
of 100 experiments was taken as the evaluation index of the model to minimize random 
sampling errors.

Construction of datasets with different sample sizes

Based on the optimal cut-off value of 15% of the positivity rate obtained from the first 
part of this study, we studied the effect of different sample sizes on the classification 
model under the same imbalance degree. The random sampling method was used to 
construct datasets of different sample sizes, in which the sample sizes of the datasets 
were 500, 800, 1000, 1200, 1500, 2000, 3000, 4000, and 5000, and the sample positivity 
rate was fixed at 15%.

The process of dataset construction was consistent for all of the datasets of differ-
ently imbalanced degrees. Similarly, to avoid the chance of random sampling, 100 data-
sets were constructed for each sample size, and each was tested separately. Finally, the 
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average value of 100 experiments was taken as the evaluation index of the model to min-
imize random sampling error.

Construction of datasets with low positive rate and low sample size

According to the optimal cut-off value of positive rate of 15% and the optimal cut-off 
value of sample size of 1500 obtained in the previous two steps, we compared the vari-
ous imbalanced data processing methods under the condition of a low positive rate and 
low sample size. The distribution of the constructed dataset is shown in Supplemental 
Table 1.

To avoid the chance of random sampling, 500 datasets were constructed for each con-
dition, and each was tested separately. Finally, the average value of these 500 experiments 
was taken as the evaluation index of the model, to minimize random sampling errors.

Introduction to classification models and resampling methods

Logistic model

The logistic model is a generalized linear regression model primarily utilized for 
addressing regression problems involving categorical dependent variables, particularly 
in the context of binary classification. In the realm of classification problems, the logistic 
model finds extensive application in medical research due to its convenience, interpret-
ability, and efficient algorithmic approach. Thus, we adopted the logistic classification 
model as a representative to explore strategies for analyzing imbalanced data.

Resampling methods

The main idea of resampling is to balance the data distribution by reasonably adding 
some minority class samples or reducing some majority class samples, to reduce the 
impact of a skewed class distribution in the classification process. Resampling methods 
are divided into undersampling, oversampling, and mixed sampling techniques. In this 
study, four commonly used oversampling methods and undersampling methods were 
used to deal with imbalanced data.

(1) SMOTE oversampling

The basic principle of SMOTE oversampling is to synthesize new minority-class samples 
using linear interpolation between two minority-class samples [37]. Compared with the 
random oversampling method, this method greatly avoids the problem of overfitting in 
model training.

(2) ADASYN oversampling

The main feature of the ADASYN oversampling algorithm is that the number of new 
samples that needs to be synthesized by each minority class sample during sample syn-
thesis is determined by the difficulty of its learning [38]. Specifically, in the k-nearest 
neighbors of the minority class sample, the more samples that belong to the majority 
class, the more difficult it is to learn, and the more minority samples it synthesizes. This 
is the most important difference between ADASYN oversampling and SMOTE overs-
ampling, which requires the same number of synthetic samples for each minority class 
sample.

(3) OSS undersampling
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OSS undersampling is an undersampling algorithm proposed by Kubat et al. in 1997, 
which is a combination of the Tomek link and CNN methods [39]. According to the 
distance between samples, the majority class samples are divided into four categories: 
noise samples, boundary samples, redundant samples, and safe samples. Then, the noise, 
boundary, and redundant samples are removed, and only safe samples are left, so as to 
balance the number of samples of the majority and minority classes.

(4) CNN undersampling

CNN undersampling deletes redundant samples in the majority class that are far away 
from the classification decision surface by looking for a consistency subset, so as to 
achieve undersampling [40].

Evaluation indicators

All datasets were divided into a training set and test set at a ratio of 7:3, and then the 
training set was used to train the logistic model and the test set to evaluate the model. 
For the dataset with low positive rate and low sample size, the logistic model was estab-
lished after the training set was processed by an imbalance processing method after the 
dataset was divided, and the model was evaluated in the test set.

To compare the performance of the model constructed by different datasets and objec-
tively and fully measure the classification effect of imbalanced data, we used the met-
rics of accuracy, recall, precision, F1-Score, geometric mean (the G-mean), and the area 
under the receiver operating characteristic curve (AUC) for the evaluation.

Results
Description of characteristics of the dataset

This dataset comprised 17,860 samples and 45 variables. After data cleaning, the dataset 
retained 15,764 samples and 43 variables, including 10,874 cases (68.9%) with cumula-
tive live birth outcome events and 4890 cases (31.1%) without such events.

To avoid the problems of high dimensionality and model overfitting in logistic regres-
sion, the random forests algorithm was used to evaluate the importance of variables and 
select the variables that are important to the prediction objectives. In the parameter set-
tings of the random forests algorithm, ntree = 200 and mtry = 6. According to the MDA 
index, the importance of variables was ranked and the 15 variables with the highest 
importance were selected in turn, and the results are shown in Table 1. These variables 
include 10 quantitative variables and 5 qualitative variables. The quantitative variables 
were maternal age, paternal age, basal antral follicle counts, basal endometrial thickness, 
basal luteinizing hormone, normal sperm rate, HCG day estradiol, number of oocytes 
obtained, number of embryos transferable, and number of high-quality embryos. The 
qualitative variables were the treatment scheme, delivery history, number of trans-
planted embryos, embryo development days, and scarred uterus. These 15 variables 
were used for the subsequent analysis.

Impact of imbalance degree on the classification model

Model performance indicators under different positive rates

Table 2 shows the values of the Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC) of the model performance evaluation indicator output by the 
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logistic model in the training set. As seen in the table, the coefficient of variation (CV) 
for the model’s AIC and BIC values gradually decreases with an increase in the posi-
tive rate. This indicates that the more balanced the dataset, the more stable the logistic 
model results. Similar trends were observed for the sample sizes of 1000 and 5000, as 
shown in Supplemental Tables 2 and 3.

Classification effect indicators of the model under different positive rates

To evaluate the classification effect of the model in the test set, the AUC, G-mean, 
F1-Score, accuracy, precision, and recall were used. Supplemental Table 4 shows the 
evaluation results of the classification effect of the logistic model in the test set under 
different positive rates when the sample size is 2000. The results for sample sizes of 1000 
and 5000 are presented in Supplemental Tables 5 and 6, respectively.

According to the experimental results in Supplemental Table 4, a raincloud plot was 
drawn to visualize the distribution of the evaluation indicators of the logistic model in 
each positive rate situation. As can be seen from the change trend of the mean value of 
the six evaluation indicators in Fig. 1, the AUC, G-mean, F1-Score, precision, and recall 

Table 1 Ranking of variable importance of random forests
Variable MDA MDG
Number of transferable embryos 53.2 903.0
Maternal age 38.1 433.3
Paternal age 20.3 285.5
Number of oocytes obtained 19.0 300.5
Basal antral follicle counts 17.7 229.3
Number of high-quality embryos 17.3 299.0
HCG day estradiol 16.8 330.3
Treatment scheme 11.7 75.6
Basal endometrial thickness 10.0 256.5
Basic luteinizing hormone 8.4 249.2
Delivery history 8.0 56.1
Number of transplanted embryos 7.9 33.0
Embryo development days 6.9 29.3
Scarred uterus 6.8 25.5
Normal sperm rate 6.6 228.2

Table 2 Comparison of performance indexes of logistic model under different positive rates 
(n = 2000)
Positive rates AIC BIC

Mean SD CV (%) Mean SD CV (%)
1% 145.1 13.4 9.2 229.0 13.4 5.9
3% 310.7 19.8 6.4 394.6 19.8 5.0
5% 444.8 24.4 5.5 528.7 24.4 4.6
10% 699.3 29.4 4.2 783.2 29.4 3.8
15% 890.1 28.8 3.2 974.0 28.8 3.0
20% 1050.5 33.8 3.2 1134.4 33.8 3.0
25% 1166.0 32.7 2.8 1249.9 32.7 2.6
30% 1261.5 31.6 2.5 1345.4 31.6 2.3
35% 1332.2 43.7 3.3 1416.1 43.7 3.1
40% 1388.3 39.9 2.9 1472.2 39.9 2.7
Note: In the case of the same positive rate, the standard deviations of AIC and BIC are consistent, which is related to its 
calculation formula (AIC = -2ln(L) + 2k, BIC = -2ln(L) + k*ln(n). Where ln(L) represents the maximum log-likelihood function 
value of the model, k represents the number of parameters of the model, and n represents the sample size)
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all show a gradually increasing trend as the data become more balanced, whereas the 
accuracy shows a decreasing trend. This occurs because, under significant data imbal-
ance, the logistic model tends to sacrifice minority class accuracy to achieve higher over-
all accuracy.

Since the imbalanced data problem requires a comprehensive consideration of two 
types of errors, special attention should be paid to three key indicators: the AUC, 
G-mean, and F1-Score. According to the AUC index in Fig. 1(A), when the positive rate 
of the dataset is less than 10%, the AUC increases rapidly. When the positive rate reaches 
10%, the AUC stabilizes with a small range of change. According to the G-mean index 
in Fig. 1(B), when the positive rate of the dataset is less than 10%, the G-mean rapidly 
increases, and when the positive rate reaches 10%, it increases slowly with a small range 
of change. As for the F1-Score in Fig. 1(C), it initially decreases and then increases when 
the positive rate is below 10%. This is because, when the data are extremely imbalanced, 
the number of minority samples is small and the number of minority samples divided 
into the test set is even smaller. When the logistic model is tested in the test set, the true 
positive (TP) value is often small or even zero. In this case, the model will sacrifice a 
small number of class samples to obtain higher accuracy, resulting in small false negative 
(FN) values and large fluctuations in recall and precision. When the positive rate of data-
set reaches 10%, the F1-Score steadily and slowly increases. In addition, when the sample 
size is 1000 and 5000 respectively, AUC, G-mean, and F1-Score also exhibit the same 

Fig. 1 Raincloud plot of the classification effect of the logistic model under different positive rates (n = 2000)
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changing trend (Supplemental Figs. 1 and 2). It can be seen that a positive rate of 10% in 
the dataset may be an important cut-off value affecting the classification model. When 
the positive rate of dataset is less than 10%, the classification accuracy of the model is 
low. When the positive rate of dataset is higher than 10%, the classification performance 
of the model gradually stabilizes. Considering the robustness of selecting a truncation 
value, the optimal cut-off value for the positive rate that affects the classification model 
is determined to be 15%.

Impact of sample size on classification model

Model performance under different sample sizes

Table  3 shows the model performance evaluation index AICs and BICs output by the 
logistic model in the training set. As seen in the table, the CV for the model’s AIC and 
BIC values gradually decreases with an increase in the sample size. This indicates that 
the larger the sample size of the dataset, the more stable the results of the logistic model.

Classification effect of the model under different sample sizes

To evaluate the classification effect of the model in the test set, the AUC, G-mean, 
F1-Score, accuracy, precision, and recall were used to evaluate the classification effect. 
Supplemental Table 7 shows the evaluation results of the classification effect of the logis-
tic model in the test set under different sample sizes.

According to the experimental results in Supplemental Table 7, a raincloud plot was 
drawn to visualize the distribution of the evaluation indicators of the logistic model in 
each sample size situation. As observed in the change trend of the mean values of the six 
evaluation indicators in Fig. 2, the AUC, G-mean, F1-Score, recall and precision all grad-
ually increase with the increase in the dataset’s sample size, while the accuracy remains 
relatively stable.

Since the problem of imbalanced data requires a comprehensive consideration of 
two types of errors, it is necessary to pay more attention to three indicators: the AUC, 
G-mean, and F1-Score. As shown in Fig.  2(A–C), the AUC, G-mean, and F1-Score of 
the three indexes show a small and slow upward trend with increasing sample size. After 
the sample size reaches 1200, the three indexes gradually stabilize. Hence, a sample size 
of 1200 may be an important cut-off value affecting the classification model. When the 
sample size is less than 1200, the classification accuracy of the model is low, but when 

Table 3 Comparison of performance indexes of logistic model under different sample sizes 
(positive rate = 15%)
Sample sizes AIC BIC

Mean SD CV (%) Mean SD CV (%)
500 236.1 18.2 7.7 297.9 18.2 6.1
800 366.8 19.8 5.4 436.1 19.8 4.5
1000 454.3 21.8 4.8 527.1 21.8 4.1
1200 541.3 24.5 4.5 617.0 24.5 4.0
1500 673.1 28.0 4.2 752.4 28.0 3.7
2000 889.3 30.5 3.4 973.2 30.5 3.1
3000 1332.6 41.3 3.1 1423.0 41.3 2.9
4000 1763.2 45.7 2.6 1858.2 45.7 2.5
5000 2197.9 40.3 1.8 2296.5 40.3 1.8
Note: In the case of the same positive rate, the standard deviations of AIC and BIC are consistent, which is related to its 
calculation formula (AIC = -2ln(L) + 2k, BIC = -2ln(L) + k*ln(n). Where ln(L) represents the maximum log-likelihood function 
value of the model, k represents the number of parameters of the model, and n represents the sample size)
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it is higher than 1200, the classification performance of the model gradually stabilizes. 
Considering the robustness of selecting a truncation value, the optimal cut-off value for 
the sample size that affects the classification model is determined to be 1500.

Impact of imbalanced data processing method on classification model

Supplemental Table 8 described the basic situation of the datasets after using an imbal-
anced data processing method. After SMOTE oversampling, the dataset had an equal 
number of minority and majority samples, resulting in a positive rate of 50%. After 
ADASYN oversampling, the number of minority samples was close to that of the major-
ity, and the positive rate of the dataset remained about 50%. After the OSS undersam-
pling process, the imbalance of the dataset improved to a certain extent, but remained 
in an imbalanced state. After CNN undersampling, the imbalance of the dataset signifi-
cantly improved, but the sample size of the dataset decreased significantly, due to the 
large number of deleted class samples.

Figure 3 showed the AUC of the logistic model after the data were processed by imbal-
anced data processing methods. It can be seen that, compared to the untreated group, 
the AUC values slightly decreased after SMOTE oversampling, ADASYN oversampling, 
and CNN undersampling, whereas the difference was very small for OSS undersampling 
compared to the untreated group.

Fig. 2 Raincloud plot of the classification effect of the logistic model under different sample sizes (positive 
rate = 15%)
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For the G-mean metric (Fig. 4), SMOTE oversampling, ADASYN oversampling, and 
CNN undersampling showed a significant increase compared to the untreated group, 
while the G-mean slightly increased compared to the untreated group with OSS unders-
ampling. When the positive rate was 1%, the CNN undersampling method was superior 
to the two oversampling methods, but when the positive rate was greater than 1%, the 
two oversampling methods outperformed the two undersampling methods. Further-
more, the larger the sample size, the more significant the improvement brought by the 
imbalanced data processing methods to the logistic model.

For the F1-Score metric (Fig.  5), when the positive rate was 10%, SMOTE overs-
ampling, ADASYN oversampling, and CNN undersampling showed improvement 
compared to the untreated group. The accuracy, recall, and precision are shown in Sup-
plemental Figs. 3, 4, and 5, respectively.

Discussion
In this study, datasets with different imbalanced proportions were constructed by ran-
dom sampling of the original datasets, and then logistic models were established for 
each dataset. Logistic models are widely recognized and applied in the medical field, 
but they require a balanced or nearly balanced training sample set [3, 4]. Our results 
indicate that the classification performance of the logistic model gradually declines as 
the imbalance degree of the dataset increases, which aligns with the findings of other 

Fig. 3 AUC values of Logistic model after imbalanced processing method in various cases
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studies [41, 42]. This indicates that the imbalance of the dataset will hinder the classifica-
tion performance of the model. Therefore, the logistic model is unsuitable for addressing 
data classification problems when the dataset is extremely imbalanced. Because of the 
many advantages of logistic models, our results showed that when the positive rate of 
the dataset is greater than 10%, logistic analysis can also get better results. Consider-
ing the robustness of the selection of the truncation value, the value should be appro-
priately expanded. Therefore, this study determined the optimal truncation value of the 
imbalance degree of the dataset affecting the logistic model at a positive rate of 15%. 
Data resampling methods such as oversampling and undersampling change the distribu-
tion of original data to some extent [32]. Compared to logistic models, machine learning 
methods such as ensemble learning and cost-sensitive learning have higher complexity 
and lack intuitive interpretations of model results. Therefore, when weighing the choice 
between traditional classification models and an imbalanced data treatment method, the 
positive rate of 15% obtained in this study is a good reference.

Our study found that sample size affects the classification performance of the logis-
tic model. When the sample size is small, the classification accuracy of the model is 
low, making it susceptible to noise and randomness. As the sample size increases, the 
model better learns the characteristics and distribution of the minority class, thereby 
improving its classification accuracy and generalization ability. We found that when 
the sample size reached 1200, the performance of the logistic model tended to stabilize. 

Fig. 4 G-mean values of Logistic model after imbalanced processing method in various cases

 



Page 14 of 17Zhu et al. BioData Mining           (2024) 17:29 

This suggests that further increasing the sample size does not significantly enhance the 
model’s performance. This may be because, when the sample size is sufficiently large, the 
model has already effectively learned the distinctions between the minority and majority 
class samples, rendering further increases in sample size of limited benefit to model per-
formance. Therefore, considering the robustness of the selection of the truncation value, 
the value is appropriately expanded, so the optimal truncation value of the sample size of 
the imbalanced dataset affecting the logistic model is determined to be 1500. However, 
this sample-size truncation value is obtained when the data imbalance is a 15% positive 
rate. When it is generalized to data that are seriously imbalanced, this truncation value 
may be restricted by certain conditions.

To explore the impact of imbalanced data processing methods on the model, we used 
four methods to process the dataset: SMOTE oversampling, ADASYN oversampling, 
OSS undersampling, and CNN undersampling. SMOTE and ADASYN are two classic 
oversampling methods, with numerous improved algorithms for these methods having 
been applied across various scenarios [43, 44]. As can be seen from the study results, 
under various conditions of a low positive rate and low sample size, SMOTE oversam-
pling and ADASYN oversampling significantly improved the classification effect of the 
logistic model compared with unprocessed data, and there was little difference between 
them. For undersampling, CNN undersampling realizes data undersampling by delet-
ing redundant samples far from the classification decision surface in most class samples 

Fig. 5 F1-Score values of Logistic model after imbalanced processing method in various cases
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[40]. The results showed that under various conditions of a low positive rate and low 
sample size, CNN undersampling significantly improved the classification effect of the 
logistic model, but the improvement effect was slightly lower than that with SMOTE 
oversampling and ADASYN oversampling. Undersampling involves deleting a substan-
tial number of majority class samples, which can result in the loss of valuable infor-
mation to some extent. OSS undersampling balances data by removing some noisy 
data, boundary data, and redundant data [39]. Compared with SMOTE oversampling, 
ADASYN oversampling, and CNN undersampling, OSS undersampling did not signifi-
cantly improve the classification effect of the logistic model under various conditions of 
a low positive rate and low sample size. This also shows that there are some differences 
between different resampling methods and imbalanced data treatment methods should 
be selected carefully to obtain better results. In addition, according to the results of this 
study, under various conditions of a low positive rate and low sample size, oversampling 
outperformed undersampling. Therefore, when it is necessary to adopt an imbalanced 
data processing method, we recommend using an oversampling method for processing.

This study also has some limitations. Although we thoroughly explored various imbal-
ance degrees and sample sizes, the imbalance degrees were analyzed based on a fixed 
sample size of 1000, 2000, and 5000, and the sample size analysis was conducted with a 
fixed positive rate of 15%. There may be some limitations in generalizing these findings 
to other data scenarios. Further research is needed to evaluate these relationships across 
a broader range of conditions. Additionally, our study focused exclusively on the classi-
cal logistic model, without considering other classification models such as discriminant 
analysis, decision trees, and support vector machines. These alternative models might 
produce different cut-off values for imbalanced proportions and sample sizes. Future 
studies should include multiple models to achieve more comprehensive and generaliz-
able results.

Conclusions
When the positive rate of a dataset reaches 15%, the logistic model’s classification per-
formance stabilizes, establishing this rate as the optimal cut-off for imbalance. Similarly, 
a sample size of 1500 ensures stable model performance, making it the recommended 
minimum sample size. For datasets with a positive rate below 10% and a sample size 
under 1200, oversampling techniques such as SMOTE and ADASYN are advised to 
achieve better balance and improve classification accuracy.
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