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Abstract 

Objectives: This study aims to develop an innovative approach for monitoring 
and assessing labor pain through ECG waveform analysis, utilizing machine learning 
techniques to monitor pain resulting from uterine contractions.

Methods: The study was conducted at National Taiwan University Hospital 
between January and July 2020. We collected a dataset of 6010 ECG samples 
from women preparing for natural spontaneous delivery (NSD). The ECG data was used 
to develop an ECG waveform-based Nociception Monitoring Index (NoM). The dataset 
was divided into training (80%) and validation (20%) sets. Multiple machine learning 
models, including LightGBM, XGBoost, SnapLogisticRegression, and SnapDecisionTree, 
were developed and evaluated. Hyperparameter optimization was performed using 
grid search and five-fold cross-validation to enhance model performance.

Results: The LightGBM model demonstrated superior performance with an AUC 
of 0.96 and an accuracy of 90%, making it the optimal model for monitoring labor 
pain based on ECG data. Other models, such as XGBoost and SnapLogisticRegression, 
also showed strong performance, with AUC values ranging from 0.88 to 0.95.

Conclusions: This study demonstrates that the integration of machine learning 
algorithms with ECG data significantly enhances the accuracy and reliability of labor 
pain monitoring. Specifically, the LightGBM model exhibits exceptional precision 
and robustness in continuous pain monitoring during labor, with potential applicability 
extending to broader healthcare settings.

Trial registration: ClinicalTrials.gov Identifier: NCT04461704.
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Introduction
Pain assessment is still a subjective task that requires accurate and objective techniques. 
The inadequacies of current pain measurement methods have an impact on medica-
tion management and patient care [1–7]. Physiological reactions are important markers 
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because pain activates autonomic pathways [3–6]. Physiological metrics like heart rate 
variability have been the main focus of research on nociception assessment [7–9]. 
Reductions in the amplitude of photoplethysmogram waveforms [10–14] and decreased 
variability in high-frequency heart rate bands [15–18] are noteworthy discoveries. Fur-
thermore, variations in skin conductance level and fluctuation count, which are indica-
tors of changes in electrogalvanic skin properties, indicate pain during and after surgery 
[8, 19–21]. A multi-parametric strategy that incorporates different nociception-related 
measures consistently performs better than single-parameter evaluations [22–25].

Studies that currently exist on nociception primarily assess physiological variables, 
such as heart rate variability [7–9]. Reduced high-frequency power in heart rate vari-
ability [10–13], decreased photoplethysmography waveform amplitude [14–18], and 
changes in electrogalvanic skin properties [8, 19–21] have all been linked to nociception. 
The superiority of a multi-parametric approach over individual measurements is becom-
ing more and more clear [22–25].

Under general anesthesia, perception of pain is influenced by a variety of factors. 
Reductions in high-frequency heart rate variability [15–18] and photoplethysmography 
waveform amplitude [10–14] have been associated with nociceptive responses. Changes 
in the electrogalvanic skin properties, as determined by the skin conductance level and 
fluctuation counts, are indicative of both intra- and post-operative pain [8, 19–21]. A 
combined analysis of these parameters yields a more comprehensive noception assess-
ment than single-parameter evaluations [22–25].

Recent research highlights the increasing accuracy of multi-parameter nociception 
assessment as a result of advancements in statistical modeling and data analysis [26] 
Deep learning approaches are very helpful to medical AI, particularly when developing 
algorithms for physiological waveform analysis [27–29]. Initiatives like PhysioNet and 
the Computers in Cardiology Challenges have made it easier to create predictive tools 
for acute hypotensive episodes [30]. The development of reliable machine-learning algo-
rithms for the analysis of ECG data with a focus on single-parameter pain assessment is 
hampered by the variability of pain in terms of its onset, duration, and intensity.

ECG is a perfect monitoring tool because labor pain during natural spontaneous deliv-
ery (NSD) is periodic and has a predictable onset and duration [31, 32]. Myocardial elec-
trical activity is reflected in ECG signals, which offer useful information in the frequency 
and time domains [33, 34]. This study utilized fast Fourier transform to analyze ECG 
waveform data from pregnant women undergoing normal spontaneous delivery (NSD) 
during both labor and non-labor periods. The Nociception Monitoring Index (NoM) 
exhibited significant variations during labor pain intervals, highlighting its potential util-
ity for real-time monitoring and assessment of labor pain intensity.

Methods
Data sources and study population

To provide a comprehensive overview of our research methodology, we have outlined 
the key workflow steps involved in the development and validation of our ECG-based 
labor pain prediction model: 1.Data Collection: ECG waveform data were gathered from 
women preparing for normal spontaneous delivery (NSD). 2.Feature Selection: Critical 
ECG features correlated with labor pain were selected to enhance model performance 
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(see Supplemental Figs. 1–8). 3.Data Splitting: The collected data were split into train-
ing and validation sets to ensure unbiased model evaluation. 4.Model Development: 
Machine learning models were developed using the selected features to monitor labor 
pain. 5.Model Evaluation: The performance of these models was evaluated using metrics 
such as AUC, accuracy, and precision. 6.Model Optimization: Hyperparameter optimi-
zation was conducted through grid search and cross-validation to improve model perfor-
mance. 7.Prediction and Validation: The final model was validated using the optimized 
parameters to ensure accurate labor pain prediction (see Fig. 1). This structured work-
flow ensures a systematic approach to model development and validation, enhancing the 
reliability and interpretability of the results.Our cross-sectional study, which focused on 
women getting ready for natural spontaneous delivery (NSD), was carried out at the Tai-
wan University Hospital (NTUH) from January to July 2020. Our research protocol was 
very strict and registered on ClinicalTrials.gov (number NCT04461704) in order to facil-
itate detailed data collection for in-depth statistical analysis. With the protocol identi-
fied as NSD-TW-01_Protocol_V1.1_20200317, the Taiwan University Hospital Research 
Ethics Committee awarded ethical approval (approval number 201910058RSC). All 
participants provided informed consent, in accordance with strict ethical guidelines. 
Women who were 20 years of age or older, in labor for more than 4 h, and who were 
categorized as having Physical Status I–II (American Society of Anesthesiologists) were 
eligible to participate in the study. Complete clinical records were necessary for eligi-
bility. Participants who used epidural anesthesia, had certain medical conditions, were 
taking certain medications, or had a BMI of more than 40 kg/m2 were excluded from 
the study. The investigator retained the right to withdraw a participant from the study 
if there were adverse events (AEs), protocol violations, cesarean sections, labor compli-
cations, or voluntary withdrawal. Twelve individuals made up the final cohort, which 
produced a dataset with 6,010 ECG data points. Optimizing the NoM algorithm was 
a major focus of our study. Considerable optimization and visualisation were required 
for this (see Supplemental Figs. 1–8). We used an 80:20 split to separate the dataset into 
subsets for training and validation in order to validate the algorithm.

Feature selection

A thorough feature selection process was essential to creating an accurate ECG-Based 
Monitoring of Labor Pain model. Our large dataset contained a variety of attributes, 
including ECG frequency domain data from different frequency bins and maternal 
demographics (e.g., Gravida & Para, Age, Gestational Age, Body Height, Body Weight, 

Fig. 1 Workflow Diagram for ECG-Based Labor Pain Monitoring. This figure illustrates the methodological 
workflow employed in this study for monitoring labor pain using ECG waveform analysis. The process consists 
of seven key steps: 1) Data Collection: Gathering ECG data from women pre-paring for natural spontaneous 
delivery (NSD); 2) Feature Selection: Identifying critical ECG features correlated with labor pain; 3) Data 
Splitting: Dividing the data into training and validation sets; 4) Model Development: Building machine 
learning models using the selected features; 5) Model Evaluation: Assessing model performance with metrics 
such as AUC, accuracy, and precision; 6) Model Optimization: Tuning model parameters through grid search 
and cross-validation; 7) Monitoring and Validation: Conducting final predictions and validating the optimized 
model’s performance to ensure accurate and reliable labor pain monitoring

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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and BMI). By concentrating on the most illuminating attributes, the feature selection 
process aimed to improve the monitoring model. The performance and interpretabil-
ity of the model were intended to be enhanced by this method. We identified a subset 
of critical attributes by carefully analyzing each attribute’s effect on the NoM in both 
training and testing datasets. These characteristics were essential to the model since they 
showed strong correlations with the Nociception Index. Their ability to accurately con-
vey important details pertinent to determining nociception levels during labor pain was 
the basis for their selection. This careful selection procedure made sure that our model 
could accurately and efficiently monitor labor pain using ECG data.

Class definition

During the first stage of our study, we created a systematic classification system to cat-
egorize the different levels of labor pain that parturient women felt during giving birth. 
With this framework, instances are classified into two distinct groups: "Labor Pain" 
(coded as 1) and "No Labor Pain" (coded as 0). This binary classification system is used. 
The analysis of the NoM, which is derived from ECG data, serves as the foundation for 
this classification. Supplemental Figs. 1 through 8 provide specific details on the NoM 
computation and its function in the classification process. A more targeted and effec-
tive assessment is made possible by this binary categorization, which reduces the com-
plex nature of labor pain into a form that is manageable for computational analysis. 
This makes it possible to distinguish clearly between labor pain and non-labor pain, as 
shown by the Nociception Index that is derived from the ECG. This simple yet powerful 
method is essential to our effort to precisely track and evaluate labor pain using ECG 
data analysis.

Data cleaning and machine learning model development

In developing our ECG-Based Monitoring of Labor Pain models, we employed the 
Auto AI feature within Watson Studio [35–37]. This advanced tool was instrumental 
in streamlining our data analysis process, aiding in crucial tasks such as data transfor-
mation, algorithm selection, and parameter optimization. Auto AI not only provided 
various model options but also ranked them, enabling us to choose the most effective 
model based on empirical results [38–40]. To evaluate the efficacy of these models, we 
partitioned our data into two segments: 80% for training and 20% for testing. This split 
was crucial for both testing the models under real-world conditions and assessing their 
overall performance. Our exploration included four distinct machine learning models: 
LightGBM [41–43], XGBoost Classifier [44–46], SnapDecisionTreeClassifier, and Sna-
pLogisticRegression [39, 40, 47]. A key aspect of enhancing the performance and effi-
ciency of these models was the strategic selection of the most relevant features from our 
dataset. This feature selection was integral to optimizing the models’ ability to accurately 
monitor and assess labor pain through ECG data.

Model evaluation

Our machine learning models’ Area Under the Curve (AUC) values were the primary 
metric used to assess their performance. One commonly accepted indicator of a mod-
el’s capacity for discrimination is its AUC. In addition to AUC, we used a number of 
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other metrics to provide a thorough evaluation. These comprised the log loss, average 
precision, recall, accuracy, precision, and F1 score. By applying each of these metrics to 
the testing dataset, a comprehensive assessment of the models within the framework of 
ECG-Based Monitoring of Labor Pain was made possible. We applied SHapley Addi-
tive explanations (SHAP) analysis to obtain more profound insights into the predictive 
factors and improve our comprehension of ECG-Based Monitoring of Labor Pain. We 
were able to determine the relative significance of various features within our developed 
Nociception Index thanks to this sophisticated analytical technique. Through the iden-
tification of important factors and their effects on labor pain monitoring, SHAP analy-
sis has provided invaluable insights. This knowledge is essential for developing focused 
interventions that are customized to each patient’s needs, moving the field closer to 
more individualized and successful ECG-based labor pain monitoring techniques.

Hyperparameter optimization

We used a rigorous approach to hyperparameter optimization in our quest to improve 
the performance of the machine learning models for ECG-Based Monitoring of Labor 
Pain. Our approach is consistent with previous studies where ECG data has been sys-
tematically applied using machine learning models and five-fold cross-validation to 
ensure robustness and generalizability of the classifiers. For instance, Desai et  al. [48] 
employed similar methods in their decision support system for arrhythmia beat clas-
sification, and Desai et  al. [49] further validated these techniques in their automated 
diagnosis of tachycardia beats. These studies underscore the efficacy of cross-validation 
in achieving reliable diagnostic performance in ECG-based applications. This required 
applying five-fold cross-validation in conjunction with grid search techniques. Numer-
ous models, such as LightGBM [41–43], XGBoost Classifier [44–46], SnapDecisionTree-
Classifier, and SnapLogisticRegression [39, 40, 47], were subjected to this procedure. 
During the training phase, our main goal was to optimize each model’s hyperparameters 
by using grid search to find the best combinations that would maximize the F1 score 
[50]. Table 1 displays the specific hyperparameter optimization settings for every model. 
The grid search technique made it easier to explore a predetermined range of hyperpa-
rameter values in a methodical manner. We were able to greatly increase the models’ 
accuracy and predictive efficiency in identifying labor pain using ECG data by repeat-
edly evaluating different combinations. The most efficient hyperparameter combinations 

Table 1 The hyperparameters of models for machine learning

The settings known as hyperparameters affect how machine learning models behave. The values mentioned above were 
applied to the models’ training and assessment processes

Model Hyperparameters Values

LightGBM n_estimators 368

learning_rate 0.036

XGBoost Classifier n_estimators 381

learning_rate 0.02

SnapDecisionTreeClassifier random_state 33

max_depth 3

SnapLogisticRegression random_state 33
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for every model were found through this iterative investigation, which improved overall 
performance and strengthened predictive abilities.

Model evaluation

We used a variety of performance metrics, such as Area Under the Curve (AUC), F1 
score, accuracy, precision, recall, average precision, and log loss, in our thorough assess-
ment of different machine learning models. We were able to thoroughly evaluate each 
model’s predictive power for ECG-Based Monitoring of Labor Pain outcomes thanks to 
its multifaceted approach. We were able to fully comprehend the predictive strengths 
and limitations of each model by examining these metrics.

We integrated SHapley Additive exPlanations (SHAP) into our analysis to further 
explore the underlying mechanisms of these predictions. Clarifying the variables influ-
encing the models’ predictions was made possible through the use of SHAP analysis. 
We were able to determine the most important components of our questionnaire and 
how they affected ECG-Based Monitoring of Labor Pain by using this technique. We 
were able to use SHAP to not only identify the most important questionnaire items, but 
also to comprehend how these items combined affected our models’ predictive accuracy. 
This degree of understanding is crucial for improving our machine learning models’ 
interpretability and our method for tracking labor pain.

Software and package applicating for modeling

We used Python, more especially the Python Software Foundation version 3.9, as the 
main platform for our machine learning studies in this work. We made substantial use 
of the open-source Scikit-learn toolkit, which is well-known for having a wide variety of 
tools and techniques. The following were the main elements we used in our investiga-
tion: (1) Data Splitting: We used the sklearn.model_selection.train_test_split module to 
split our dataset into training and testing sections. This random partition was essential 
for assessing how well the models performed on new, untested data. (2) LGBM Model: 
An effective Light Gradient Boosting Machine (LGBM) model was built using the light-
gbm.LGBMClassifier package. LGBM is especially well-suited for large-scale data appli-
cations due to its great performance and efficiency. (3) XGBoost Model: To create a 
reliable XGBoost model, we used the XGBoost Python module. This model has a solid 
reputation for being effective and having strong predictive capabilities. (4) SnapDeci-
sionTreeClassifier: The SnapDecisionTreeClassifier algorithm, part of the IBM Snap ML 
library, was implemented to create a decision tree classifier. (5) Logistic Regression: For 
binary classification tasks, we used the sklearn.linear_model.LogisticRegression module. 
Logistic regression, a widely adopted algorithm, played a significant role in our analy-
sis. To ensure the reliability of our results and to prevent overfitting, we adopted the 
sklearn.model_selection.StratifiedKFold module for stratified k-fold cross-validation. 
Our threshold for statistical significance was set at a p-value of 0.05.

Role of the funding source

We would like to explicitly acknowledge the specific organization that provided financial 
support for our study. It is crucial to clarify, nevertheless, that these donors were not 
involved in any part of the research process. This involves, but is not restricted to, the 
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design of the study, gathering and analyzing data, interpreting it, writing the article, and 
choosing whether to submit the work for publication. The rigorous division was meticu-
lously upheld to guarantee the complete autonomy of the study, thereby excluding any 
possible partiality or impact from the sponsoring organization. Keeping the transpar-
ency principle in place, all authors involved in this work had unrestricted access to the 
entire dataset. This access played a crucial role in protecting the research’s integrity and 
avoiding any improper impact on the study’s conclusions. The corresponding authors 
were ultimately responsible for submitting the paper. They were tasked with making sure 
the study adhered to the strictest ethical and scientific requirements. This duty included 
ensuring that all the work included in the paper was accurate and honest. The authors’ 
dedication to ensuring that the study complied with all applicable ethical guidelines and 
research protocols has strengthened the reliability and validity of our research findings.

Results
Description of patient population

In the context of this study, a frequency bin refers to a specific range of frequencies 
within the overall frequency spectrum of the ECG signals. These bins are formed by 
applying a Fourier Transform to the ECG data, converting it from the time domain to 
the frequency domain. The criteria for forming these bins include the sampling rate of 
the original ECG signal and the desired frequency resolution for analysis. Each bin cap-
tures the signal’s power within a particular frequency range, enabling detailed exami-
nation of the ECG’s frequency components. This approach allows us to systematically 
analyze the frequency domain characteristics of the ECG signals, which are crucial for 
monitoring labor pain. We thoroughly analyzed ECG frequency domain data in our 
work, focusing on a variety of frequency bins (0 to 59). This analysis covered features in 
the Training Set (n = 4,808) as well as the Testing Set (n = 1,202). Table 2 presents com-
prehensive patient demographic information. For every frequency bin, we gave average 
values and the standard deviations that went along with them, providing information 
about the distribution and variability of the data. For instance, we found that the Train-
ing Set’s average ± standard deviation (SD) in Frequency Bin 0 was 59.4 ± 80.6, while the 
Testing Set’s SD was 63.1 ± 77.7. The distribution and variability trend persisted in the 
other frequency bins. In addition, the NoM was evaluated, exhibiting a mean ± SD of 
31.9 ± 23.6 in the Training Set and 30.2 ± 35.8 in the Testing Set. With regard to labor 
pain monitoring, these results offer a thorough understanding of the features in each 
frequency bin and their implications. They also draw attention to the variability and dis-
tribution patterns within the ECG data.

Model prediction ability

We used a number of important measures to analyze our prediction models’ perfor-
mance in order to fully determine their efficacy. The area under the curve (AUC) values 
of the models were used as a primary metric for evaluating their discriminative skills. 
The LightGBM model exhibited remarkable performance, as evidenced by its highest 
AUC score of 0.96 (see Fig.  2A), indicating its potent ability to discriminate between 
various classes. The XGBoost Classifier, which had an AUC of 0.95, came in second 
(Fig. 2A). Not to mention, the SnapLogisticRegression and SnapDecisionTree Classifier 
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Table 2 Nociception index and ECG frequency domain data descriptive analysis

Characteristics Training Set Testing Set
(n = 4,808) (n = 1,202)

Frequency Domain Data (ECG)
 Bin Frequency 0 59.4 ± 80.6 63.1 ± 77.7

 Bin Frequency 1 58.4 ± 81.5 64.7 ± 76.5

 Bin Frequency 2 59.0 ± 81.0 65.3 ± 76.2

 Bin Frequency 3 58.5 ± 81.5 62.6 ± 78

 Bin Frequency 4 57.9 ± 81.9 62.2 ± 78.9

 Bin Frequency 5 57.3 ± 82.4 62.5 ± 78.3

 Bin Frequency 6 58.1 ± 82.0 64.9 ± 76.7

 Bin Frequency 7 58.5 ± 81.3 64.3 ± 76.5

 Bin Frequency 8 59.3 ± 80.4 65.2 ± 76.2

 Bin Frequency 9 58.8 ± 81 64.6 ± 76.6

 Bin Frequency 10 57.8 ± 81.9 65.7 ± 75.9

 Bin Frequency 11 59.2 ± 80.8 64.3 ± 76.1

 Bin Frequency 12 59.1 ± 80.8 64.9 ± 76.4

 Bin Frequency 13 57.9 ± 82 64.7 ± 76.3

 Bin Frequency 14 58.8 ± 81.2 63.8 ± 77.3

 Bin Frequency 15 59.5 ± 80.7 63.3 ± 77.6

 Bin Frequency 16 59.9 ± 80 63.4 ± 77.8

 Bin Frequency 17 59.7 ± 80.3 63 ± 77.8

 Bin Frequency 18 59.7 ± 80.3 63.2 ± 77.8

 Bin Frequency 19 57.9 ± 81.6 63.5 ± 77.3

 Bin Frequency 20 59.9 ± 80.2 66.1 ± 75.6

 Bin Frequency 21 59.9 ± 80.3 66.4 ± 75.2

 Bin Frequency 22 60 ± 80.4 65.9 ± 75.8

 Bin Frequency 23 58 ± 81.9 63.9 ± 76.8

 Bin Frequency 24 58.7 ± 81.5 62.2 ± 78.6

 Bin Frequency 25 58.3 ± 81.7 62.1 ± 78.7

 Bin Frequency 26 59.6 ± 80.6 60.8 ± 79.5

 Bin Frequency 27 59.9 ± 80.2 60.3 ± 79.9

 Bin Frequency 28 59.5 ± 80.4 61.3 ± 79.4

 Bin Frequency 29 58.5 ± 81.4 59.4 ± 80.8

 Bin Frequency 30 58.8 ± 81.3 61 ± 79.6

 Bin Frequency 31 58.4 ± 81.4 60.9 ± 79.6

 Bin Frequency 32 58.2 ± 81.4 60.4 ± 80.3

 Bin Frequency 33 59.1 ± 81 60.7 ± 79.8

 Bin Frequency 34 59.4 ± 81 61.2 ± 79.4

 Bin Frequency 35 59.6 ± 80.7 60 ± 80.1

 Bin Frequency 36 59.4 ± 80.7 62.6 ± 78.6

 Bin Frequency 37 59.9 ± 80.6 62.4 ± 79.3

 Bin Frequency 38 60.8 ± 79.8 59.7 ± 81.2

 Bin Frequency 39 59.6 ± 80.9 59.1 ± 81.3

 Bin Frequency 40 57.5 ± 82.4 62 ± 79.1

 Bin Frequency 41 57.8 ± 82.5 62.4 ± 78.3

 Bin Frequency 42 59.2 ± 81.4 64.9 ± 75.8

 Bin Frequency 43 58.3 ± 81.9 65.1 ± 75.9

 Bin Frequency 44 57.9 ± 82.5 64.9 ± 76.1

 Bin Frequency 45 58.5 ± 82.1 63.3 ± 77.6

 Bin Frequency 46 59.3 ± 81.4 61.6 ± 78.7
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Table 2 (continued)

Characteristics Training Set Testing Set
(n = 4,808) (n = 1,202)

 Bin Frequency 47 58.9 ± 81.5 60 ± 79.7

 Bin Frequency 48 59.7 ± 80.7 60.5 ± 79.1

 Bin Frequency 49 60 ± 80.7 60.6 ± 79.8

 Bin Frequency 50 59.2 ± 81.2 62.5 ± 77.9

 Bin Frequency 51 59.1 ± 81.3 62.1 ± 78.2

 Bin Frequency 52 59.1 ± 81 61 ± 79.1

 Bin Frequency 53 58 ± 81.9 63 ± 77.5

 Bin Frequency 54 58.8 ± 81.1 65.3 ± 75.5

 Bin Frequency 55 59.9 ± 80.4 63.9 ± 76.5

 Bin Frequency 56 59 ± 80.9 63.9 ± 76.9

 Bin Frequency 57 59.4 ± 80.7 65.4 ± 75.3

 Bin Frequency 58 59.1 ± 80.9 64.1 ± 76.4

 Bin Frequency 59 58.3 ± 81.6 64 ± 76.6

Index of Nociception
 NoP 31.9 ± 23.6 30.2 ± 35.8

The ECG results are displayed as mean ± standard deviation when expressed in frequency domain data. The Xth frequency 
bin, or frequency bin X, is the result of analyzing ECG waveforms using the Fast Fourier Transform (FFT). NoP: Index of 
Nociception

Fig. 2 A Characteristic curves for receiver operations. and (B) Assessing Machine Learning Models’ 
Performance. For every machine learning model, performance metrics such as AUC (Area Under the Curve), 
F1 Score, Accura-cy, Specificity, Sensitivity, and Precision were evaluated. An asterisk (*) denotes the LightGBM 
model’s AUC value
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models performed admirably, with AUC values of 0.92 and 0.88, respectively (Fig. 2A). 
Our evaluation also took into account the models’ overall accuracy, which was quite 
important. With an accuracy score of 0.9, LightGBM fared better than the others in this 
regard (Fig. 2B). With accuracy ratings of 0.88, 0.86, and 0.85, respectively, the XGBoost 
Classifier, SnapDecisionTree Classifier, and SnapLogisticRegression came next (Fig. 2B). 
The models’ ability to accurately detect positive cases is measured by sensitivity, and 
LightGBM and the SnapDecisionTree Classifier both achieved the highest rate of 0.9 
(Fig. 2B). Sensitivity ratings of 0.87 and 0.84 were obtained by the XGBoost Classifier 
and SnapLogisticRegression, respectively (Fig.  2B). Both the LightGBM and XGBoost 
Classifiers achieved the maximum precision, which is a measure of the accuracy of pos-
itive predictions, with a precision of 0.87 (Fig.  2B). With precision scores of 0.84 and 
0.83, respectively, SnapLogisticRegression and SnapDecisionTree Classifier came next 
(Fig. 2B). Both LightGBM and XGBoost Classifier scored 0.88 (Fig. 1B), indicating con-
sistent performance according to the F1 score, a parameter that strikes a compromise 
between precision and sensitivity. SnapLogisticRegression scored 0.84 and SnapDeci-
sionTree Classifier 0.87 on the F1 score (Fig.  2B). We decided to designate the Light-
GBM model as the "champion" model based on these thorough assessments. It was most 
suited for our ECG-Based Monitoring of Labor Pain study since it showed excellent dis-
criminative skills and competitive scores on a range of performance criteria.

Feature Importance Ranks and SHAP values in the LGBM model

In the study, the Light Gradient Boosting Machine (LGBM) model’s feature impor-
tance was assessed using SHapley Additive exPlanations (SHAP) values. This analysis 
revealed the most influential traits for the model’s predictions, with the NoM and vari-
ous frequency bins being the top features (Fig. 3A). The SHAP summary plot provides 

Fig. 3 Crucial Clinical Characteristics for Labor Pain Monitoring Based on ECG. A Features’ Significance Plot 
of several clinical variables utilizing the Nociception Monitoring Index (NoM) and Machine Learning for 
ECG-Based Monitoring of Labor Pain. B The SHAP Summary Plot offers a concise synopsis of the key clinical 
characteristics that influence the Nociception Monitoring Index (NoM) and ECG-Based Monitoring of Labor 
Pain
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a clear visual representation, illustrating how these features impact the model’s predic-
tions, thereby enhancing the interpretability of the LGBM model in assessing labor pain 
(Fig. 3B).

Explanation of the ML model at the individual level

The study employs LIME and SHAP plots to elucidate individual-level predictions of the 
machine learning model, focusing on the NoM for ECG-based labor pain monitoring. 
Two representative patient cases are analyzed in Fig. 4 using a LIME plot, which dem-
onstrates the probability of experiencing labor pain and the influence of each variable on 
this likelihood. Case 1 shows a low labor pain probability (12%), while Case 2 indicates a 
high probability (98%). Variables negatively and positively correlated with labor pain are 
color-coded for clarity, with specific frequency bins and NoM ranges crucial in deter-
mining the predicted labor pain probability.

Discussion
Our research set out to revolutionize the monitoring and prediction of labor pain by 
utilizing a special blend of advanced machine learning techniques and comprehensive 
medical data. As shown in Supplemental Table 1, the first phase of our clinical research 
comprised collecting ECG and tocometry data from four laboring women. These data-
sets were painstakingly collected by us, who converted the 512  Hz ECG signals into 
frequency domain data. Our study’s exact documentation of pain episodes during child-
birth was a critical component. Using a visual analog scale (VAS), a nurse meticulously 
recorded the timing of the uterine muscle contractions and the corresponding Nocicep-
tion levels. This first stage set the stage for more modeling and analysis. The intricate 
relationship between uterine contractions and Nociception was thoroughly investigated 
in our study, and distinct flat (TFlat (i)) and peak (TPeak (i)) phases were identified. In 
order to determine the ECGPeak (i) and ECG_Flat (i) during the peak and flat phases of 
contractions, we examined 10,000 ECG signals, each lasting 20 s. In order to improve 
our understanding of labor pain, we set out to uncover patterns that illustrate the con-
nection between uterine contractions and Nociception. In both the Training and Testing 
Sets, we concentrated on the thorough analysis of ECG frequency domain data spanning 
Frequency Bins (0 to 59). The distribution and variability inside each frequency bin were 
better understood thanks to this analysis, which also offered crucial information for the 
next phases of our investigation. Our study’s evaluation of our predictive models’ per-
formance was a crucial component. We evaluated these models according to important 
indicators to learn more about their efficacy. With an outstanding AUC score of 0.96*, 
the LightGBM model stood out and demonstrated its superior discriminating power. 
The XGBoost Classifier, SnapDecision-Tree Classifier, and SnapLogisticRegression fol-
lowed soon behind, all of which showed impressive AUC values that confirmed the effi-
cacy of our modeling strategy.

Our study examined the finer points of labor pain monitoring and prediction, empha-
sizing important performance indicators such as F1 score, accuracy, sensitivity, and pre-
cision. These metrics provided insight into the distinct advantages and disadvantages of 
every predictive model in addition to serving as indicators of the overall success of the 
model. Among the evaluated classifiers, the LightGBM model demonstrated the highest 
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accuracy and AUC score, establishing itself as the optimal model for ECG-based labor 
pain monitoring. With an accuracy of 90% and an AUC of 0.96, the LightGBM classi-
fier outperformed other models, such as XGBoost, SnapLogisticRegression, and Snap-
DecisionTree, making it particularly suitable for precise and reliable pain assessment in 
clinical settings. This performance is on par with existing approaches like the Analgesia 
Nociception Index (ANI) and PMD-200, reinforcing the potential clinical utility of our 
method. The importance of the NoM as a critical component in ECG-based labor pain 
monitoring was a significant finding in our study. The consideration of SHAP (SHapley 
Additive exPlanations) values provided more support for this conclusion. SHAP values 
illustrated the significant significance that NoM played in this situation by providing a 
visual depiction of how various factors affected the predictive models. We went beyond 
a broad model analysis and conducted analysis at the individual level. We were able to 
comprehend the intricate relationship between the NoM and labor pain estimates based 
on electrocardiograms (ECGs) thanks to this method. Advanced analytical tools such as 
SHAP plots and LIME (Local Interpretable Model-agnostic Explanations) were utilized 
to provide comprehensive insights into the variables influencing the likelihood of labor 
pain in individual patients. These graphic aids clarified the fundamental dynamics of 
labor pain forecasts, highlighting the significance of NoM in addition to other pertinent 
variables. Our method goes beyond mere forecasting. Our goal was to change the way 
that mothers are cared for by developing an all-inclusive, user-friendly pain monitoring 
system. Our objective was to improve the quality of maternal healthcare by raising the 
bar for pain monitoring and prediction by identifying crucial pain indicators and offer-
ing a comprehensive solution.

The paper "Artificial Intelligence-Enhanced Electrocardiography in Cardiovascular 
Disease Management" offers a thorough analysis of how AI will improve ECG technol-
ogy in the future to help diagnose cardiovascular disorders in high-risk populations 
[51]. The impact on clinical decision-making for patients with cardiovascular diseases 
is explored by the writers. Even though AI-ECG integration is still in its infancy, further 
clinical research will soon determine its actual worth. Before being a fundamental com-
ponent of medical practice, AI-ECG integration requires extensive validation and verifi-
cation, much as other medical technologies. The scientists are nevertheless upbeat about 
AI-ECG’s revolutionary potential to change clinical treatment. Notably, there are very 
few studies that use a single, straightforward ECG parameter to detect or correlate with 
other vital indicators, such "pain sensation" in our work, and that incorporate machine 
learning and deep learning models. Many AI-driven research projects have recently 
focused on pain treatment, such as predicting the dosage of opioids and identifying 
patients who would benefit from preoperative consultation. This highlights how special 
and important our study is to adding to the corpus of knowledge in this field [52–56].

In a pioneering work, brain responses to painful and nonpainful heat stimuli were 
analyzed using functional magnetic resonance imaging (fMRI) and machine learning 
approaches [57]. This work represents a major breakthrough in the field because it dem-
onstrated that a thorough machine learning analysis of whole-brain scans can detect 
pain more accurately than more conventional approaches that concentrate on certain 
brain regions linked to nociception. This result emphasizes how machine learning can 
improve pain detection over traditional imaging methods. Furthermore, the study of 
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pain evaluation encompasses more than only imaging technology. One noteworthy 
example is the creation of the Nociception Level (NoL) index by Ben-Israel et al. [52], 
who used machine learning to examine data from skin conductance waveforms and pho-
toplethysmograms obtained from 25 patients undergoing elective surgery. Within the 
study itself, a novel and well validated methodology was used to create this NoL index. 
An additional degree of complexity to the assessment of pain was introduced by the 
technique, which combined indices of stimulation and analgesia and included an arbi-
trary rating of intraoperative noxious stimuli [58]. Together, this research demonstrate 
how versatile and effective machine learning is in improving our knowledge of and abil-
ity to control pain. The capacity of machine learning to analyze intricate datasets from 
several sources creates new avenues for pain perception research and provides more 
precise and subtle techniques for pain treatment.

In order to anticipate patient reactions to postoperative opioid therapy for acute pain, 
machine learning has been used to evaluate electroencephalography (EEG) signals; how-
ever, this approach has only been able to predict with an accuracy of 65% [56]. In an 
additional attempt to predict opioid dose, Olesen et al. [55]  examined single-nucleotide 
polymorphisms (SNPs) in 1,237 cancer patients; however, no meaningful relationships 
were discovered. This research highlight the intricacies and difficulties associated with 
assessing and managing pain, especially when it comes to creating an ideal model in the 
face of irregular pain onset and the challenge of obtaining sufficient data for efficient AI 
learning. Numerous methods, including uterine ergometers, intrauterine pressure cath-
eters (IUPC), and electromyography (EMG), commonly referred to as electrohysterog-
raphy (EHG), have been used in the field of uterine activity monitoring. EHG is used 
by a US-patented obstetric analgesia system to identify the beginning of contractions 
[59]. This method is essential for directing the administration of analgesics and compre-
hending the connection between medication analgesia and pain generated by contrac-
tions. Expanding upon this, our model draws inspiration from the obstetric analgesia 
system and aims to forecast the onset and severity of pain caused by contractions. Our 
approach computes the rhythm of pain feeling using AI-driven analysis in an effort to 
precisely forecast when pain will occur. Real-time pain scoring and proactive pain man-
agement are made possible by this method, which has the potential to revolutionize pain 
management techniques [60]. Our model is superior to earlier devices because it can 
provide immediate information and forecast the start of pain, allowing for prompt pain-
preventive measures. earlier devices depended on heart rate variability (HRV) analysis, 
which had limited clinical applicability [61]. For instance, respiratory sinus arrhythmia 
is used by the Analgesia Nociception Index (ANI) to analyze the parasympathetic com-
ponent of autonomic nervous system activity [30]. On the other hand, our strategy pro-
vides a more direct and possibly more efficient way to diagnose and treat pain.

Innovations in pain monitoring technology have produced devices such as PMD-
200™, ANI I, and ANI II. All these gadgets have significant drawbacks but also special 
features and benefits. Their predictive skills have been acknowledged in worldwide stud-
ies, underscoring their usefulness in therapeutic settings [62]. The PMD-200™ stands 
out from the others because to its intuitive interface and incorporation of the propri-
etary NoL® technology. This method gathers a range of physiological signals using a 
noninvasive finger probe equipped with sensors. AI algorithms are employed to process 
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and analyze several physiological characteristics connected to pain, such as heart rate 
(HR), heart rate variability (HRV), skin conductance level (SCL), pulse wave amplitude 
from photoplethysmography, skin conductance variations, and skin temperature [63]. 
Like this, our model measures parasympathetic tone by utilizing the transient and fast 
variations in HRV brought about by each respiratory cycle, whether it be artificial or 
spontaneous. Even while our study offers fresh and insightful perspectives, it’s important 
to recognize some limitations. First off, while our investigation using machine learning 
methods to correlate ECG waveforms and uterine contractions reveals an association, it 
does not ensure high prediction accuracy for the onset of uterine contractions. Larger 
datasets and more algorithms could be useful in future study to increase prediction 
accuracy. Second, the accuracy of contraction pain as a predictor of uterine contractions 
is not thoroughly examined in our study. The effect of strong, maybe non-pain-related 
muscle uterine contractions on the ECG waveform is a serious concern. This phenome-
non was initially observed in 1979 and implies that exercise-related factors can influence 
different ECG waveform characteristics in addition to heart rate [64]. When interpreting 
ECG data in relation to uterine contractions and pain evaluation, this intricacy needs to 
be taken into an account.

The authors of the study concluded that although the observed waveform changes may 
be related to pain, it is unclear if these changes are caused by pain or by major physio-
logical changes in the cardio-vascular system following uterine contractions. We suggest 
a parallel study that uses Principal Component Analysis (PCA) to compare data before, 
during, and after uterine contractions and contraction-induced pain in order to address 
this uncertainty. The study will investigate ECG waveforms from the same NSD patients. 
A crucial question is whether discomfort from contractions accurately depicts other 
types of pain. A similar study that verifies our machine learning approach in patients 
recovering from postoperative surgical procedures can address this problem. We want 
to conduct two more experiments in other study populations undergoing procedures 
involving anesthesia or analgesic medicines to further validate our novel technique of 
using regular, cyclic uterine contraction pain for pain algorithm discovery. It’s important 
to remember that determining the difference between acute and chronic pain can be dif-
ficult when taking the affective component of pain into account. Moreover, factors such 
as patient anatomy and sensor location may affect tocometry results. Furthermore, this 
element is made more problematic by the subjective nature of pain perception in partu-
rient women.

Although the feeling of pain is subjective by nature, this study seeks to find a bio-
marker that establishes a relationship between an objective indicator and the subjective 
perception of pain, as do many others in the area. Women can perceive pain differently, 
for example, some may find labor to be less difficult than others. In this work, we go 
beyond the simple evaluation of nociception and toward a more objective assessment of 
conscious pain. The Visual Analog Scale (VAS) pain score was used to connect tocom-
etry data on uterine contractions with patients’ self-reported pain levels to improve the 
study design. The investigating nurses were carefully informed of this correlation, and 
it was carefully recorded. Regarding the application of this: (1).Improving the Accuracy 
of Pain Assessment: These results highlight the necessity for more accurate pain assess-
ment techniques that capture a thorough comprehension of pain. We can increase the 



Page 17 of 20Chu et al. BioData Mining           (2024) 17:32  

validity of our suggested pain algorithm and its suitability for a range of clinical situ-
ations by carrying out more research in different demographics. (2).Progressing Pain 
Management: The methodical approach taken by this research to objectively measure 
pain has the potential to completely transform pain management techniques. The rela-
tionship between tocometry and VAS pain scores helps us better target pain therapies, 
which in turn improves patient outcomes.

It is important to recognize the limitations of this study in order to fully comprehend 
its scope and its consequences. First off, while the results of our analysis, which concen-
trated on the relationship between machine learning algorithms, are encouraging, more 
research with bigger datasets and more algorithms is necessary to improve the precision 
and resilience of uterine contraction prediction. Second, it’s still difficult to distinguish 
between ECG waveform alterations brought on by pain and those brought on by physi-
ological changes brought on by uterine contractions. Further investigation using PCA 
and comparison of ECG data prior to, during, and following contractions may provide 
light on this matter.

Conclusion
The study successfully leveraged machine learning algorithms to enhance the moni-
toring of labor discomfort associated with uterine contractions through the analysis 
of ECG waveforms. This innovative technique, which extends beyond labor pain, pro-
vides a precise and user-friendly approach for real-time pain monitoring across vari-
ous clinical settings. The model’s 90% accuracy in assessing pain is on par with other 
approaches currently in use, such as ANI or PMD-200. Subsequent investigations 
ought to examine its applicability to other demographics and categories of pain. By 
combining factual physiological data with subjective pain experiences, this approach 
represents a breakthrough in pain monitoring and has the potential to transform clin-
ical procedures and improve patient outcomes.
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