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Abstract 

Pangenomics is a relatively new scientific field which investigates the union of all 
the genomes of a clade. The word pan means everything in ancient Greek; the term 
pangenomics originally regarded genomes of bacteria and was later intended to refer 
to human genomes as well. Modern bioinformatics offers several tools to analyze 
pangenomics data, paving the way to an emerging field that we can call computational 
pangenomics. Current computational power available for the bioinformatics commu-
nity has made computational pangenomic analyses easy to perform, but this higher 
accessibility to pangenomics analysis also increases the chances to make mistakes 
and to produce misleading or inflated results, especially by beginners. To handle this 
problem, we present here a few quick tips for efficient and correct computational 
pangenomic analyses with a focus on bacterial pangenomics, by describing common 
mistakes to avoid and experienced best practices to follow in this field. We believe our 
recommendations can help the readers perform more robust and sound pangenomic 
analyses and to generate more reliable results.
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Introduction
Pangenomic analysis aims at recognizing the sharing of biological information between 
living organisms [1]. The term was introduced by Tettelin and colleagues  [2] in study-
ing the genomic composition of multiple pathogenic isolates of Streptococcus agalactiae 
motivated by the fact that a single genome does not reflect how genetic variability drives 
pathogenesis within a bacterial species, and also limits genome-wide screens for vaccine 
candidates or for antimicrobial targets.

A building block in a pangenomic study is the identification of homologies among the 
genes that compose the input genomes. A gene family is a set of several similar genes, 
formed by duplication of a single original gene [3]. In this context, it is a good idea to 
cluster genes into gene families in order to identify the presence of a family within a 
genome and to study its genetic composition, but more importantly to understand the 
global genetic composition of the whole group of genomes. For this purpose, the con-
cept of sequence homology is taken into account [4]. Transmission of genetic material 

*Correspondence:   
vincenzo.bonnici@unipr.it; 
davidechicco@davidechicco.it

1 Present Address: Dipartimento 
di Scienze Matematiche Fisiche e 
Informatiche, Università di Parma, 
Parma, Italy
2 Dipartimento di Informatica 
Sistemistica e Comunicazione, 
Università di Milano-Bicocca, 
Milan, Italy
3 Institute of Health Policy 
Management and Evaluation, 
University of Toronto, Toronto, 
Ontario, Canada

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-024-00380-2&domain=pdf
http://orcid.org/0000-0002-1637-7545
http://orcid.org/0000-0002-6279-6660


Page 2 of 14Bonnici and Chicco  BioData Mining           (2024) 17:28 

might occur vertically or horizontally  [5], which, added up to gene duplication, makes 
us distinguish homology into three categories: paralogy (namely copies of the same gene 
produced by a duplication event); orthology (the same gene transmitted vertically pro-
duced by a speciation event); and xenology  (given by a gene transmitted horizontally 
between two genomes). Thus, a gene family is a set of genes that are in relation through 
such type of homologies. Pangenomic studies are then essentially based on such infor-
mation. In accordance with homology relations, the presence of a family in the whole 
group of genomes identifies it as a core family. On the contrary, the absence of the gene 
family within one or more genomes defines the family as “accessory”, thus not constitut-
ing an essential biological function for the whole group.

Pangenomic analysis can be seen as a way of exploring the distribution of genetic 
information across a group of genomes, to determine if the group complexity is satu-
rated, hence the pangenome is considered closed, or if any new genome that is included 
in the analysis increases the pangenome size [6], in which case the pangenome is consid-
ered open. This approach relies on the use of mathematical models to predict how fast 
we would expect a pangenome to reach a plateau in an open or closed pangenome. In 
general, a closed pangenome is an indication that we have already discovered the major-
ity of the genomic content of a given group of organisms. In contrast, an open pange-
nome is clear evidence that more has to be discovered from that clade. Recently, Rubio 
et al. [7] showed, by means of a pangenomic analysis of Streptococcus pneumonia strains, 
that accessory genes help to increase functional redundancy in bacteria.

Alternative approaches switch from such a gene-level pangenomic information to 
the level in which whole DNA sequences are taken into account. In these approach, 
the pangenomic content of genomes is represented through formal languages or graph 
structures [8, 9], highly used to represent population-level information in human stud-
ies  [10]. However, such a type of representation aims at recognizing similarity in the 
individual’s variations of the DNA sequence making no distinction between particu-
lar genomic regions, such as genes. In this study, we only consider gene-level analyses, 
rather than genomic-level approaches.

Pangenomics, however, can also be exploited to investigate specific biological ques-
tions, through a plethora of downstream applications. During disease outbreaks, for 
instance, pangenomic studies can be employed to characterize bacterial isolates and 
to track the spread of infections by comparing the genomes of different isolates, help-
ing public health authorities implement targeted control measures and prevent further 
spread  [11]. More in general, the collective analysis of all the genes is developed for 
many specific interests, for example, for the study of a bacterial strain of a given spe-
cies  [12, 13]. Pangenome analyses found many applications in clinical studies  [14, 15], 
for example, they help in identifying drug-target genes in clinical studies [16, 17], or in 
exploring phylogenetic lineages of bacteria [18] that can be linked to strain-specific dis-
ease phenotypes [19], or for recognizing possible antiviral response in bacteria [20] .

Figure 1 summarizes the main steps of a workflow for pangenomic analyses in which 
the genetic composition of genomes is retrieved and analysed for detecting gene fam-
ily composition by means of genetic homology. The result of such a clustering step is 
presented to the researcher for downstream analyses possibly by aggregating it with 
supplementary information (that is, gene coordinates, biological function, etc.). It is 
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important to notice that computational pangenomic analyses need extensive compu-
tational resources. Additional knowledge is anything that is not the mere sequences 
of genes. The calculation of homology is mainly based on genetic sequences, which 
is the essential information needed by every tool for computing gene families. Any 
other additional data is an accessory. It can help with the homology computation, or 
it can be used for downstream analyses.

Fig. 1 Architecture of a pangenomic analysis workflow. Red circles refer to the tips described in this study. 
Examples of application modules for downstream analyses are reported in [21–26]
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Concerning the tips proposed in this document and reported in Fig.  1, Tip 1 puts 
attention to the research question of the reader and how it relates to the other tips. 
Issues related to input data and its quality are reported in Tip 2, while output formats 
and their visualization are the focus of Tip 5. Because this study mainly regards gene-
level pangenomics, Tip 3 gives clues on genome annotation strategies and they can 
affect pangenomic analyses. Tip 4 pays attention to the core of gene-level pangenomics, 
which is the computation of sequence homology and the clustering of genetic sequences 
into gene families. Tip 6 gives guidelines on how to critically evaluate the results of a 
pangenomic detection methodology. Lastly, but not less important, Tip 7 claims open-
ness and reproducibility of data and experiments.

So far, the Quick Tips article series has published manuscript on several topics   (for 
example, [27–33]), but not on pangenomic analysis. We fill this gap by presenting our 
recommendations on this theme: a list of simple tips that should be followed by anyone 
working on this field, to avoid common mistakes and errors.

Our goal is to provide some advice on how to properly conduct a computational 
pangenomic analysis and help you obtain a pangenome which is reliable, reproducible, 
and that will serve as a starting point for answering your research question.

Tip 1: Ensure the data in your hands may answer your research question
Having a clear research question may seem trivial for an inexperienced researcher. How-
ever, it is fundamental to know what is the ultimate goal of your research project because 
several aspects of the analysis will be affected by this. For sure, it is possible that pieces 
of evidence can arise from agnostic data analysis, but, in a general case, it is essential to 
plan a research goal and then find the instruments for driving toward such a goal. First 
and foremost, the ultimate goal of your analysis depend on the conditions of the data 
you use as input. This means that when you start a project on bacterial pangenomics you 
do not only need to determine the set of organisms that best reflects the problem you 
want to solve, but you also have to make sure that the data you have has the right char-
acteristics. It is accepted that bacteria from the same species have big differences in their 
genetic content, due to horizontal gene transfer and mutations, leading to substantial 
differences in phenotype [34]. If the genomic sequence quality and depth are insufficient 
to capture strain-level information, the pangenomic analysis will not be able to detect 
intra-species variation in the gene family identification process [35, 36]. This means that, 
even if you ensure the quality of your sequencing [37, 38], in this step, you may find that 
the data you require to solve a question will not always be available, and this means that 
you might want to reshape your research question. Being aware of the data you need 
affects the feasibility of your analysis and ultimately your project.

Another point of relevance is that the questions you may want to solve normally 
require some downstream analysis that is specific to the question at hand. The key 
is understanding what is required to perform these tasks, as their input is the out-
put of your pangenomic analysis. Depending on downstream needs, you may need to 
use different pangenomic analysis tools. For example, your goal might be to study the 
taxonomic lineage of a species. A common approach is to identify genes that are pre-
sent in all genomes being analyzed, called core genes, and use these to build a phylo-
genetic tree  [39]. However, you might also consider to use for this purpose a gene 
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presence-absence matrix, which contains information about each gene’s presence across 
genomes, information that would otherwise be missed when using only core genes. In 
that case, you need to make sure the tool you use provides that information [40]. This 
type of data representation would be useful also if you wanted to use a wider core gene 
threshold by taking all genes present at least in a percentage of genomes, instead of all of 
them [41].

What is important is knowing where you are headed with your analysis, because this 
will help you make the right decisions along the way.

Tip 2: Know your pangenomic input data and double‑check its quality
Complete and fragmented genomes usually come in the form of one-genome-one-file, 
such that multiple fragments of the same genomes are included within the same file. 
Regarding metagenomic material, it is usually distributed in the form of a Metagenome-
Assembled Genome  (MAG)  [42], which is a single-taxon assembly based on binned 
sequences that have been asserted to be a close representation of an actual individual 
genome. When selecting analysis tools, ensure that they are designed to handle the type 
of data you are working with.

Additionally, always make sure your data has been quality-checked and filtered 
to remove any potential issues  [37, 38]. This can mean different things depending on 
the data at hand. If you start your analysis from raw reads, you will want to make sure 
you discard low-quality reads and contaminants. When reads have been assembled, 
make sure they respect the highest standards in terms of completeness and contami-
nation [43]. Be aware that analyzing highly fragmented genomes using a tool that does 
not account for that can introduce biases in your analysis, leading to an overestimation 
of the pangenome size and an increase in the number of singletons [41]. In fact, many 
of the genomes that are available in public databases are at draft level. Some existing 
methodologies are able to deal with them [40, 44–46], however, it is always convenient 
to understand when a genome is too fragmented to be a good source of pangenomic 
information. Thus, you should evaluate the number of fragments, their length and the 
various statistics based on them, such as N50, L50, and U50  [47]. You can also check 
if the quality of those fragmented genomes is fine by running a phylogenetic analysis 
including reference non-fragmented genomes and by checking the accordance between 
the expected position of the fragmented genome within the obtained phylogenetic tree 
and its resultant location. In some cases, when you are dealing with assembled genomes, 
you might come across unmapped reads. Unfortunately, there is only one tool that can 
effectively utilize these reads, and prematurely discarding them may result in missed 
analysis opportunities [45]. By recognising and addressing these considerations, you can 
conduct a more accurate and meaningful analysis of your pangenomic data.

Tip 3: Be mindful of how your sequences are annotated
Biological sequences are usually distributed in the form of FASTA files [48], which are 
textual files in which the nucleotidic or amino acidic string of one or more sequences are 
reported. No additional information is included in such files, that, instead, is embedded 
in file formats such as GBK (GenBank file format) [49] and GFF (General Feature For-
mat) [50], which version 2 is identical to GTF (Gene Transfer Format). The aim of such 
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formats is to provide information regarding “annotation” of a given genomic sequence. 
In the case of genomic sequences, such an annotation can be, for example, the location 
of the genes contained in it. The GBK file usually contains information on genes and, 
more in general, on CDS (coding sequences) annotation, but recently non-coding ele-
ments have become increasingly common. For this reason, GBK files often report the 
translation of a gene, its known biological functions and so forth. On the contrary, GFF 
files are very general. They allow embedding any type of data, but they are more special-
ized in describing annotation elements within the sequence.

It is important to examine how annotations have been inferred. Which computational 
tool was used to recognize the elements, with which parameters, and did the annotation 
pass through manual curation? Tool parameters may be the cause for the discarding of 
specific elements, such as transfer RNAs (tRNAs), and manual curation may force the 
deletion of some of them. For this reason, we suggest always running a gene detection 
tool, such as Prodigal  [51] or Prokka  [52], but also to evaluate the difference between 
the output of multiple detection tools. It has to be noticed that in the case of fragmented 
genomes or metagenomic data, because of the possible lack of the information on some 
parts of a genome, some of the genes may be missed. This lack of information might have 
a severe impact on pangenomic studies, for example, by switching a gene family from 
core to accessory because one or more copies of a given gene have not been sequenced 
or recognized. Additionally, it is important that the different genomes in the pangenome 
have been annotated with the same pipeline to avoid biases due to annotation strategy.

Some tools may necessitate an annotated version of the genome, in which case it is 
important to ensure that the annotations have been generated using the same version 
of the reference file or the same CDS predictor tool. Be mindful that using manually 
curated or in silico annotation for defining units affects all further steps. Even more 
importantly, pangenomics can be carried out on any unit of information, from genes, 
CDS, and sequence chunks [53], making consistency in annotation units and techniques 
necessary for performing a meaningful comparison.

Tip 4: Use a homology detection approach that is coherent with your input: pay 
attention to parameters
Homology detection is the key step for clustering single genetic sequences spread across 
the input genomes into gene families. If you are focusing on functional clustering, the 
homology of the amino acidic sequences is preferred to nucleotidic sequences because 
such a piece of information more closely represents the secondary structure of the pro-
teins. However, you may focus the analysis on mere evolutionary considerations and 
compute nucleoditic similarity that not always relates to secondary structure because of 
possible frame shifts.

When performing a new pangenomic analysis, it is advisable to employ multiple 
approaches for homology detection rather than relying solely on one. Finding a consen-
sus between different results will make your results more reliable.

In most cases, tools use alignment-based sequence similarity approaches where simi-
larity is computed by local aligners such as BLAST+ [54]. Although not all tools provide 
a direct measure of the significance of sequence similarity, when possible, we suggest 
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you to employ a significance threshold for adjusted e-value of 0.005  [55] rather than 
using the traditional, too permissive 0.05 threshold.

You should also consider that alignment-based measures are not always the best solu-
tion and that such alternative sequence similarity measures could be involved, especially 
if the tool implementing them is aimed to reduce the number of user-defined param-
eters  [56, 57]. Such approaches aim to infer the optimal similarity threshold, which 
can be specific for a pair of genomes or within a given gene family. In the other cases, 
when you use a pangenomic analysis tool, it is essential to be mindful of any parameters 
implemented and their impact on the results, since using different parameters drastically 
affects the size of the final pangenome [58]. Even when you are employing a parameter-
free tool, such as PanDelos  [57] or Edgar  [56], make sure you completely understand 
the approach used. If the tool is determining the required thresholds based on the data 
(that is the case of Edgar) it’s a reasonable approach but if the parameters are fixed under 
the hood by the developer, the tool is not truly parameter-free, you are just not allowed 
to tweak underlying values, which might result in very unreliable results. In this case, 
parameters usually are required to account for different characteristics of the genomes 
under study. Understanding which is the level of similarity and the average nucleotide 
identity  (ANI)  [59] that is expected to be found between related genes is essential to 
set parameters about sequence identity and coverage  [60] that are often set to default 
BLAST values, or in other cases to be generally no lower than 70% of sequence similar-
ity, and for some extreme cases about 50% of coverage and identity. These may largely 
vary depending on the level of similarity between the genomes under study, whether 
they belong to the same species, group, or higher taxonomic levels [53], although most 
commonly pangenomics refers to species-level analyses. Additionally, it is worth noting 
that different species might have varying evolutionary rates, meaning that within-spe-
cies similarity can have different implications across different species  [61]. Unfortu-
nately, the majority of existing approaches have no specific procedures of parameters 
for what concerns a specific level of similarity between paralogous sequences. The only 
current approach that defines a specific treatment for them is PanDelos [57], which sets 
the sequence similarity between paralogous to be equal or greater than the similarity 
between the two most similar orthologous genes of two genomes.

To conclude, the construction of a synthetic benchmark by simulating bacterial evolu-
tion  [62–64] can support the choice of a specific tool, especially when synthetic evo-
lutionary parameters reflect the phylogenomic composition of the studied population. 
In fact, even if there is evidence that some tools always perform better than others, the 
most reliable of them are sometimes discordant because they are suitable for specific 
experiment conditions, such as the level of evolutionary distance between the analysed 
genomes. Such conditions can be simulated in silico and tools can be run over such arti-
ficial benchmarks for understanding which solution works better under such conditions. 
Evaluating the output of a clustering procedure is not a trivial task. Several measures can 
be used as an indication of the divergence between the output and the suspected clusters 
(see [65] for some examples of such evaluation criteria). However, until a golden truth is 
not available, the match between found and real clusters remains unverified. Synthetic 
benchmarks provide such a golden truth and thus allow for supervised validation of 
the obtained clusters. Thus, synthetic benchmarks enable such evaluation because the 
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expected outcome is known by construction (of the benchmark), which is in contrast 
with experiments of living organisms.

Tip 5: Be aware of the available output formats and visualization options
Given a set of genomes, composed of genetic sequences, the essential information of a 
pangenomic analysis is clustering the genetic sequences into gene families. Starting from 
such a cluster’s compositions, usually, a gene of each cluster is selected to be representa-
tive of its family. An information surrogated from such clustering data is the presence-
absence matrix, also called pangenomic matrix, which reports the presence-absence of 
each identified gene family for each of the input genomes. No standards are currently 
employed for the storage and representation of cluster composition and presence-
absence matrix, which usually come in the form of raw text files.

Some available tools might help you visualize the presence-absence matrix, as well as 
other aspects regarding gene family composition, the inferred evolutionary history and 
their distribution along the genomes [66]. These tools are not intended for providing a 
pangenomic content discovery methodology but only for visualizing the results and for 
running downstream analysis. Thus, you need to convert the output of content discov-
ery tools to meet the visualization platform’s input formats. In contrast, other solutions, 
such as Roary [60] already provides embedded visualization instruments. Unfortunately, 
the methodologies for homology detection that better perform in general conditions [61] 
and for fragmented genomes [44] are still strictly focused on the clustering step and lack 
downstream/visualization instruments.

And eventually, as it has been said elsewhere for pathway enrichment analysis  [33], 
keep in mind that different visualization techniques can highlight or hide different 
results, even in pangenomics.

Tip 6: Critically evaluate the resulting gene families
Be always ready to critically evaluate the output produced by a specific methodology. 
Because of their intrinsic behavioural difference, different tools may produce differ-
ent gene family compositions that need to be evaluated case by case. No tool is able to 
always provide the correct output.

Given an output gene family, always compare the number of genetic sequences that 
compose the family with the number of input genomes. When doing this, be aware 
that paralogs increase the family size but not the number of genomes a family is pre-
sent in, also called diffusivity [57]. Hence some tools may merge two or more families, 
with a resultant increased family size, but still preserving the diffusivity of the most dif-
fused family. To catch this aspect, it is always a good practice to evaluate the functional 
coherence of the genes of the family and to analyze and visualize phylogenetic relation-
ships among the genes. Functional coherence can be evaluated by comparing functions 
assigned to genes that can be already known or predicted via tools, such as Prokka [52]. 
Moreover, in case a particular genetic biomarker is already known for the species 
involved in your study, you should check the presence of this gene across genomes. 
However, it has to be noticed that gene families are computed strictly, which means 
that a gene might belong to only one gene family. This aspect excludes the possibility of 
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representing gene fusions [67–70], or any other evolutionary event that is not embedded 
in the problem modelling of a given tool.

When performing these critical evaluations, keep in mind that public resources may 
carry misidentification of genomes, as well as incomplete or incorrect gene functional 
annotation  [71–73]. Moreover, because of the intense horizontal exchange of genetic 
material among microbial organisms, the actual scheme of evolutionary events is closer 
to being a “web of life” [5], rather than a tree. However, the evolution of genetic fami-
lies can still be evaluated in terms of bifurcating trees. Thus, a single phylogenetic tree 
might be insufficient to evaluate the phylogenomic relationships of your organisms. 
Alternatively, phylogenetic analyses of specific strains by means of core genes may be 
more informative and reliable than whole genome comparisons. This analysis can be 
performed by using alignment-free tools, such as CVTree [74], on the sets of sequences 
of core genes, or by multiple sequence alignment of them [75].

Thus, be open to collaboration: pangenomics is a field which requires computational 
expertise (which can be computationally demanding) but also necessitates a good under-
standing of the species being analyzed to start from a biological question which is rel-
evant and understanding the result.

Tip 7: Make your pangenomic analyses open and reproducible
Reproducibility has become a pivotal topic in bioinformatics in recent years: with the 
availability of massive computational resources (in terms of microprocessor capacity and 
memory available for the computation) and fast computers, the possibility to reproduce 
a computational analysis has become easier and broader, even for bioinformatics begin-
ners [76, 77]. Making a study reproducible is also pivotal to allow external researchers 
to find possible mistakes in the computational pipeline, helping generate more robust 
results. Even if computational resources for scientific reproducibility are available at low 
cost worldwide, bioinformatics analyses can be replicated and reproduced only if open 
science best practices are taken into account: 

(a) The usage of open-source programming languages and software platforms;
(b) The sharing of data publicly online;
(c) The sharing of your open software code publicly online;
(d) The publication in open-access journals.

Open source programming languages and software platforms, such as R or Python, in 
fact, are necessary to make a pangenomic analysis reproducible by anyone, since they are 
free and have an open license. The R statistical computing language, in particular, pro-
vides two bioinformatics platforms which supply a larger number of R software libraries 
for computational biology analyses: Bioconductor [78] and Bioconda [79]. Bioconductor 
provides the PanViz [66] software library for pangenomes’ visualization, and Bioconda 
furnishes the PPanGGOLiN [80, 81] software package for pangenome partition and the 
PanTools  [82], Pangenome Graph Builder  (PGGB)  [83], PanX  [26], Pagoo  [84], and 
pgr-tk [85] software libraries for pangenomic data analysis.

A few packages are available for Python as well [86]. The recently-released program-
ming language Julia also provides a software library for pangenome graph creation [87]. 



Page 10 of 14Bonnici and Chicco  BioData Mining           (2024) 17:28 

Regarding application programming interfaces  (API) and visualization tools, we men-
tion ODGI [88].

On the contrary, the usage of proprietary programming languages makes the replica-
tion of the analysis doable only by people who have that license.

Releasing software code on online platforms such as GitHub  [89] and GitLab  [90], 
moreover, can enhance the possibility to reproduce a study [91]. Sharing data online is 
another key component of reproducibility: a pangenomic analysis can be re-performed 
openly only if its datasets are available online to anyone without restrictions. There-
fore, we suggest publishing your raw and processed datasets in open online reposito-
ries such as Gene Expression Omnibus (GEO) [92], ArrayExpress [93], Sequence Read 
Archive  (SRA)  [94], Kaggle  [95], Figshare  [96], Zenodo [97], or the University of Cali-
fornia Irvine Machine Learning Repository [98], following the principles of FAIR (Find-
ability, Accessibility, Interoperability, and Reuse) data sharing  [99]. In case you are 
implementing a new tool for pangenomic analysis, the use of synthetic benchmarks is 
crucial for allowing a quantitative evaluation of the results and a fair comparison with 
other tools.

Similarly, regarding the paper writing and publishing, we recommend submitting your 
article to an open-access journal. Once published, your article will be available to be read 
for free by anyone in the world, even in the least developed countries. A list of open-
access journals in bioinformatics can be found on the ScimagoJR website [100].

Conclusions
In the context of bacterial and more in general microbiome research, pangenomic 
studies exploit advanced bioinformatics tools to explore the genetic content of various 
organisms, providing valuable insights into genetic diversity and evolution. A core pro-
cedure is the clustering of genetic sequences spread along input genomes into gene fami-
lies by means of homology computation. How this step of computational pangenomic 
pipelines significantly affects results and downstream analyses. By following the seven 
tips outlined here, researchers can enhance the reliability and reproducibility of their 
pangenomic analyses. Ensuring clear research questions, high-quality input data, appro-
priate annotation strategies, and critical evaluation of results are fundamental steps. 
Additionally, utilizing open-source tools and sharing data openly is crucial for advanc-
ing the field and fostering collaboration. Ultimately, these practices contribute to a more 
thorough and accurate understanding of genetic landscapes, paving the way for future 
discoveries and innovations in microbial research.
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