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Abstract
Background In recent years, significant morbidity and mortality in patients with 
severe inflammatory bowel disease (IBD) and cytomegalovirus (CMV) have drawn 
considerable attention to the status of CMV infection in the intestinal mucosa 
of IBD patients and its role in disease progression. However, there is currently no 
high-throughput sequencing data for ulcerative colitis patients with CMV infection 
(CMV + UC), and the immune microenvironment in CMV + UC patients have yet to be 
explored.

Method The xCell algorithm was used for evaluate the immune microenvironment of 
CMV + UC patients. Then, WGCNA analysis was explored to obtain the co-expression 
modules between abnormal immune cells and gene level or protein level. Next, three 
machine learning approach include Random Forest, SVM-rfe, and Lasso were used to 
filter candidate biomarkers. Finally, Best Subset Selection algorithms was performed to 
construct the diagnostic model.

Results In this study, we performed transcriptomic and proteomic sequencing on 
CMV + UC patients to establish a comprehensive immune microenvironment profile 
and found 11 specific abnormal immune cells in CMV + UC group. After using multi-
omics integration algorithms, we identified seven co-expression gene modules 
and five co-expression protein modules. Subsequently, we utilized various machine 
learning algorithms to identify key biomarkers with diagnostic efficacy and constructed 
an early diagnostic model. We identified a total of eight biomarkers (PPP1R12B, CIRBP, 
CSNK2A2, DNAJB11, PIK3R4, RRBP1, STX5, TMEM214) that play crucial roles in the 
immune microenvironment of CMV + UC and exhibit superior diagnostic performance 
for CMV + UC.

Conclusion This 8 biomarkers model offers a new paradigm for the diagnosis and 
treatment of IBD patients post-CMV infection. Further research into this model will 
be significant for understanding the changes in the host immune microenvironment 
following CMV infection.
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Background
In North America, Oceania, and numerous European countries, inflammatory bowel 
disease (IBD), comprising ulcerative colitis (UC) and Crohn’s disease (CD), is a prevalent 
condition.IBD rates have been increasing in Asia, South America, and Africa in recent 
years [1–3]. IBD patients may experience a decrease in their quality of life due to various 
issues such as frequent hospital stays, side effects from medications, surgeries, and stoma 
formation [4]. Therefore, IBD patients require long-term and systematic treatment. The 
exact cause of IBD is still not completely understood, but it is commonly thought to be 
a developing long-lasting intestinal condition influenced by ongoing environmental, 
genetic, infectious, and immunological factors [5]. Compared to the research on the 
role of gut microbiota in IBD pathogenesis, the involvement of gut viruses in IBD has 
recently garnered attention [6, 7]. Epstein-Barr virus (EBV) and cytomegalovirus (CMV) 
infections are prevalent and usually contracted during childhood [8]. Researchers have 
shown significant interest in the relationship between EBV and CMV infections in the 
intestinal mucosa of IBD patients and their impact on disease advancement. Reported 
frequencies of CMV infection in severe acute UC range from 21 to 34%, with refractory 
cases showing frequencies of 33–36% [9, 10]. EBV infection rates are even higher, rang-
ing from 33 to 81% [11, 12]. While there is a connection between CMV or EBV infection 
and severe colitis, the link between these viruses and IBD is not as straightforward as 
with other factors. The involvement of these viruses in IBD, whether as participants or 
passive observers, continues to be a subject of ongoing debate.

Human CMV, a type of β-herpesvirus and also referred to as human herpesvirus 5 
(HHV-5), is the largest virus in the human herpesvirus group, with widespread prev-
alence in the population. The infection rate varies by country and region, reaching 
70–100%, and 40–100% of adults are infected before the age of 40 [13, 14]. CMV has a 
double-stranded linear DNA genome approximately 235  kb in length, encoding about 
165 proteins. CMV gene products are present in various human malignancies, typically 
associated with tumor cells and the tumor vasculature [15]. CMV can infect multiple 
organs and persist in various adult stem cells, inducing the expression of latency-associ-
ated CMV proteins, promoting stem cell proliferation, causing genomic instability, and 
leading to immune evasion [15]. Healthy hosts are usually asymptomatic during primary 
CMV infection, although mild symptoms such as fever and lymphadenopathy may occur 
[16]. However, like many other herpesviruses, CMV remains latent in the host and can 
reactivate later in life. In immunocompromised patients, it may cause severe systemic 
diseases such as pneumonia, hepatitis, and colitis [17]. Patients with IBD may experience 
reactivation even while undergoing immunosuppressive treatment [18]. The gastrointes-
tinal tract, especially the colon, is commonly affected during CMV reactivation, leading 
to acute colitis. The link between CMV and IBD has been recorded in publications dat-
ing back to 1961 [19]. However, the nature of this relationship remains hotly debated. 
Early studies suggested that CMV infection might perpetuate IBD, but it is now gener-
ally accepted that CMV colitis predominantly occurs in patients with preexisting IBD 
[9]. Patients with severe comorbid IBD and CMV infection exhibit significantly higher 
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morbidity and mortality rates [18, 20]. For instance, compared to colitis patients without 
CMV, those with concurrent IBD and CMV infection require more surgical interven-
tions and have higher in-hospital mortality rates [18]. Additionally, studies in UC sug-
gest that CMV could cause acute colitis that does not respond to steroids and worsen 
the prognosis of the disease [21–23]. The prevalence of CMV colitis in IBD patients is 
estimated to be 0.53–4% [18]. Yet, in individuals with severe steroid-resistan, the esti-
mated frequency is believed to be significantly greater, approximately 36% [18]. Indeed, 
routine histology and immunohistochemistry (IHC) reveal that approximately 11.7% of 
colectomy specimens from adult UC patients are CMV-positive [24].

Immunosuppression plays a crucial role in increasing the risk of CMV colitis in IBD 
patients. In UC patients, the use of high-dose systemic corticosteroids for more than 
one month is an independent risk factor for CMV-associated colitis [25]. Other stud-
ies have also confirmed the association of corticosteroids and other immunomodula-
tors (thiopurines and methotrexate) with CMV-positive IBD [26, 27]. According to the 
2019 guidelines from the American Gastroenterological Association (AGA), it is rec-
ommended that adults with acute severe UC undergo sigmoidoscopy to assess for the 
presence of CMV colitis [28]. Likewise, the European Society for Paediatric Gastroenter-
ology Hepatology and Nutrition (ESPGHAN) consensus statement advises that children 
with steroid-refractory IBD should undergo sigmoidoscopy and pathological assessment 
for CMV infection [29]. The seropositivity rate of CMV in IBD patients varies with age: 
38% in children under 10 years, 22-25% in children aged 11–19 years, and nearly 90% 
in adult IBD patients [30, 31]. Currently, the infection rate of CMV in individuals with 
IBD shows substantial variation because of discrepancies in methodologies or diagnostic 
techniques. Particularly in China, research on viral infections in the intestinal mucosa 
of patients with IBD is limited. The specific mechanisms by which CMV infection exac-
erbates IBD progression remain underexplored, and currently, there are no sequencing 
data targeting IBD patients following CMV infection. Thus, this study aims to character-
ize the immune microenvironment of IBD patients with CMV infection, further explore 
immune-related molecular markers in these patients using high-throughput sequencing 
data, identify new biomarkers, and provide novel insights and strategies for the diagno-
sis and treatment of CMV-positive IBD.

Methods
Data sources

Ulcerative colitis patients with CMV infection (CMV + UC) and without CMV infec-
tion (CMV- UC), and normal control with CMV infection (CMV + N) and without CMV 
infection (CMV- N), were pathologically confirmed after colonoscopy from January 
2021 to April 2023 in the Department of Pathology of the First People’s Hospital of Yun-
nan Province. Intestinal tissue from the above 4 groups (3 patients per group) were col-
lected and then performed transcriptome and proteome sequencing. Ethical approval 
for this study was obtained from the Ethics Committee of the First People’s Hospital of 
Yunnan Province (KHLL2024-KY199). In addition, all patients or their legal guardians 
who participated in the study provided written informed consent. The research was car-
ried out following the guidelines of the Helsinki Declaration (2013 Update).
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Transcriptome

Sample extraction and pre-processing were performed as previously described [32]. 
Afterward, TrimGalore and FastQC software were used to perform quality control and 
preprocessing on raw data of ulcerative colitis patients. After removing the adapter and 
ploy-N reads from raw data, clean data (clean reads) were obtained. Using STAR soft-
ware, paired-end clean reads were aligned to the reference genome (hg38), and then the 
expression counts were calculated. The RPKM expression value of each gene was cal-
culated based on the count number. Here, we obtained the expression levels of 58,375 
transcripts for further analysis.

Proteome

FFPE samples of 12 patients used for proteome sequencing were obtained from the sam-
ple bank of the Department of Pathology, First People’s Hospital of Yunnan Province. 
Samples were then underwent total protein extraction by the following procedure: Ini-
tially, the samples were dewaxed with octane and hydrated using graded ethanol. Fol-
lowing hydration, they were washed twice with phosphate-buffered saline (PBS). After 
removing the PBS, an appropriate amount of protein lysis buffer (4% SDS, 100 mM Tris) 
was added. The samples were then incubated at 95  °C for 10  min, shaken, and mixed 
thoroughly, followed by sonication for 5 min in an ice water bath. The samples were de-
crosslinked at 95 °C for 60 min, then reduced by adding an appropriate amount of TCEP 
and alkylated with CAA at 95 °C for 5 min. The samples were centrifuged at 12,000 g for 
15 min at 4 °C, after which the supernatant was collected. To the supernatant, four times 
its volume of -20 °C pre-cooled acetone was added, and the sample was precipitated at 
-20 °C for at least 4 h. This was followed by centrifugation at 12,000 g for 15 min at 4 °C. 
The resulting precipitate was collected air-dried and then dissolved in a protein solution 
containing 8 M urea and 100 mM triethylammonium bicarbonate (TEAB) at pH 8.5. The 
extracted total protein was quantified using the Bradford assay. Samples that passed the 
protein quality check were used to generate raw data for mass spectrometry using the Q 
Exactive™ HF-X mass spectrometer in data-independent acquisition (DIA) mode.

The mass spectrometry downlink data were used for protein sequence identification 
based on the Uniport database using Spectronaut-Pulsar (Biognosys) software. The 
search parameters were set as follows: 10 ppm mass tolerance for the precursor ion 
and 0.02 Da mass tolerance for the production. A maximum of two missed sites were 
allowed. Only peptide spectral matches (PSMs) with more than 99% confidence were 
identified as PSMs. Identified proteins contained at least one unique peptide. Then, 
the DIA data were imported into Spectronaut (Biognosys) software to generate a DDA 
library and extract ion-pair chromatographic peaks. Ions were matched and peak areas 
were calculated for peptide characterization and quantification. The iRT was added to 
the samples to correct the retention time, and the precursor ion Q cut-off value was set 
at 0.01. A total of 4564 proteins were obtained for further analysis.

Immune microenvironment analysis

The xCell algorithm was used for evaluate the immune microenvironment of these 
patients. The method can assess the level of infiltration of up to 64 cell types, includ-
ing multiple adaptive and innate immune cells, haematopoietic progenitor cells, epithe-
lial cells and extracellular matrix cells, based on gene expression data. The expression 
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profiles of immune cells and stromal cells were first extracted from the bulk gene expres-
sion data as cell Signatures. Enrichment scores for the samples on each cell type Sig-
nature were calculated using ssGSEA. The enrichment scores for each cell type were 
converted to the corresponding cell type scores using a fitting formula. Finally, xCell 
performed a compensating correction for scores of closely related cell types, reducing 
the effect of possible covariance/correlation between different cell types.

Differential expression analysis

The comparison of gene level between the CMV + IBD and control groups (CMV + IBD 
vs CMV- IBD, CMV + IBD vs CMV + N, CMV- IBD vs CMV- N, CMV + N vs CMV- 
N) were conducted with the calculation of the ‘limma’ R package. The differentially 
expressed genes (DEGs) were detected based on an absolute log2 fold change greater 
than or equal to 0.585 and an adjusted P-value less than 0.05.

We also screened for immune cells with abnormal abundance in these groups using an 
adjusted P-value threshold of under 0.05.

On the other hand, the differentially expressed proteins (DEPs) in these groups were 
determined by an adjusted P-value below 0.05 and an absolute log2 fold change of at 
least 0.263.

Weighted correlation network analysis (WGCNA)

The co-expression networks of mRNA expression level and protein expression level in 
CMV + IBD was built using the ‘WGCNA’ R package and the automatic network con-
struction function. Next, hierarchical clustering was used to identify gene/protein mod-
ules with similar expression patterns. Then, characteristics of abnormal immune cells in 
CMV + IBD patients were ultimately linked to these modules, and the key genes/proteins 
from the selected module were investigated for further analysis.

Correlation network analysis

Using Pearson analysis to construct the regulatory networks between gene modules and 
protein modules associated with the same abnormal immune cells. The threshold of 
selected correlationship between genes and proteins was set as the absolute correlation 
coefficient ≥ 0.5 and P-value < 0.05.

Machine learning analysis

Analysis of different co-expression networks using three machine learning algorithms 
(Random Forest, SVM-rfe, Lasso) to screen for crucial genes/proteins that regulating 
different aberrant immune cells in CMV + IBD patients. Then, Best Subset Selection 
regression model was used for final filter. Notably, oversampling is done to resolve the 
sample imbalance before the machine learning. Here, oversampling is performed by the 
ovun.sample function of the ROSE R package.

Random forest

Feature selection was developed using random forest (RF) approach. Random Forest is a 
collection of decision tree models created by randomly selecting features from a subset 
of the training data. The model was built using the randomForest R package with 1000 
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trees in the oversampled dataset, and internal validation was performed with 10-fold 
cross-validation.

SVM-rfe

Support Vector Machine Recursive Feature Extraction (SVM-rfe) is an iterative algo-
rithm that starts with a set of features and gradually eliminates them. During each iter-
ation, a basic linear SVM is initially applied, and the features are sorted according to 
their weights in the SVM solution. Subsequently, the feature with the smallest weight is 
removed. Here, we used the e1071 R package to perform the SVM-rfe andalysis and to 
filter the CMV + IBD prediction features.

Lasso

Lasso is a regularised form of linear regression that achieves model sparsity by introduc-
ing an L1-paradigm penalty term, which helps in feature selection. Lasso regression adds 
an L1-paradigm penalty term to the vector of coefficients, which is equal to λ times the 
sum of the absolute values of all the regression coefficients (λ is the penalty coefficient), 
on top of the least squares method. The purpose of this is to shrink some unimportant 
regression coefficients to zero, thus enabling feature selection. Here, the LASSO regres-
sion analyses were performed by the glmnet R package.

Best subset selection

Best Subset Selection can fit models for all possible combinations of predictor variables 
and then filter the best model conditional on the existing variables according to some 
criterion (e.g. R2, corrected R2, BIC, etc.). In Best Subset Selection, a larger value of 
adjusted R² and smaller value of BIC suggests a better model. Here, the best diagnosis 
model of CMV + IBD was constructed by Best Subset Selection using Leaps R package.

Function enrichment analysis

The study extracted all differentially expressed genes (DEGs) and differentially expressed 
proteins (DEPs) for additional functional enrichment using the metascape webserver. 
Enrichment analysis was performed on the KEGG pathways and Hallmarks. Functions 
with a false discovery rate < 0.05 was selected.

Statistical analyses

Statistical analyses were performed using R software (version 4.2.2). A T-test was uti-
lized to assess the variances between the two chosen groups. A p-value less than 0.05 
was considered to be statistically significant.

Results
The immune microenvironment in CMV + IBD patients is different from that in other IBD 

patients

We used the xCell algorithm to assess the abundance of four levels of immune cells, 
specifically in the following comparisons: CMV + UC vs. CMV- UC, CMV + UC vs. 
CMV + N, CMV- UC vs. CMV- N, and CMV + N vs. CMV- N. In the CMV + UC vs. 
CMV- UC group, we found abnormal abundances of CD8 + T cells, CD8 + Tem, chon-
drocytes, HSC, keratinocytes, myocytes, neurons, neutrophils, platelets, and sebocytes. 
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Specifically, CD8 + Tem, HSC, keratinocytes, myocytes, neurons, neutrophils, platelets, 
and sebocytes were significantly increased in CMV + UC patients, while CD8 + T cells 
and chondrocytes were significantly decreased (Fig. 1A). In the CMV + UC vs. CMV + N 
group, we observed abnormal levels of adipocytes, CD4 + Tem, GMP, neurons, neutro-
phils, platelets, and Tgd cells. Apart from CD4 + Tem, which were significantly decreased 
in CMV + UC patients, all other abnormal cells showed increased abundance (Fig. 1B). 
We also evaluated the immune microenvironment in the IBD group without CMV 
infection (CMV- UC vs. CMV- N). The results indicated abnormal levels of astrocytes, 
CD8 + T cells, ly endothelial cells, mesangial cells, mv endothelial cells, NKT, pDC, and 
Tregs. Notably, astrocytes and CD8 + T cells were more abundant in UC patients, while 
the other immune cells showed decreased abundance (Fig. 1C). Additionally, in the non-
UC group, the abundance of ly endothelial cells and Tregs decreased significantly post-
CMV infection (Fig. 1D). These findings suggest that CMV infection significantly alters 
the immune microenvironment in UC patients. Therefore, we further investigated the 
impact of CMV infection on UC patients.

Fig. 1 Comprehensive assessment of the immune microenvironment in IBD patients with or without CMV virus 
infection. (A) We used the xCell algorithm to assess the abundance of CMV + UC vs. CMV- UC groups. (B) The im-
mune cell abundance of CMV + UC vs. CMV + N group. (C) The immune cell abundance of CMV- UC vs. CMV- N. (D) 
The immune cell abundance of CMV + N vs. CMV- N
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Identify CMV + UC-specific immune microenvironment-related molecular modules

We subsequently conducted differential analysis of transcription and protein lev-
els across four groups: CMV + UC vs. CMV- UC, CMV + UC vs. CMV + N, CMV- UC 
vs. CMV- N, and CMV + N vs. CMV- N. In transcriptome (Fig.  2A), the comparison 
between CMV-infected and uninfected UC patients (CMV + UC vs. CMV- UC) showed 
300 genes exhibited abnormal expression (|log2FC|>0.585, adjusted P < 0.05), with 116 
genes downregulated and 184 genes upregulated. Enrichment analysis of these differ-
entially expressed genes revealed their involvement in KRAS signaling, the intestinal 
immune network for IgA production, inflammatory bowel disease, and the TGF-beta 
signaling pathway (Supplementary Fig. 1A). In the comparison between CMV-infected 
UC patients and CMV-infected non-UC individuals (CMV + UC vs. CMV + N), we iden-
tified 786 differentially expressed genes, with 492 upregulated and 294 downregulated. 
These genes were primarily enriched in the IL2/STAT5 signaling, p53 signaling path-
way, NF-kappa B signaling pathway, B cell receptor signaling pathway, and ECM-recep-
tor interaction pathways (Supplementary Fig. 1B). In the group of UC patients without 

Fig. 2 Transcriptome- and proteome-based screening of CMV + UC associated co-expression modules. (A) Volca-
no plot of four groups (CMV + UC vs. CMV- UC, CMV + UC vs. CMV + N, CMV- UC vs. CMV- N, and CMV + N vs. CMV- N) 
comparison in transcriptome. (B) Volcano plot of these four groups comparison in proteome. (C) Venn plot showed 
the abnormal immune cells distribution in the four groups. (D) Venn plot showed the DEGs in the four groups. (E) 
Venn plot showed the DEPs in the four groups. (F) CMV + UC associated co-expression modules in transcriptome. 
(G) CMV + UC associated co-expression modules in proteome
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CMV infection (CMV- UC vs. CMV- N), we identified 242 differentially expressed mol-
ecules, with 99 upregulated and 143 downregulated. These genes were mainly enriched 
in the IL2/STAT5 signaling, inflammatory response, KRAS signaling, and MTORC1 sig-
naling pathways (Supplementary Fig.  1C). In the comparison of CMV-infected versus 
uninfected non-UC individuals (CMV + N vs. CMV- N), we identified 668 differentially 
expressed genes, with 367 upregulated and 301 downregulated. These genes were pre-
dominantly enriched in the IL-17 signaling pathway, p53 signaling pathway, IL6/JAK/
STAT3 signaling pathways and so on (Supplementary Fig. 1D).

At the protein level, we conducted differential analysis across the same four groups 
(Fig. 2B). The results showed that in the CMV + UC vs. CMV- UC group, there were 155 
differentially expressed proteins (|log2FC|>0.263, adjusted P < 0.05), which were mainly 
enriched in Protein processing in endoplasmic reticulum, MTORC1 Signaling and so on 
(Supplementary Fig. 2A). In the CMV + UC vs. CMV + N group, we identified 189 differ-
entially expressed proteins, which were involved in various signaling pathways, including 
IL2 STAT5 Signaling, ECM − receptor interaction, and Endocytosis pathways (Supple-
mentary Fig. 2B). In the CMV- UC vs. CMV- N group, 116 proteins were differentially 
expressed and enriched in pathways associated with Inflammatory bowel disease and 
Antigen processing and presentation (Supplementary Fig. 2C). Lastly, in the CMV + N 
vs. CMV- N group, 205 differentially expressed proteins were identified, enriched in 
pathways related to TCA cycle, Endocytosis and so on (Supplementary Fig. 2D).

Subsequently, we conducted an integrated analysis of abnormal immune cells, DEGs, 
and DEPs across the four groups to identify immune cells and biomarkers specific to 
CMV + UC patients. Our criteria focused on those abnormalities present exclusively in 
CMV + UC patients. Then, we identified 13 CMV + UC-specific cells, 11 of which are 
immune-related: CD4 + Tem, CD8 + Tem, chondrocytes, GMP, HSC, keratinocytes, myo-
cytes, neurons, neutrophils, platelets, and Tgd cells (Fig. 2C). Additionally, we identified 
777 DEGs (Fig. 2D) and 228 DEPs (Fig. 2E).

Next, we used WGCNA to identify co-expression modules of DEGs and DEPs spe-
cific to CMV + UC patients and their association with the immune cells. This allowed us 
to pinpoint biomarkers related to the immune microenvironment. The analysis revealed 
seven co-expression gene modules (MEred, MEblue, MEturquoise, MEgreen, MEbrown, 
MEyellow, and MEgrey) in CMV + UC patients. Specifically, MEred was associated with 
GMP, keratinocytes, neurons, and platelets; MEblue with Tgd cells; MEturquoise with 
HSC and neurons; MEgreen with HSC, neurons, and neutrophils; and MEgrey with 
chondrocytes and myocytes (Fig. 2F).

Similarly, five co-expression protein modules were identified (MEbrown(P), 
MEblue(P), MEturquoise(P), MEyellow(P), and MEgrey(P)). In which MEbrown(P) was 
associated with CD4 + Tem; MEblue(P) with chondrocytes; MEturquoise(P) with neu-
rons, neutrophils, and platelets; MEyellow(P) with CD8 + Tem, neutrophils, and Tgd 
cells; and MEgrey(P) with chondrocytes (Fig. 2G).

Constructing the immune cells related molecular regulatory network

We further integrated gene co-expression modules and protein co-expression mod-
ules within the same abnormal immune cells, identifying potential regulatory rela-
tionships. Our analysis revealed that CD4 + Tem cells are associated only with the 
MEbrown(P) module; CD8 + Tem cells are associated only with the MEyellow(P) module; 
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chondrocytes are associated with the MEgrey, MEgrey(P), and MEblue(P) modules; 
GMP cells are associated only with the MEred module; HSC cells are associated with the 
MEgreen and MEturquoise modules; keratinocytes are associated only with the MEred 
module; myocytes are associated only with the MEgrey module; neurons are associated 
with the MEgreen, MEred, MEturquoise, and MEturquoise(P) modules; neutrophils are 
associated with the MEgreen, MEturquoise(P), and MEyellow(P) modules; platelets are 
associated with the MEred and MEturquoise(P) modules; and Tgd cells are associated 
with the MEblue and MEyellow(P) modules (Fig. 3A).

Upon further refinement, we identified four potential regulatory relationships: (I) 
MEgrey and MEgrey(P): related to chondrocytes (Fig. 3B); (II) MEgreen, MEblue, and 
MEyellow(P): related to neutrophils and Tgd cells (Fig.  3C); (III) MEgreen, MEred, 
MEturquoise, and MEturquoise(P): related to neurons, neutrophils, and platelets 
(Fig. 3D); (IV) MEgrey and MEblue(P): related to chondrocytes (Fig. 3E). Subsequently, 
we constructed co-expression regulatory networks between the gene co-expression 
modules and protein co-expression modules for different regulatory relationships. Only 
regulatory relationships with an absolute correlation coefficient greater than 0.5 and a 
p-value less than 0.05 were considered significant. These regulatory networks potentially 
reflect that the abnormal immune microenvironment is influenced by multiple factors 
(Fig. 3B-E).

Identifying potential diagnostic biomarkers for CMV + UC using machine learning 

algorithms

To identify early diagnostic biomarkers for CMV + UC, we employed three different 
machine learning algorithms across five levels: the four regulatory networks mentioned 
above and all modules associated with abnormal immune cells.

In the MEgrey and MEgrey(P) regulatory network, the Random Forest algorithm iden-
tified a set of 54 genes/proteins with the lowest classification error rate (Fig. 4A). The 
SVM-RFE algorithm selected 79 genes/proteins with the best classification accuracy 
(Fig. 4B), and the LASSO algorithm identified 9 highly efficient genes/proteins (Fig. 4C).

In the MEgreen, MEblue, and MEyellow(P) regulatory network, the Random Forest 
algorithm selected a set of 14 genes/proteins with optimal classification performance 
(Fig. 4D). The SVM-RFE algorithm identified 16 genes/proteins (Fig. 4E), and the LASSO 
algorithm found 6 highly efficient genes/proteins (Fig. 4F).

In the MEgreen, MEred, MEturquoise, and MEturquoise(P) regulatory network, 
the Random Forest algorithm identified 24 genes/proteins with classification efficacy 
(Fig.  4G). The SVM-RFE algorithm selected 30 genes/proteins (Fig.  4H), while the 
LASSO algorithm identified 7 genes/proteins (Fig. 4I).

In the MEgrey and MEblue(P) regulatory network, the Random Forest algorithm iden-
tified 18 genes/proteins (Fig.  4J), the SVM-RFE algorithm selected 22 genes/proteins 
(Fig. 4K), and the LASSO algorithm identified 10 genes/proteins (Fig. 4L).

Finally, considering all modules, the Random Forest algorithm identified 25 genes/pro-
teins with classification efficacy (Fig. 4M), the SVM-RFE algorithm selected 132 relevant 
genes/proteins (Fig. 4N), and the LASSO algorithm identified 7 genes/proteins (Fig. 4O).
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Constructing a diagnostic model for CMV + UC

We further integrated the results from three machine learning algorithms. At the 
MEgrey and MEgrey(P) levels, we identified 8 molecules that consistently exhib-
ited effective classification across all three algorithms. In the MEgreen, MEblue, and 
MEyellow(P) group, we identified 3 molecules with stable classification performance. 

Fig. 3 Integrating the transcriptome and proteome to construct relevant regulatory networks. (A) Sankey plot 
showing association between co-expressed modules and aberrant immune cells. (B) Co-expression network of 
MEgrey and MEgrey (P) module. (C) Co-expression network of MEgreen, MEblue, and MEyellow (P) module. (D) 
Co-expression network of MEgreen, MEred, MEturquoise, and MEturquoise(P) module. (E) Co-expression network 
of MEgrey and MEblue (P) module
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Similarly, at the MEgreen, MEred, MEturquoise, and MEturquoise(P) levels, we found 
5 such molecules. Within the MEgrey and MEblue(P) group, we selected 4 molecules 
showing stable classification across the algorithms. Finally, across all modules, we identi-
fied 55 molecules that consistently demonstrated effective classification across the three 
algorithms (Fig. 5A).

Subsequently, we integrated these molecules, resulting in 20 candidate biomarkers that 
displayed stable classification performance across different levels. Using optimal subset 
regression, we constructed a diagnostic model for CMV + UC. The analysis revealed that 
an 8 biomarkers model achieved the maximum R² and adjusted R² values, with the low-
est Bayesian Information Criterion (BIC) (Fig.  5B). These findings indicate that the 8 
biomarkers model (Table 1) performs optimally in diagnosing CMV + UC (Fig. 5C).

Discussion
So far, diagnosing and treating CMV + UC in IBD patients remains a challenge. The 
diagnosis and treatment of IBD are often either underutilized or overused, potentially 
leading to adverse disease progression and increased cost [33]. Studies in IBD patients 

Fig. 4 Screen candidate diagnostic biomarkers by machine learning algorithms. (A) Random Forest analysis in ME-
grey and MEblue (P) groups. (B) SVM-rfe analysis in MEgrey and MEblue (P) groups. (C) Lasso analysis in MEgrey and 
MEblue (P) groups. (D) Random Forest analysis in MEgreen, MEblue, and MEyellow (P) groups. (E) SVM-rfe analysis 
in MEgreen, MEblue, and MEyellow (P) groups. (F) Lasso analysis in MEgreen, MEblue, and MEyellow (P) groups. 
(G) Random Forest analysis in MEgreen, MEred, MEturquoise, and MEturquoise(P) groups. (H) SVM-rfe analysis in 
MEgreen, MEred, MEturquoise, and MEturquoise(P) groups. (I) Lasso analysis in MEgreen, MEred, MEturquoise, and 
MEturquoise(P) groups. (J) Random Forest analysis in MEgrey and MEblue (P) groups. (K) SVM-rfe analysis in ME-
grey and MEblue (P) groups. (L) Lasso analysis in MEgrey and MEblue (P) groups. (M) Random Forest analysis in all 
modules. (N) SVM-rfe analysis in all modules. (O) Lasso analysis in all modules
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Table 1 Information of 8 crucial diagnostic biomarkers
ID Full name Type Modules Associated Im-

mune cells
PPP1R12B Protein phosphatase 1 regulatory subunit 12B Gene MEgrey Chondrocytes
CIRBP Cold inducible RNA binding protein Protein MEblue (P) Chondrocytes
CSNK2A2 Casein kinase 2 alpha 2 Protein MEgrey (P) Chondrocytes
DNAJB11 DnaJ heat shock protein family member B11 Protein MEgrey (P) Chondrocytes
PIK3R4 Phosphoinositide-3-kinase regulatory subunit 

4
Protein MEgrey (P) Chondrocytes

RRBP1 Ribosome binding protein 1 Protein MEgrey (P) Chondrocytes
STX5 Syntaxin 5 Protein MEturquoise(P) Neurons, Neutro-

phils and Platelets
TMEM214 Transmembrane protein 214 Protein MEturquoise(P) Neurons, Neutro-

phils and Platelets

Fig. 5 Constructing the CMV + UC Diagnostic Model. (A) Venn plot showed the stable diagnostic biomarkers in 
both three machine learning algorithms. (B) Parameters of Best Subset Selection regression model, including R2, 
adjusted R2 and BIC. (C) Final diagnostic biomarkers selected by Best Subset Selection
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have shown a correlation between CMV infection and refractory disease [34]. Research 
indicates a connection between the presence of CMV and refractory Crohn’s colitis and 
ulcerative colitis [35]. The recently updated ECCO guidelines (2021) for opportunistic 
infections recommend baseline CMV screening for all IBD patients, especially before 
initiating immunosuppressive therapy [36]. Early detection of CMV infection is crucial 
in IBD patients. It is recommended that symptomatic IBD patients with more than four 
positive cells per biopsy or plasma CMV DNA levels ≥ 1000 IU/mL, and who have any of 
the following conditions—steroid-refractory disease, splenomegaly, or absence of leuko-
cytosis—should receive antiviral treatment [35].

Given that colonic mucosal viral detection is invasive and serum CMV PCR is not a 
reliable indicator of end-organ disease, with lower sensitivity in peripheral blood testing 
for clinical viral monitoring [37], there is a need for high-sensitivity, non-invasive diag-
nostic methods. Therefore, in this research, our goal was to develop a new diagnostic 
approach for CMV + UC using multi-omics integration analysis of transcriptomics and 
proteomics, combined with machine learning algorithms. We identified an 8 biomark-
ers diagnostic model (PPP1R12B, CIRBP, CSNK2A2, DNAJB11, PIK3R4, RRBP1, STX5, 
TMEM214) to provide useful insights into CMV + UC diagnosis. Here, PPP1R12B has 
been found to play a significant role in intestinal diseases, particularly colorectal can-
cer [38]. Upregulation of CIRBP has been shown to promote Th1 cell-mediated mucosal 
inflammation in IBD [39]. CSNK2A2 is associated with oxaliplatin resistance in colorec-
tal cancer cells [40]. DNAJB11 encodes a soluble glycoprotein in the ER lumen that regu-
lates immunoglobulin binding activity by stimulating ATPase activity [41], and our study 
found it to be crucial in IBD. PIK3R4 is involved in intestinal autophagy and is related 
to aggravated intestinal inflammation [42]. RRBP1 plays a role in ER proliferation, the 
secretory pathway, and ER-microtubule interactions, with relevance to IBD found in this 
study. Some viral transductions depend on STX5 for retrograde transport to the trans-
Golgi network [43]. TMEM214 mediates ER stress-induced Caspase 4 activation and 
apoptosis [44], also playing a significant role in IBD as identified in our study.

Notably, the small sample size is a limitation of this study. Here, to avoid the influ-
ence of this, we have used highly sensitive and specific methods for detailed and accu-
rate observation and all machine learning analyses use oversampling methods to balance 
the data distribution and improve the predictive performance of the model. Certainly, 
further studies with larger patient groups are necessary to confirm the promising results.

Conclusion
In summary, we constructed a high-throughput sequencing profile of CMV + IBD and 
our data show that CMV + UC patients have a distinct immune microenvironment com-
pared to other patients, with these abnormal microenvironments being associated with 
multiple molecular dimensions. These molecules have the potential to become diagnos-
tic and therapeutic markers for CMV + UC patients. While real-time quantitative PCR to 
detect viral load in fresh mucosal specimens is a feasible method for monitoring CMV 
infection in IBD patients, our 8-molecule model offers new avenues for exploring other 
non-invasive diagnostic methods.
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