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Introduction
In 2019, cardiovascular disorders accounted for one-third of all global fatalities [1], 
marking a concerning increase over the years [2]. The most frequent heart valve disease 
is Aortic Stenosis (AS), which is a lethal disease and a major cause of cardiovascular 
death [3]. Several mechanisms lead to the calcification of the aortic valve leaflets which 
is commonly thought to be the cause of Aortic Valve Sclerosis (AVS) or Aortic Valve 
Calcification (AVC) [4]. AVC is a relatively slow progressing disease with several years 
lapse between the first lesions and severe AVS, therefore requiring follow up exams dur-
ing a patient lifetime.
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Medical imaging modalities, including Echocardiography and Computed Tomogra-
phy (CT) can identify calcium in anatomic structures due to the specific reflective and 
absorptive properties of calcium compounds [5]. CT has a high image quality and pro-
vides a great predictive capability, but its repetitive use can be hazardous, due to ionizing 
radiation exposure [6]. On the other hand, echocardiography is the first-line method for 
diagnosing and monitoring the evolution of Aortic Stenosis, according to the European 
Society of Cardiology [7], due to its portability, low cost and, especially, zero radiation 
exposure [7].

Numerous studies, as referenced in [8], have focused on the application of Artificial 
Intelligence for automated calcium measurement on CT scans. However, a significant 
gap persists in exploring the potential of echocardiography-based automatic calcium 
detection [9]. CNNs demonstrate an aptitude for capturing spatial relationships within 
echocardiographic images, their ability to discern subtle patterns indicative of aortic 
valve calcification arises from training on relevant data and the use of appropriate loss 
functions [10]. Moreover, the end-to-end learning capability of DL models, as high-
lighted in [8], allows for the direct acquisition of both low-level and high-level represen-
tations from raw imaging data, eliminating the need for labor-intensive manual feature 
engineering. Transfer learning further enhances such approaches, enabling the fine-tun-
ing of pre-trained models on expansive datasets. This proves especially beneficial in the 
medical imaging domain where labeled datasets for echocardiography are limited. By 
adapting models trained on broader datasets to our specific task, we harness the general 
image features that are essential for identifying aortic valve calcification patterns. CNNs 
have demonstrated considerable success in tasks such as image segmentation and clas-
sification [11–16], emphasising their efficacy for our challenge.

In our previous literature review [20] 82 references, highlighting the role of deep learn-
ing, calcium scoring, and CT scans in cardiac imaging. Some approaches demonstrated 
superior results, emphasizing AI’s potential in improving healthcare efficiency. Despite 
radiation risks, CT scans remain the primary choice for automated DL applications, but 
ongoing developments suggest an emerging viability of fully automated echocardiog-
raphy methods, promising enhanced patient monitoring and reduced physician work-
load, while annulling radiation exposure compared to CT scans. In [9], a semi-automatic 
model for calcium detection in echocardiographic images suggested potential for a more 
efficient fully automatic solution, but for that purpose automatic valve recognition and 
calcium identification methods are necessary.

This being said, the primary goal of this study is to automate the detection of AVC 
in patients by identifying calcium deposits in the aortic valve using echocardiographic 
data, contrasting with solutions discussed in the literature review. To achieve this objec-
tive, this work was divided into two distinct problems: (1) the development of an object 
detection algorithm for identifying the aortic valve and (2) the creation of a classifica-
tion algorithm to determine the presence of calcium within the valve. DL techniques 
were tried, using CNNs, and a manual classification approach was also followed, for 
results comparison. Recognizing the scarcity of extensive datasets — a challenge high-
lighted by the European Parliamentary Research Service [17] — our study focuses an 
effective CNN model using a small dataset, specifically in the context of echocardiogra-
phy. We tackle this limitation by introducing data augmentation techniques and leverag-
ing computer vision methods. Despite these constraints, our approach yields promising 
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results, showcasing the potential of AI in cardiac diagnostics related to Aortic Calcifica-
tion and Echocardiography Imaging. In addition to addressing data scarcity, our study 
has broader implications. By automating the detection of AVC and identifying calcium 
deposits in the aortic valve, we not only contribute to cardiac diagnostics but also allevi-
ate the burden on clinicians. Consider this: in a typical clinic, where 30 echocardiogra-
phies are performed daily, each taking approximately 10  min for manual analysis, our 
approach could save up to 5 h per day. Moreover, for future studies or large-scale patient 
screenings, manual effort would be impractical to quantify. Our method is expected not 
only to accelerate the process but also to optimize it, given that it is fully automated.

The structure of this article aligns with the Cross Industry Standard Process for Data 
Mining (CRISP-DM) methodology, widely recognized as the most used framework for 
data mining and analytics [18]. The CRISP-DM methodology comprises six phases, with 
(1) Business Understanding and (2) Data Understanding represented in sub-chapter “2.1. 
Business and Data Understanding”, (3) Data Preparation encompassing sub-chapters 
“2.2. Pre-processing”, “2.3. Annotations”, and “2.4 Data Augmentation”, (4) Modeling 
found in chapter “3. Modeling”, (5) Results detailed in “3.1.3 Experimental Procedures 
results” and “3.1.4 Experimental Procedures”, and finally, (6) Deployment is elucidated in 
this study.

Materials and methods
Business and data understanding

The data selection process was performed under the rules of a pre-signed confidentiality 
agreement to ensure compliance with data protection regulations while striving to cre-
ate an appropriate dataset for the application of DL models. A confidentiality agreement 
was executed through collaboration with Affidea IMI Lisbon - República Clinic (Portu-
gal) to safeguard patients’ data. To comply with ethical guidelines, informed consent was 
obtained from participants, following principles outlined in the Declaration of Helsinki 
and the Oviedo Convention [19]. Additionally, all members with data access adhered to 
GDPR regulations, safeguarding sensitive information, specifying authorized personnel, 
defining data retention periods, establishing data disposal procedures, and preventing 
unauthorized utilization in other research contexts without explicit consent.

Under the guidance of a cardiologist from the Affidea Clinic, actively involved in all 
stages, consecutive 2D echocardiography exams with a probe of 3.5 MHz were chosen 
exclusively from consenting patients, and saved in Dicom format [20].

Each of these files consists of two components: a set of images captured during the 
exam using sonography, and the associated metadata containing the patient’s infor-
mation. During the saving process, files were assigned anonymous names, such as 
“STUDY_000”, “STUDY_001”, and so forth, to ensure compliance with the general data 
protection regulations (GDPR) and scientific integrity. Additionally, any information 
data that could identify the patients was deleted from the images.

A total of 70 exams, each one containing a set of ultrasound images, extracted from 
the device model LOGIQ S8 [21], were copied, pre-processed, filtered and utilized in 
modeling experiments.

The 41 patients in this study have an average age of 69.31 years with a standard devia-
tion of 12.03. The maximum age observed is 86, and the minimum is 52. The gender 
distribution is 35.7% male and 64.3% female.
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Pre-processing

From the initial selection of echocardiograms, a small subset unrelated to heart condi-
tions was excluded (22 images), with each medical examination comprising approxi-
mately ten images. The initial pre-processing involved extracting images from the Dicom 
files, storing them with the examination ID in their names for easy identification, since 
in the anonymization process all the personal data was removed.

During an echocardiography examination, the physician captures images of the heart 
from pre specified views, as illustrated in Fig. 1.

For the designated purpose, it was determined to exclusively employ the parasternal 
short-axis views (Fig.  1 - E) during diastole, as these images feature the aortic valve, 
which constitutes the target of identification. Following the selection of only this specific 
view, a dataset comprising 61 images from 41 patients where 36% of which suffer from 
AVC has been created.

The subsequent stage, illustrated in Fig. 2, consisted of extracting and normalizing the 
dimensions of interest regions, using Python image processing tools. This process aimed 
to simplify the images by eliminating useless details that are automatically inserted into 
the images by the capturing device (which would otherwise be fed into the Neural Net-
works as noise).

Starting with the original echocardiography image (A), our region of interest is within 
the cone and our goal is to identify and crop the image accordingly. In (B), contours 
are identified using OpenCV library functions [22] that detect straight lines and cir-
cles. Moving to (C), we select our region of interest by creating a binary mask within 
the three lines. In (D), edges are cropped to minimize unnecessary black areas, and in 
(E), all images are manually cropped to standardized dimensions of 640 × 640 pixels. 
This standardization aims to prevent image deformation and feature loss. DL models 

Fig. 1 Different types of heart view on Echocardiography: (A) Apical 2-chamber view; (B) Apical 3-chamber view; 
(C) Apical 4-chamber view; (D) Apical 5-chamber view; (E) Parasternal short-axis view; (F) Parasternal short-axis 
view of the left ventricle; (G) Parasternal long-axis view
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require specific input shapes, and automatic resizing could impact results by changing 
the aspect ratio. We chose the dimension 640 × 640 pixels to match the input shape of 
the object detection model used in experiments (YOLOv5 [23]).

Annotations

In order to address the first goal, training an object detector is necessary, requiring 
annotated images where objects are identified by bounding boxes indicating their loca-
tions. Using MAXQDA [24], a data analysis software, bounding boxes were manually 
drawn for all 61 images selected for the modeling phase, saving annotations as rectangle 
coordinates in a .csv file. Annotated images enable the model to extract crucial features 
during training, and its performance is evaluated in the testing phase by comparing pre-
dictions with real object locations, completing this crucial step for achieving the first 
goal. Figure 3 illustrates this process for one example image.

Data augmentation

As the minimum dataset size to perform an object detector is approximately 150–500 
images [25], the dataset obtained with 61 images is too small to achieve satisfactory 
results in the modeling phase. A commonly employed strategy to compensate for lim-
ited data availability is the application of image augmentation, which involves employ-
ing image transformation techniques to generate new images based on variations of the 
original ones, thereby expanding the dataset and introducing diversity for the model to 
learn from [26].

Fig. 3 Image annotation process

 

Fig. 2 Image transformation process
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In this case, 4 types of data augmentation techniques were applied, to create a larger 
dataset before initializing the model train. The methods used were translation, rotation, 
zoom and gamma contrast, using a Python library called imgaug [27], which also trans-
forms annotations directly, generating the corresponding object location in the aug-
mented image version. In Fig. 4, the images obtained from an original one by using each 
one of these techniques are illustrated.

A. Translation. Translation percentage set to 0.2 and − 0.2.
B. Zoom. Image scale set to 0.5 and 2.
C. Rotation. Rotation angle set to 10º and − 10º.
D. Gamma contrast. Contrast set to 0.5 and 1.2.

The rotation threshold was chosen according to the medical specialist’s advice, justified 
by the exam procedure, where ultrasound position may vary about generally 10 degrees 
clockwise or counterclockwise from technician to technician. The other thresholds 

Fig. 4 Data augmentation process. (A) Translation; (B) Zoom; (C) Rotation; (D) Gama contrast
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were chosen considering that the valve must be entirely inside the image after the 
transformation.

Modeling
In the modeling phase, the main purpose is to build a framework for detection of AVC in 
echocardiography images, by detecting calcium structures in aortic valve. To achieve the 
proposed goal, the development of two separate algorithms was necessary, as illustrated 
in Fig. 5: (1) an object detector whose goal is to detect the aortic valve in each image, 
after training it with the created dataset; (2) a ML-based algorithm that classifies the 
image of the aortic valve according to the presence of calcium. For the second algorithm, 
a comparison between a DL approach and a heuristic classification was done, showing 
advantage on the use of DL models.

The simplest approach for this problem would use only the classification part, training 
the classifier with the entire original images. It would simplify the developments, but 
the expected results were very low, considering the small dataset size. Adding an object 
detector before the classification step, the classifier will be trained using only the area of 
interest, which is aortic valve. This makes it easier for the model to extract key features 
and to perform better.

Aortic valve detection

For the first algorithm, being the goal to automatize the identification of an object from 
an image (in this case the object is aortic valve), it was necessary to train an object detec-
tor. This CV technique consists of identifying objects within an image, by means of pro-
viding the bounding boxes around the detected objects.

Object detector modeling

There are two main ways to train an object detector using DL [28]: (1) using Transfer 
Learning to apply a pre-trained model; (2) training a Neural Network from scratch, 
using a custom dataset.

1) Transfer Learning can be a faster method and achieve better results, as it uses a model 
that has already been trained with a huge quantity of data.

Fig. 5 Framework for aortic valve detection and Aortic Sclerosis classification
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2) Training from scratch requires a large amount of labeled data and typically requires 
more time to be trained.

The approach (1) was followed in this work, motivated by the lack of available images. 
The obtained dataset with 61 images would not be enough to build and train a model 
from scratch. As represented in Fig.  6, a pre-trained model, previously trained with a 
large set of data called, was selected and its weights were used to initialize the NN. Then 
the next layers were trained using custom data – the echocardiography dataset with 61 
images.

There are many useful libraries to work with CV, specifically with object detection, 
such as TensorFlow [29], Keras [30], PyTorch [31] and OpenCV [22]. To select a pre-
trained model, it is important to consider the size and complexity of the selected data-
set. From the variety of available models, YOLO’s version 5 (YOLOv5) was chosen for 
demonstrating consistent performance, representing a turning point for YOLO’s model 
versions, as it is the first one built on the PyTorch framework [23]. Since working with a 
small set of images, the YOLOv5s variation – which is designed for small datasets – was 
selected in this case.

Experimental procedures

In the modeling phase, the object detector was trained with the constructed dataset, 
containing 61 images. The following parameters were defined when creating the NN:

  • Input shape à (640, 640, 3).
  • Number of batches à 32.
  • Number of epochs à 75.
  • Dataset split à 80% for train + 10% for validation + 10% for test.

The images resulting from 4 types of data augmentation techniques, described in Sub-
section 2.4., were gradually included, to train the object detector with a larger dataset. 
Each data augmentation technique was included individually (Experiments 2 to 5), then 
a dataset using all the techniques simultaneously was used (Experiment 6), and finally a 
model using the original images and the data augmentation images resulting from the 

Fig. 6 Object detector with Transfer Learning for aortic valve detection
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two techniques that had the best individually performances – translations and rotations 
– was trained (Experiment 7).

All the results are summarized in Table 1.
The first experiment, without data augmentation, achieved a low performance. 

Although having a 100% precision, it registered only 26% of recall, which means that all 
the model predictions were correct, but it could not detect all the actual objects (only 
26%).

By including the image sets obtained from each data augmentation technique, the 
results increased significantly, with highlight for translation and rotation (experiments 
3 and 4). The use of translation for enlarging the dataset increased the precision to 100% 
and recall to 95%, meaning that all the model predictions were correct, and almost all 
the actual locations of the valve were identified (only 5% were not found). Rotation, on 
the other hand, achieved 95% of precision and 100% of recall, which means that all the 
actual valves were correctly located by the model, and 5% of its predictions were false. 
In health context, recall usually gets more importance, as it is better to get a false posi-
tive than a false negative, i.e., is it better to predict a disease presence in an actual health 
patient than not identifying the disease [32]. In this case, although the objective is to 
identify the aortic valve, in the next phase the purpose is to classify this valve as calcified 
or not, to detect AVC cases. So, between experiment 3 and 4, giving priority to recall, 
it would be preferable to use rotation technique (experiment 4) for deployment, as it 
achieved 100% recall.

When including all the images obtained with the four data augmentation techniques, 
the training time increased significantly, because the dataset size increased images’ pro-
cessing time, and the results decreased to 91% of precision and 97% of recall. Experi-
ment 4 maintains an advantage over this one. Lastly, training was performed including 
the two techniques that showed higher results individually – translation and rotation 
– expecting to get even higher performance. Recall result was 100% again, but precision 
decreased to 93%, so it has no advantages, when compared to the use of only rotation.

Aortic valve calcification classification

One approach to automatize diagnosis of Aortic Sclerosis is to use a DL-based classi-
fier that distinguishes between calcified or not calcified valves, in echocardiography 
images. Like the object detector mentioned in Subsection 3.1., the classifier can both 
be applied from a pre-trained model using Transfer Learning or be built from scratch. 
There are many classification models available, such as EfficientNet [33], MobileNet [34] 

Table 1 Object detection results
Experiment Dataset 

size
Precision Recall F1-Score Description

1 61 1.00 0.26 0.44 Original dataset
2 183 1.00 0.81 0.89 Data Augmentation - zoom
3 183 1.00 0.95 0.98 Data Augmentation - translation
4 183 0.95 1.00 0.98 Data Augmentation - rotation
5 183 0.95 0.90 0.93 Data Augmentation – gamma contrast
6 549 0.91 0.97 0.94 Data Augmentation - zoom, transla-

tion, rotation and gamma contrast
7 305 0.93 1.00 0.97 Data Augmentation - translation and 

rotation
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or ResNet [35]. As DL did not show high performance, a heuristic approach was also 
tested, to compare the results obtained.

Classifier modeling

Regarding the development of the DL model for automatic classification, Transfer 
Learning was used, because it is a great option when having limited labelled data for 
medical imaging analysis [36], like in the presented context. Various existent models can 
be used to initialize the network’s weights, and the model must be chosen according to 
the data to apply it, to get the best performance. Three models were tested - EfficientNet, 
MobileNet and ResNet.

Figure 7 represents the use of Transfer Learning with the EfficientNet model, which 
is similar when applied to other classification models. As can be seen, these models 
are trained using ImageNet dataset, learning to classify images into categories. When 
applied to a custom dataset, the first layer will have the pre-trained weights and the next 
layers are trained with the new data.

Experimental procedures
Baseline heuristic classification Building upon the semi-automatic approach devel-
oped in [9], we adopted a similar methodology for comparative analysis, allowing us to 
contrast a semi-automatic method with the automatic method proposed in this study. 
This technique consisted of binarizing images and searching for white pixels (RGB = (255, 
255, 255)). If the image has at least one white pixel, the valve is considered calcified. This 
process is represented in Fig. 8.

The binarization process was manual, to try different thresholds and find the best one. 
Four different thresholds were tested – 190, 200, 210 and 220 – which means that all the 

Fig. 8 Heuristic classification process

 

Fig. 7 Classification model with Transfer Learning for Aortic Sclerosis classification
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pixels with higher value than the threshold would be set to 255 (white) and the remain-
ing ones would be set to 0 (black). The results obtained for these heuristic approaches 
are summarized in Table 2.

From the four heuristic approaches, the models registered accuracy values between 
39% and 58%, precision between 33% and 40% and recall between 32% and 64%, noting 
that when one of these metrics increases, the other two decreases (for instance, com-
paring experiments 3 and 4). In this case, as it is preferable to have higher recall than 
accuracy or precision [37], to minimize the False Negative cases, i.e., AVC cases that are 
not detected, the best model to choose would be 4, using a binarization threshold of 220. 
However, this model’s accuracy and precision are quite low, which means that there are 
many False Positives, i.e., the model identifies too many AVC cases where the patients 
are healthy.

Initial DL experiments Attempting to get better results, a DL-based approach was fol-
lowed, consisting of building a Neural Network with the structure shown in Fig. 9. The 
first layer’s set – responsible for feature extraction and composed by convolutional and 
pooling layers – uses the pretrained models previously mentioned. The following layer is 
a dense layer with 120 neurons, and a final output layer performing a binary classifica-
tion meaning “calcified” or “not calcified”. The model was trained using the full dataset, 
containing 61 images.

Input shape à (224, 224, 3);
Batch size à 1;
Number of epochs à 50;
Dataset split à 80% for train + 20% for test.
First, the images were entirely used to train the model, i.e., without cropping the valve 

zone. As result, the model predicted around 50% probability of being calcified, which 
is a sign that the model did not learn to differentiate between classes. There are stud-
ies referring that cropping images can improve the feature extraction process, because 
when training an image classification model, it tries to extract features from the entire 
image, which can become less efficient when having useless information [38]. In this 
case, images were cropped using the original bounding boxes, with a Python script that 

Table 2 Aortic sclerosis classification results for heuristic experiments
Experiment Dataset size Accuracy Precision Recall F1-Score Binarization threshold
1 183 0.42 0.33 0.58 0.42 190
2 183 0.52 0.35 0.39 0.37 200
3 183 0.58 0.40 0.32 0.36 210
4 183 0.39 0.33 0.64 0.43 220

Fig. 9 Neural Network architecture
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selected the area between the given coordinates for each image, obtaining the area of 
interest that contained aortic valve, as illustrated in Fig. 10.

In the next step, for Transfer Learning application, three pre-trained models were 
used – EfficientNet, MobileNet (and MobileNetV3Small, which is a variation for smaller 
datasets) and ResNet50. All the three models returned the same output – all the images 
were classified in the majority class. This means that the network could not extract rel-
evant features from the images, so it predicted the class that was more likely to be cor-
rect (the most common).

Data pre-processing experiments Trying to improve the previous results, the dataset 
was adapted to avoid biased training of the classifiers. The dataset was modified using the 
following techniques:

  • Noise reduction - Creation of an algorithm that scans all the pixels in an image and 
subtracts the minimum value to the entire image array. The objective is to turn the 
darker zones into pure black (RGB = (0, 0, 0)), as demonstrated in Fig. 11.

  • Data balancing - The original dataset was unbalanced between the two classes – 
22 “calcified” images and 39 “not calcified” images, which can be a problem when 
the model learns to always predict the same class (the majority one) because the 
probability of it gets correct is higher [39]. To get around this problem, some images 
in the minority class were duplicated until the two classes became balanced.

  • Data augmentation – Rotations. The rotated images created in data preparation 
phase, referred to in subsection 2.4., were included to enlarge the dataset. The other 
types of data augmentation were not adequate to this classification context. Zooms 
and translations would not work on images containing only the region of interest, 
and contrast variations would turn the dataset non-uniform.

The following experiments employed two pre-trained models – EfficientNetB0 [40] 
and MobileNetV3Small [41]. These models were chosen for their simplicity, which is 

Fig. 11 Process of noise reduction

 

Fig. 10 Process of cropping the area of interest
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preferrable when working with smaller datasets. More complex models tend to better 
explain the training data, possibly getting overfitted [42]. The original dataset was used, 
and two variations were tested – class balancing and data augmentation. The first one 
equalizes classes distribution and the second one augments the dataset by incorporating 
rotated images generated during the data preparation phase outlined in Subsection 2.4., 
were included. The results obtained are presented in Table 3.

In the first experiment, where the original dataset was used for training, both pre-
trained models achieved an accuracy of 54%x, which is insufficient to draw conclusions. 
The second experiment, involving class balancing of the original dataset, yielded 0 TP’s, 
indicating an inability to correctly classify images with calcified valves, leading to preci-
sion and recall values of 0. Thus, this NN is not promising as it fails the identification of 
unhealthy patients.

In experiment 3, the performance improved using a larger dataset, rotated images were 
included without balancing the dataset. EfficientNetB0 returned inconclusive results, 
displaying 100% precision but only a 6% recall, suggesting a failure to identify the major-
ity of truly calcified valves. In contrast, MobileNetV3Small could achieve more than 70% 
for all performance metrics, indicating better feature identification and generalization.

When balancing the augmented dataset, NN were trained with 234 images split into 
two balanced classes. Both pre-trained models had similar performances, achieving over 
90% for all metrics. While EfficientNetB0 had consistently 96% for accuracy, precision 
and recall, MobileNetV3Small showed better precision than recall, remaining more 
unhealthy patients to be identified.

Experiment 4, yielding the most promising results, highlights the significance of class 
balancing and data augmentation to enhance model’s performance. Subsequently, this 
dataset was used to train a NN, with variations in the pre-trained models used for Trans-
fer Learning. Six pre-trained networks – EfficientNetB0, EfficientNetB4, ResNet152V2, 
ResNet50V2, MobileNetV3Small and MobileNetV3Large – were trained, and the pool-
ing parameter was adjusted to three values for each model – “None”, “Max” and “Avg”. 
Pooling parameter defines the feature extraction mode during Transfer Learning. When 
set to “None”, the model’s output mirrors that of the last convolutional layer, while “Max” 
and “Avg” apply maximum and average pooling to the last convolutional layer, respec-
tively. All the experiments are summarized in Table 4.

For the majority of pre-trained models tested, setting the pooling parameter to “None” 
achieved better performance. This observation may be attributed to the model’s chal-
lenges in feature extraction, particularly given the dataset’s size. Training with a small 

Table 3 Aortic sclerosis classification results for experiments using different datasets
Experiment Dataset Dataset 

size
Pre-trained model Accuracy Precision Recall F1-Score

1 Original 61 EfficientNetB0 0.54 0.43 0.60 0.50
MobileNetV3Small 0.54 0.33 0.20 0.25

2 Balanced 78 EfficientNetB0 0.31 0 0 -
MobileNetV3Small 0.44 0 0 -

3 With data augmentation 183 EfficientNetB0 0.57 1.00 0.06 0.11
MobileNetV3Small 0.84 0.92 0.71 0.80

4 Balanced w/ 
data augmentation

234 EfficientNetB0 0.96 0.96 0.96 0.96
MobileNetV3Small 0.94 0.96 0.92 0.94
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dataset could limit the model’s ability to extract information from images, and pooling 
application might further reduce available information.

Among the six pre-trained models used, EfficientNetB0 and MobileNetV3Large stand 
out with better performances. The first one achieved 96% for all the metrics, while 
the second one achieved a F1-score of 96%, with a 100% recall, indicating that all the 
unhealthy patients were identified. In general, simpler NNs demonstrated better perfor-
mance, likely due to their training with a smaller dataset, requiring less complexity. In 
this context, considering the importance of recall, MobileNetV3Large without the use of 
map pooling may be considered the best approach.

Discussion
To identify Aortic Sclerosis in echocardiography images, the study focused on two main 
goals: (1) detecting the aortic valve and (2) identifying the presence of calcium in the 
aortic valve.

In the initial phase, an object detector was constructed to locate the aortic valve in 
echocardiograms. Transfer Learning was employed from a pre-trained model due to the 
limited amount of available data. YOLOv5s was chosen as the pre-trained model for its 
reliability, particularly in handling small datasets.

However, the initial results using the basic dataset were not promising. To address this, 
various dataset splits were tested using a K-fold Cross Validation method. This analysis 
revealed that certain darker or noisier images were significantly impacting the overall 
performance results.

Supposing that 61 images might not be enough for drawing solid conclusions, four 
types of data augmentation techniques were explored. All of these techniques led to 
improvements in performance metrics, with two techniques – translation and rotation – 
standing out by achieving a 98% F1-score.

Table 4 Aortic sclerosis classification results for balanced and augmented dataset using different 
models
Experiment Pre-trained model Map pooling Accuracy Precision Recall F1-Score
1 EfficientNetB0 None 0.96 0.96 0.96 0.96
2 Max 0.75 0.67 0.92 0.79
3 Avg 0.88 0.88 0.88 0.88
4 EfficientNetB4 None 0.92 1.00 0.83 0.91
5 Max 0.86 0.90 0.79 0.84
6 Avg 0.79 0.89 0.67 0.76
7 ResNet152V2 None 0.85 0.84 0.88 0.86
8 Max 0.77 0.76 0.79 0.78
10 Avg 0.85 1.00 0.71 0.83
11 ResNet50V2 None 0.71 0.63 1.00 0.77
12 Max 0.81 0.8 0.83 0.82
13 Avg 0.77 0.88 0.63 0.73
14 MobileNetV3Small None 0.94 0.96 0.92 0.94
15 Max 0.69 0.74 0.58 0.65
16 Avg 0.85 0.9 0.79 0.84
17 MobileNetV3Large None 0.96 0.92 1.00 0.96
18 Max 0.77 0.81 0.71 0.76
19 Avg 0.79 0.94 0.63 0.75
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In the context of health, a higher recall is generally more desirable than higher pre-
cision. Recall represents the rate of correctly identified real positives. A higher recall 
means fewer False Negatives (unhealthy patients) go undetected.

Between the two highlighted data augmentation techniques, rotation would be prefer-
able, since the application of this technique resulted in a 100% recall, surpassing the 95% 
obtained with translation.

In the second phase, the identification of calcium presence in the aortic valve involved 
two distinct approaches: (1) a baseline heuristic method without Deep Learning (DL), 
and (2) a DL-based method using Neural Networks (NNs).

The heuristic approach employed a manual method to binarize images and classify 
them based on the presence of white pixels. As expected, this method produced low and 
inconsistent results, failing to provide solid conclusions.

Expecting better performance, a DL-based method was implemented, employing a 
NN with Transfer Learning from pre-trained models – as used for the object detector 
in the first phase. Initially, the original images, containing the entire heart, were used to 
train the model. However, the model’s performance was around 50%. To enhance perfor-
mance, images were subsequently cropped based on the original bounding boxes limits 
to focus on the region of interest containing the aortic valve.

Two pre-trained models were selected to be applied – EfficientNetB0 and MobileNet-
V3Small – because of their simpler architectures, designed for small datasets. When 
trained with the original dataset, the results were not promising. Trying to improve the 
model’s performance, two data treatment techniques were tested – balancing and data 
augmentation. Data augmentation consisted of rotations of the cropped images, and 
improved the results significantly, when using MobileNetV3Small pre-trained model. 
When combined with data balancing (making sure each class has a similar number of 
examples) the results got even higher, for both pre-trained models.

Since data balancing and augmentation resulted in promising results, this dataset was 
used to test different pre-trained models, for comparison. From six different pre-trained 
models applied, EfficientNetB0 and MobileNetV3Large resulted in the best perfor-
mance, with 96% f1-score. These models are known for their simpler structure, which 
might have resulted in this case with a small dataset. MobileNetV3Large stood out by 
achieving 100% recall, and since high recall is important for identifying all cases of AVC 
and preventing undiagnosed cases, it was considered the best model in this context.

Conclusions
The main purpose of this study was to create an automatic method for detection of Aor-
tic Valve Calcification using DL applied to echocardiograms. To achieve that, it was nec-
essary to (1) create an object detector for aortic valve identification, and (2) to develop 
an automatic classifier that identified the presence of calcium – an indicator of Aortic 
Valve Disease.

Data selection was an essential process to obtain the necessary data for applying DL 
models and achieving the proposed goal. The data collection was conducted in com-
pliance with confidentiality rules, in collaboration with an outpatient clinic. Through 
anonymization, cleansing, and uniformization processes, a dataset containing 61 echo-
cardiography images – all captured from the same heart view – was compiled for use in 
the modeling phase. Recognizing that this quantity of data might not be enough to train 
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DL models and achieve satisfactory results, four data augmentation techniques – zoom-
ing, translation, rotation, and gamma contrast adjustments – were employed to generate 
additional images through transformations of the originals.

The final goal was to compile these two algorithms into an automated framework 
capable of recognizing the aortic valve in an echocardiogram and subsequently classify-
ing the output, thereby indicating the presence of Aortic Sclerosis. Such an advancement 
in medical workflow would simplify such tasks. Given the limited developments in this 
field, particularly in the context of echocardiography, as discerned from the conducted 
literature review, this would indeed represent an innovative advancement.

The object detection model, which aimed to automate the detection of the aortic valve, 
surpassed expectations, even with a relatively small dataset. The most successful model 
was built using Transfer Learning from the YOLOv5s network. To train this model, the 
originally collected dataset was subject to several data pre-processing procedures which 
involved standardizing the images and implementing data augmentation to expand the 
dataset. This augmentation consisted of rotating all the images using two small angu-
lar variations each, resulting in a dataset three times the original size. This model dem-
onstrated a 95% precision in detecting the aortic valve and achieved a 100% recall rate, 
meaning that all aortic valves were accurately located by the model in the echocardiog-
raphy images.

In the subsequent phase, dedicated to developing an automated AVC classifier, the 
results were also very promising. The best approaches were based on DL, employ-
ing Transfer Learning from EfficientNetB0 and MobileNetV3Large pre-trained mod-
els – both with a simpler NN architecture. The dataset was pre-processed to address 
class imbalances, and rotated images were included as an additional data augmenta-
tion method to enrich the training dataset. Both experiments yielded F1-scores of 96%. 
MobileNetV3Large, in particular, stands out by reaching 100% of recall, demonstrating 
its capability to identify all the Aortic Sclerosis cases.

Throughout the process, the guidance of medical professionals played an essential 
role, ensuring that the results were aligned with practical objectives. This collaborative 
effort allowed for continuous adaptation of experiments, aiming to develop a viable solu-
tion that aligns with the proposed goal. As a result of these validation steps, it was deter-
mined that the Neural Network built for object detection performs a solution for aortic 
valve identification, improving medical procedures. In contrast, the obtained classifier 
requires further refinement to achieve higher levels of accuracy and establish itself as a 
reliable tool for diagnosing Aortic Sclerosis.

Future work
Overall, the performance of the solutions obtained proved to be positive. However, there 
is room for further experimentation in the future, and continued development may yield 
better results. Both the object detection and classification solutions were built with spe-
cific parameters that can be adjusted to explore other variations, such as different net-
work architectures or training settings.

The primary challenge encountered through this work was related to data. Acquiring 
the necessary data requires consistent communication with the clinic and special atten-
tion to compliance procedures, making it a time-intensive process. Subsequently, the 
dataset resulted in 61 images, which can be considered limited when compared to the 
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typically larger datasets required to effectively train Neural Networks and achieve great 
results. Notably, the issue of limited data was apparently mitigated in the object detec-
tion model through the implementation of data augmentation, which did not yield the 
same level of improvement in the classification model.

Nevertheless, with the anticipation of receiving a greater volume of images in the 
future, we acknowledge that self-supervised learning will play an essential role in label-
ing new images that might come unlabeled due to the amount and the manual effort that 
would take. Furthermore, the inclusion of a classification head during model training 
will be considered to assess if it enhances the model’s predictive capabilities.

To address this data quantity challenge, it is crucial to ensure that larger quantities of 
data are available for training these Neural Networks in future developments. Sufficient 
data enables the model to achieve a deeper understanding of the dataset and extract vital 
features. Consequently, the model becomes more adaptable to new data and has the 
potential to achieve higher performance levels.

AVS diagnosis is steadily increasing over the last decade and will need population wide 
screening and follow up during the years of progression from moderate disease to severe 
disease requiring intervention, either surgical or percutaneous. The tool developed in 
this work can be perfected to allow automated screening of population at risk to develop 
AVS and incrementally proportionate the possibility to follow up patients, without radi-
ation exposure, over the years. With sufficient data, we can explore deeper into under-
standing the dataset and extract vital features. Namely, we propose moving beyond 
the binary output (healthy vs. calcified) and exploring the different stages of AVC. This 
approach could provide valuable insights for clinical diagnosis and treatment planning. 
The currently proved therapies for AVS are limited to valve replacement at the end stage 
of the disease. However ongoing research has focused on pharmacologic therapies that 
can interfere with Aortic Valve Calcification disease progression. Building on the results 
from this paper it will be possible to test and quantify, noninvasively and without radia-
tion exposure, the effects of such medical interventions.

Furthermore, there are well known risk factors for AVC, such as Hypertension, Dyslip-
idemia or Diabetes, but the influence of risk factor control on AVC progression is lack-
ing. Our approach raises the possibility of large-scale population studies to evaluate such 
interventions.
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