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Abstract 

Purpose: The objective of this research is to explore the applicability of machine learn-
ing and fully homomorphic encryption (FHE) in the private pathological assessment, 
with a focus on the inference phase of support vector machines (SVM) for the classifica-
tion of confidential medical data.

Methods: A framework is introduced that utilizes the Cheon-Kim-Kim-Song (CKKS) 
FHE scheme, facilitating the execution of SVM inference on encrypted datasets. This 
framework ensures the privacy of patient data and negates the necessity of decryption 
during the analytical process. Additionally, an efficient feature extraction technique 
is presented for the transformation of medical imagery into vectorial representations.

Results: The system’s evaluation across various datasets substantiates its practicality 
and efficacy. The proposed method delivers classification accuracy and performance 
on par with traditional, non-encrypted SVM inference, while upholding a 128-bit secu-
rity level against established cryptographic attacks targeting the CKKS scheme. The 
secure inference process is executed within a temporal span of mere seconds.

Conclusion: The findings of this study underscore the viability of FHE in enhancing 
the security and efficiency of bioinformatics analyses, potentially benefiting fields such 
as cardiology, oncology, and medical imagery. The implications of this research are 
significant for the future of privacy-preserving machine learning, promoting progress 
in diagnostic procedures, tailored medical treatments, and clinical investigations.

Keywords: Private biomedical data analysis, Homomorphic encryption, Support 
vector machines, Feature extraction

Introduction
Bioinformatics is a rapidly evolving field that integrates computational approaches with 
biological principles to facilitate the analysis and interpretation of complex biologi-
cal data [1, 2]. It plays a pivotal role in medicine, especially in the pathological assess-
ment of diseases, where it aids in deciphering and formulating treatment modalities for 
a range of conditions, including cardiovascular anomalies, cancer development, and 
medical imaging diagnostics. Nevertheless, despite its immense potential, bioinformat-
ics presents significant challenges in data privacy and security [3]. Given the delicate 
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and private nature of medical data, stringent privacy measures are imperative to prevent 
potential misuse by unauthorized entities.

To address the aforementioned challenge, cryptographic countermeasures emerge 
as a promising solution, encompassing techniques such as fully homomorphic encryp-
tion (FHE), secure multi-party computation (MPC), and differential privacy (DP)  [4]. 
Among these techniques, FHE [5] stands as a particularly promising solution. It enables 
the execution of arbitrary computations on encrypted data, voiding the need for prior 
decryption [5, 6]. Such a capability holds the potential to revolutionize general-purpose 
computation and bioinformatics in particular by enabling the outsourcing of sensitive 
tasks to untrusted cloud servers, while preserving the confidentiality of both the data 
itself and the resulting insights.

At a high level, FHE operates on mathematical structures that ensure consistency 
between operations in the plaintext (unencrypted data) and ciphertext (encrypted data) 
domains. This property, known as homomorphism, enables performing mathemati-
cal operations directly on encrypted data (ciphertext) without decryption. Essentially, 
any operation applicable to plaintext has an equivalent counterpart in the ciphertext 
space. This allows a server to manipulate ciphertexts and execute meaningful computa-
tions without ever accessing the underlying data. The resulting ciphertexts then hold the 
encrypted outcome of these computations. Decrypting the results using the secret key 
of the FHE scheme reveals the plaintext outcome, which would be identical to the result 
obtained by performing the same operations on the original plaintext data.

However, it is essential to acknowledge the inherent computational overheads imposed 
by FHE, which pose challenges to its widespread practicality and efficiency. Several fac-
tors contribute to this inefficiency. First, FHE relies on complex mathematical objects 
that are computationally expensive to manipulate. Second, the encryption process itself 
expands the size of the data, further increasing computational demands and bandwidth 
requirements. Finally, while FHE supports basic arithmetic operations like addition and 
multiplication, evaluating more complex functions like exponentiation often requires 
resorting to numerical approximations, introducing potential inaccuracies. Notwith-
standing these challenges, the literature has witnessed an increasing exploration of FHE 
to realize secure medical applications [7–15].

Leveraging the groundwork established in prior research, this work investigates the 
feasibility of private and efficient pathological assessment by hybridizing the Cheon-
Kim-Kim-Song (CKKS) fully homomorphic encryption scheme [16] with support vector 
machines (SVMs). Our aim is to develop a secure and efficient framework for pathologi-
cal assessment that safeguards the confidentiality of sensitive medical data by operating 
on its encrypted representation. The CKKS FHE scheme, characterized by its capabil-
ity to perform computations on encrypted real or complex vectors, presents itself as a 
particularly well-suited candidate for machine learning tasks. SVMs, on the other hand, 
are established machine learning algorithms demonstrably effective in addressing both 
classification and regression problems. We propose a refined approach for the homo-
morphic evaluation of the SVM prediction function on encrypted data, concurrently 
addressing the inherent computational complexities associated with FHE operations. 
We evaluate the performance of our proposed system on four publicly available bench-
mark datasets: the tabular datasets: Cleveland heart disease (CHD) [17], and Wisconsin 
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breast cancer (WBC) [18], and the medical imaging datasets from Medical MNIST 
(MedMNIST): BreastMNIST and PneumoniaMNIST [19]. Our experimental analysis 
demonstrates the efficiency of our framework for medical data analysis, achieving a per-
formance runtime of only a few seconds when using the CKKS homomorphic encryp-
tion scheme with a security level of 128 bits. Moreover, no notable precision loss is 
observed due to the introduction of homomorphic encryption, thereby preserving both 
data privacy and utility.

Contributions

Key contributions of our work include:

• We present a promising bioinformatics framework that integrates the CKKS FHE 
scheme and SVMs to enable secure and efficient pathological assessment of medi-
cal records. Our framework adheres to the stringent 128-bit security standard, safe-
guarding sensitive patient data during analysis.

• Our framework showcases remarkable versatility by facilitating the construction of 
high-performance homomorphic SVM models empowered by an extensive array 
of kernels, comprising linear, polynomial, radial basis function (RBF), and Sigmoid 
functions. This adaptability enables users to select the most suitable kernel for their 
specific data and analysis requirements.

• Our system achieves minimal latency and high accuracy through comprehensive 
optimizations, and feature extraction, ensuring efficient scaling for tabular/imagery 
datasets and complex problems while maintaining performance comparable to unen-
crypted models, as demonstrated by experiments on four different datasets: CHD, 
WBC, BreastMNIST, and PneumoniaMNIST.

• We have made our methodology and implementation freely accessible through open-
source contributions, enabling researchers and developers to readily leverage its 
capabilities on general-purpose CPUs. Our framework is available at: https:// github. 
com/ caesa retos/ svm- fhe.

Organization

The rest of the paper is organized as follows: “Related work” section reviews the related 
work on secure bioinformatics. “Background” section provides the background and defi-
nitions of the concepts and techniques used in our system. “Research methods” section 
describes the research methods and design choices of our system. “Implementation” sec-
tion presents the implementation details and challenges of our system. “Experimental 
results” section reports the experimental results and analysis of our system on four data-
sets. “Discussion” section discusses the limitations and future directions of our system. 
“Conclusions” section concludes the paper and summarizes the main contributions.

Related work
A substantial body of research has focused on developing privacy-preserving machine 
learning techniques for healthcare applications. In this section, we review some of the 
seminal works in this field. We begin with a bird’s-eye view of some relevant works that 
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built privacy-preserving algorithms targeted at healthcare use cases to provide some 
context. Then, we follow this with a more focused examination of privacy-preserving 
SVMs in medical diagnosis.

Privacy-preserving algorithms have been developed for various machine learning 
models, including Convolutional Neural Networks (CNNs)  [8, 20, 21], Long Short-
Term Memory (LSTM) [13], logistic regression [22], and linear regression [23]. These 
algorithms utilize different privacy preserving techniques such as FHE and/or MPC to 
enable secure and private model training and or inference. For instance, Chan et al. [7] 
and Gursoy et al. [24] proposed privacy-preserving genotype imputation methods using 
FHE. Blatt et al. [25], Johnson et al. [26], and Lu et al. [27] proposed private Genome-
wide Association studies (GWAS) with privacy-enhancing technologies. Geva et al. [28] 
used a mixed approach utilizing MPC and FHE for onclogical data analysis with multi-
ple data owners. In addition, Cryptonets [20] and CareNets [8] demonstrated the appli-
cation of CNNs to encrypted data, and Paul et  al. [13] proposed a privacy-preserving 
collective learning method using FHE for LSTM. These advancements enable the pro-
tection of sensitive data in various applications, including genomics and healthcare.

Having explored general privacy-preserving machine learning techniques, we now 
turn our attention to SVMs in this context. The framework eDiag [29] presented a pri-
vacy-preserving online medical prediagnosis framework employing a nonlinear kernel 
SVM for health data classification. eDiag enables users to encrypt health information 
and facilitate server-side prediagnosis without data decryption or model exposure. The 
authors optimized eDiag expression for the nonlinear SVM potentially enhances effi-
ciency, and multiparty random masking and polynomial aggregation techniques aim 
to alleviate computation and communication overhead. They employed classic elliptic 
curve cryptography and reported 94% accuracy on the Pima indians diabetes (PID) data-
set with sub-second SVM evaluation which suggests encouraging performance. Further-
more, eDiag’s open-source availability fosters community engagement and development. 
However, eDiag encounters notable limitations that warrant further exploration. Cur-
rently, it only supports the RBF kernel, restricting its applicability to specific scenarios. 
Testing solely on the PID dataset hinders its generalizability across diverse medical data 
and diseases. Moreover, reliance on classic elliptic curve cryptography might not offer 
the most secure and efficient solutions in light of advances in quantum computing. 
Finally, the authors did not quantify the security level offered by the system.

The authors in [30] proposed a privacy-preserving SVM prediction on encrypted data 
by harnessing the Okamoto-Uchiyama (OU) homomorphic encryption scheme. While 
their system demonstrates promise in certain aspects, it encounters notable limitations. 
On the one hand, the system exhibits strengths, including its multi-class support and the 
accomplishment of an impressive accuracy of 97.3% on the Dermatological Clinics Cases 
dataset [31] comprising 366 samples. This suggests its potential for accurate classifica-
tion in certain medical domains. On the other hand, critical shortcomings constrain its 
broader applicability. The absence of an open-source implementation hinders transpar-
ency and community engagement. Moreover, the system incurs a substantial computa-
tional overhead, ranging from 5 to 48 seconds for SVM prediction, potentially impeding 
its practicality in time-sensitive scenarios. More importantly, the absence of a quantified 
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security level obfuscates its resilience against adversarial attacks, raising concerns about 
its suitability for safeguarding highly sensitive medical data.

Lastly, we review the study by Bajard et  al.  [32], which implemented homomor-
phic SVM with FHE for a non-medical application. This study, along with the work by 
Al Badawi et al. [33], which was developed independently, provides the algorithmic basis 
for our work. The solution supports four SVM kernels: linear, polynomial, radial basis 
function, and Sigmoid. It uses the CKKS scheme to perform approximate arithmetic on 
encrypted real numbers and leverages GPUs to speed up the computation. However, this 
implementation also faces some challenges. It has a security level of 80 to 100 bits, rela-
tively low accuracy (76.79% to 89.58%), and is not open source, which limits its repro-
ducibility and verification. Moreover, it requires a large computational overhead, despite 
the low degree polynomials used in the implementation (5 to 18), as it takes 1.14 to 66.08 
seconds to classify a single encrypted sample, depending on the kernel and the dataset 
used.

Our system offers a comprehensive solution for privacy-preserving SVM inference 
using multiple kernel functions, including linear, polynomial, radial basis function, and 
Sigmoid. We evaluate our system on four real-world datasets: Cleveland Heart Disease, 
Wisconsin Breast Cancer, BreastMNIST, and PneumoniaMNIST, and demonstrate 
its efficiency and accuracy. Our system is open-source and available for public use on 
general-purpose CPUs. Moreover, our system employs state-of-the-art cryptographic 
techniques that are resistant to quantum attacks, and provides the widely recommended 
128-bit security level. Therefore, our system can ensure the confidentiality of the medi-
cal data while minimizing the prediction loss.

Background
We begin by providing overviews of SVM principles and the CKKS homomorphic 
scheme [16], which serve as the building blocks of our framework.

Symbols and notations

Throughout the paper, we use Z , and R to denote the sets of integer and real numbers. 
For any integer q, we represent the set Zq with Z (−q/2, q/2] . In other words, any inte-
ger z, [z]q denotes the unique integer within (−q/2, q/2] that is congruent to z (mod q) . 
The notation [·]q is extended to vectors and polynomials where it is applied for each 
coordinate or coefficient. Bold lowercase letters and bold uppercase letters denote vec-
tors and matrices, respectively. The dot product of two vectors u, v is denoted by 〈u, v〉.

Support vector machine

SVMs are popular supervised machine learning algorithms used for classification and 
regression tasks. They aim to find the best hyperplane which is a decision boundary in 
high-dimensional space that separates data points of different classes. The effective uti-
lization of SVMs rests upon a well-defined sequence of two phases: training and infer-
ence. During the training phase, a model is iteratively optimized based on a labeled 
training dataset. Consequently, in the inference stage, this trained model is used to per-
form predictions on a distinct, unlabeled testing dataset.
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SVM training

Consider a labeled dataset comprising data points (or samples) represented as 
(xi, yi),∀ 0 ≤ i ≤ m− 1 , where each xi ∈ R

n denotes an n-dimensional feature vector 
and the corresponding yi ∈ {−1, 1} denotes its associated label. During SVM training, 
the model analyzes the training dataset in conjunction with a specified kernel function 
K that maps the feature vectors into a higher dimensional space. It then solves either a 
primal or dual optimization problem, yielding the following parameters:

• the set of support vectors {SV }
l−1
0  which is a subset of the input dataset

• the set of coefficients {α}l−1
0  which can be interpreted as weight factors for the sup-

port vectors
• the bias parameter b ∈ R

The exposition of the SVM optimization problems is beyond the scope of this work. We 
leverage public libraries to efficiently train the SVM models and extract the necessary 
parameters. The resultant parameters are subsequently employed within our system to 
execute privacy-preserving predictions.

SVM inference

During the inference phase, the SVM model is used to predict the label y of an input 
feature vector x . This is done by evaluating the decision function in Eq.  (1), where xi 
denotes support vector i.

While a diverse array of kernel functions can be employed in SVMs, the scope of 
this investigation is circumscribed to the following four: linear, polynomial, RBF, and 
Sigmoid.

The CKKS scheme

Within the field of homomorphic encryption, the CKKS scheme [16] stands as a compel-
ling construct for enabling computations directly on encrypted vectors of real-valued 
data. Its foundation rests upon the ring-learning with errors (RLWE) problem  [34], a 
cryptographically hard problem that serves as the bedrock for its robust security guar-
antees. Notably, CKKS can be parameterized to attain stringent security levels, such 
as the widely accepted 128-bit threshold. The scheme is instantiated over the ring 
RQ = ZQ[x]/(x

N + 1) , where Q ∈ Z is the coefficient modulus and N ∈ Z is the ring 
dimension, customarily assuming the form of a power of 2 to enhance computational 
performance.

CKKS empowers users with two distinct execution modes to tailor computations to 
their specific needs: leveled mode excels for circuits of predetermined, limited depth, 
while bootstrapped mode enables evaluating circuits of unknown or boundless depth. 
However, this flexibility comes at a cost: bootstrapped mode incurs a high compu-
tational overhead, making leveled mode generally more efficient for circuits that fit 
within its depth constraints. This trade-off between flexibility and efficiency highlights 

(1)y = sign

(

l−1
∑

i=0

αiyiK (x, xi)+ b

)
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the importance of carefully considering circuit complexity and performance require-
ments when selecting the appropriate CKKS mode. To maximize performance and 
minimize computational overhead, we employ the leveled mode in our implementa-
tion, perfectly aligning with the shallow circuit depth requirements of this work.

Homomorphic operations in CKKS

To enable computations on encrypted data using CKKS, real vectors must undergo 
encoding followed by encryption. Crucially, CKKS harnesses a Single-instruction, 
multiple-data (SIMD) paradigm, empowering it to simultaneously operate on long 
vectors of real numbers. This characteristic renders CKKS akin to a vector comput-
ing machine, capable of performing computations on multiple data elements concur-
rently within a single ciphertext.

Considering two vectors v1 and v2 each ∈ R
N/2 , the initial step involves encod-

ing them into plaintext messages by mapping the vectors onto the polynomial ring 
RQ , which serves as the internal representation within CKKS. This yields plaintext 
messages, p1 = Encoding(v1) , and p2 = Encoding(v2) . The generated plaintext mes-
sages are then encrypted producing distinct ciphertexts c1 = Encryption(p1) , and 
c2 = Encryption(p2) . These encrypted ciphertexts serve as the foundation for per-
forming a variety of homomorphic operations within CKKS, including:

• EvalAdd(c1, c2 ): performs homomorphic point-wise addition of the underlying 
encrypted messages yielding ciphertext cadd = Encryption(Encoding(v1 ⊕ v2)) . 
Note that EvalAdd can take one of the parameters as plaintext and yield an 
encrypted sum as well. For instance, the encrypted sum above can be computed as 
cadd = EvalAdd(c1, p2) . Note that, CKKS supports subtraction as well.

• EvalMul(c1, c2 ): performs homomorphic point-wise multiplication of the underly-
ing encrypted messages yielding ciphertext cmul = Encryption(Encoding(v1 ⊗ v2)) . 
Note also that EvalMul can take one of the parameters as plaintext and yield an 
encrypted product with a lower computational overhead.

• EvalRotate(c, a, d): performs cyclic rotation of the encrypted message vector by an 
amount a ∈ Z

+ in direction d ∈ {left, right}.

The fundamental operations described above serve as building blocks, enabling the 
composition of more complex homomorphic computations, including polynomial 
evaluation, dot-product calculations, and vector-matrix operations.

Research methods
This section presents our solution, which leverages homomorphic encryption to 
deliver secure and efficient bioinformatics analysis. This enables vital computations 
on encrypted medical data without compromising privacy. We begin by defining the 
threat model and security assumptions that underpin our design. Subsequently, we 
unveil the system’s building blocks, describing the implementation details that facili-
tate secure and efficient bioinformatics computations on encrypted data.
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Threat model

Our system involves two primary entities: the client/inquirer, who possesses confiden-
tial data, and the server, who possesses the model, responsible for executing privacy-
preserving SVM prediction. Operating under an honest-but-curious threat model, we 
assume that the server adheres to established protocols but harbors a latent inter-
est in gleaning information from encrypted data or the secret encryption key, poten-
tially for motives such as computational efficiency optimization. To safeguard client 
privacy while maintaining optimal performance, our system encrypts sensitive client 
data while leaving the less sensitive SVM model parameters unencrypted, striking a 
balance between confidentiality and computational overhead.

While it’s possible for a client to potentially infer SVM model parameters through 
repeated queries [35, 36], we prioritize performance and the primary goal of protect-
ing client data confidentiality. Therefore, we intentionally forgo additional mitigation 
measures [32], which would introduce computational overhead, given the non-critical 
nature of the model parameters in our threat model.

In summary, under the assumptions described above, our proposed system guaran-
tees the following security properties: 

1. Client Data Privacy: Throughout the inference process, the server never receives 
any unencrypted data from the client. All computations are performed on encrypted 
data, ensuring that no private information is revealed. This protects the client’s confi-
dentiality and satisfies the essential requirement of privacy-preserving computation.

2. Insights Privacy: The computed result remains encrypted on the server, and only the 
client can decrypt and verify it. The client can then utilize the insights derived from 
the prediction for further analysis or decision making.

3. Insight Accuracy: The server accurately executes the SVM inference on the 
encrypted data, providing the client with a trustworthy and meaningful classification 
result. This preserves the utility of the computation for the client while maintaining 
data privacy.

4. Unlinkability: The server cannot link individual inference requests to specific clients. 
The encrypted data and the resulting classification outcome remain unlinkable, pre-
venting the server from identifying the source of any particular request or tracking a 
client’s activity over time. This further enhances the client’s privacy protection.

FHSVM

Building upon the foundation of FHSVM [33], our system further expands its capa-
bilities by integrating support for RBF and Sigmoid kernels, providing a broader 
spectrum of kernel-based learning tasks using homomorphic encryption. FHSVM’s 
strengths in efficiently handling linear and polynomial kernels are retained, while our 
extensions empower advanced data analysis with the flexibility of a wider set of non-
linear kernel functions.

Aligning with FHSVM’s operational paradigm, our system operates under the 
assumption that the server possesses a pre-trained SVM model as shown in Fig.  1. 
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The specific method for generating the pre-trained model is not crucial to our sys-
tem’s operation. This model can be prepared offline utilizing either of the following 
methods:

• Public or Synthetic Datasets: Training leverages a publicly available dataset or 
a synthetically generated one that closely mirrors the distribution of the client’s 
samples  [37, 38]. This approach ensures model relevance without compromising 
client data privacy.

• Collaborative Training: Multiple clients engage in a secure, federated learn-
ing protocol to train a shared model without directly exposing their sensitive 
data [39–41]. This collaborative effort produces a model tailored to the collective 
data distribution while safeguarding individual privacy.

We note that the SVM model parameters are not encrypted. Although the server pos-
sesses unencrypted SVM model parameters, the crucial privacy-preserving aspect of 
our system lies in its ability to perform homomorphic computations on encrypted cli-
ent queries. This means that the server never gains access to the sensitive data itself, 
mitigating potential privacy risks associated with unencrypted model parameters. We 
acknowledge that encrypting SVM model parameters could offer additional security 
benefits in certain scenarios. However, to optimize performance and resource utili-
zation within the scope of our system’s design, we currently opt to encrypt only cli-
ent queries. Future research could explore the feasibility and trade-offs of encrypting 
model parameters as well.

Once the server has acquired a trained SVM model, it stands ready to perform 
secure and privacy-preserving evaluations on encrypted queries submitted by the cli-
ent. This process is depicted in Fig. 1 as follows: 

1. Query Encryption: The client vigilantly encrypts their query data using a robust 
instantiation of the CKKS scheme. This cryptographic technique enables meaningful 
computations on encrypted data without decryption, thus shielding sensitive infor-
mation from exposure.

2. Encrypted Query Transmission: The encrypted query is securely transmitted to the 
server, ensuring confidentiality during transit.

3. Homomorphic Evaluation: The server, equipped with the trained SVM model, 
embarks upon the evaluation process directly on the encrypted query. The power of 

Fig. 1 Data flow diagram in FHSVM
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homomorphic encryption enables the server to execute model operations and gener-
ate an encrypted result without ever accessing the query’s plaintext content.

4. Encrypted Result Return: The encrypted result of the SVM evaluation is returned to 
the client, preserving the confidentiality of both the query and the insight throughout 
the process.

5. Client-Side Decryption: The client, possessing the rightful decryption key, decrypts 
the encrypted result, finally unveiling the plaintext classification or prediction gener-
ated by the SVM model.

Through this orchestrated interplay of encryption, secure evaluation, and decryp-
tion, our system empowers the server to perform SVM-based computations on confi-
dential client data without compromising privacy at any stage.

Non-linear kernel functions

While FHSVM’s original focus on linear and polynomial kernels provided a solid 
foundation, we recognized the need to embrace non-linear kernels for broader 
applicability. To address this, we successfully integrated RBF and Sigmoid kernel 
implementations, carefully navigating their complexities within the homomorphic 
environment. Their mathematical formulations are presented below:

where α,β , and γ are constants.
While CKKS lacks native support for transcendental functions like exp and tanh , we 

circumvent this limitation by employing Chebyshev polynomial approximations. This 
method, renowned for its accuracy and efficiency in homomorphic settings [42–45], 
allows us to evaluate non-polynomial smooth kernel functions like RBF and Sigmoid 
in the encrypted domain.

To effectively approximate a function f(x) using Chebyshev polynomials, two crucial 
parameters need to be determined:

• Input Range: Delineates the interval [a, b] over which the approximation is valid. 
Determining this range involves empirically examining the testing dataset distri-
bution to ensure it encompasses representative input values. A reasonable range 
balances accuracy with computational efficiency.

• Polynomial Degree: Dictates the complexity of the approximation, with higher 
degrees generally yielding greater precision but incurring increased computa-
tional costs within FHE. Finding the optimal degree necessitates striking a bal-
ance between efficiency and precision, often achieved through experimental 
exploration.

(2)RBF(x, xi) = exp
(

−γ �x − xi�
2
)

(3)Sigmoid(x, xi) = tanh(αx⊤xi + β)
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While fine-tuning these parameters, one should take note of the following constraints:

• Performance Optimization: In FHE environments, polynomial operations can be 
computationally intensive. Thus, selecting a lower-degree polynomial often promotes 
faster computations, but with potential trade-offs in accuracy.

• Approximation Error: Higher-degree polynomials generally yield more accurate 
approximations, but may introduce noise and errors during FHE operations. Careful 
evaluation of the impact of approximation errors on the overall system performance 
is crucial.

Computational infrastructure

Our system relies on two foundational computational libraries: scikit-learn and 
OpenFHE.

Scikit‑learn

We leverage scikit-learn, a Python library acclaimed for its extensive machine learning 
toolkit, to construct and train the core SVM model within our system. This choice is 
driven by scikit-learn’s compelling features such as streamlining model training, predic-
tion, and evaluation processes through a clear and intuitive API, and its well-established 
implementation of SVM algorithms, supporting various kernels: linear, polynomial, RBF, 
and Sigmoid, which aligns with our system requirements.

OpenFHE library

To implement the homomorphic prediction component of our system, we leverage 
OpenFHE (v.1.1.1) [46], a C++ library designed for implementing FHE applications. Its 
key features, aligning with our privacy-preserving goals, include:

• Efficient CKKS Scheme Implementation: Provides a well-optimized implementa-
tion of the CKKS scheme, balancing security and performance for our computational 
needs.

• FHE-Friendly Algorithm Toolbox: Offers a comprehensive suite of algorithms tai-
lored for efficient execution within the FHE domain, enabling diverse computations 
such as dot-product, vector element reduction, Chebyshev polynomial evaluation, 
and many others.

Implementation
To facilitate a clear understanding of our system’s functionalities, we dedicate this sec-
tion to outline the datasets employed by our system and the implementation of its two 
core components: (1) training the SVM model, and (2) executing homomorphic predic-
tion on encrypted samples received from clients.
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Datasets

For system evaluation, we leverage two established bioinformatics datasets: the CHD 
dataset [17] and the WBC dataset [18].

• Cleveland Heart Disease dataset: this dataset is a widely used benchmark in 
machine learning for diagnosing heart disease based on patient records. This open-
source dataset, collected at the Cleveland Clinic Foundation, offers valuable insights 
into heart health and serves as a testbed for evaluating and comparing various dis-
ease prediction algorithms. The dataset includes features such as age, sex, chest pain 
type, resting blood pressure, serum cholesterol, fasting blood sugar, electrocardio-
gram (ECG) results, exercise-induced angina, ST depression induced by exercise, 
peak heart rate, slope of the peak exercise ST segment, number of major vessel 
defects, and thallium stress test results.

• Wisconsin Breast Cancer dataset: Widely used in machine learning for breast can-
cer diagnosis, the Wisconsin Breast Cancer dataset offers valuable insights gleaned 
from digitized fine-needle aspiration (FNA) images. Extracted features like cell nuclei 
characteristics, among 30 features, enable model training for accurate classification 
of benign and malignant cases.

• MedMNIST: MedMNIST is a large-scale dataset of standardized biomedical images, 
inspired by the popular MNIST dataset for handwritten digits. It encompasses 12 
datasets for 2D modalities and 6 datasets for 3D modalities, encompassing various 
primary data modalities commonly encountered in biomedical imaging. All images 
are pre-processed to a uniform size of 28x28 pixels (2D) or 28x28x28 voxels (3D) 
and assigned corresponding classification labels. MedMNIST is designed to facili-
tate research in biomedical image analysis, computer vision, and machine learning 
by providing lightweight 2D and 3D images for classification tasks with varying data 
scales (ranging from 100 to 100,000 samples) and complexities (including binary, 
multi-class, ordinal regression, and multi-label problems). The entire dataset com-
prises approximately 708,000 2D images and 10,000 3D images, offering a valuable 
resource for various research and educational endeavors. In this work, we use the 
BreastMNIST and PneumoniaMNIST datasets: 

1. The BreastMNIST dataset is a binary classification benchmark derived from a 
collection of 780 breast ultrasound images categorized into normal, and malig-
nant classes [47]. The dataset is split into training, validation, and test sets with 
a 7:1:2 ratio, respectively. The source images with a size of 150x150 pixels are 
preprocessed by resizing them to 28x28 pixels for consistency with the MNIST 
dataset.

2. The PneumoniaMNIST dataset is a collection of 5,856 chest X-ray images 
sourced from pediatric patients [48]. Each image is grayscale and originally var-
ies in size from 384x127 to 2916x2713 pixels. For standardization, the images 
are center-cropped using a square window of size equal to the shorter dimen-
sion of the original image and then resized to a uniform size of 28x28 pixels. The 
dataset is designed for binary-class classification, aiming to distinguish between 
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images containing pneumonia and normal chest X-rays. The data is partitioned 
into training (90%), and validation/testing (10%).

Table 1 details the key statistical characteristics of both datasets. We observe that while 
both are of moderate size, the WBC dataset contains notably more samples. Both data-
sets include only numerical attributes and binary classification targets, but the CHD 
dataset exhibits greater feature complexity and potential data limitations due to miss-
ing values. Moreover, both datasets exhibit class imbalance, with a higher frequency of 
benign cases in the WBC dataset and no heart disease in the CHD dataset.

Table  2 compares the BreastMNIST and PneumoniaMNIST. While both datasets 
undergo preprocessing to a uniform size of 28x28 pixels, their original image sizes differ 
significantly (150x150 pixels for BreastMNIST and range from 384x127 to 2916x2713 
pixels for PneumoniaMNIST). Additionally, they employ distinct data splits for training, 
validation, and testing: BreastMNIST uses a 70%-10%-20% split, while PneumoniaMN-
IST utilizes a 90%-10% split for training and validation/testing set.

SVM training

We adhere to established best practices for SVM model training, implementing a struc-
tured pipeline encompassing the phases described below. Through this standard and 
comprehensive pipeline, we ensure the development of a well-trained and robust SVM 
model, capable of reliable and accurate classification.

Table 1 Comparison of the statistics of the CHD and WBC datasets

Characteristic Cleveland heart disease Wisconsin breast cancer

No. of samples 303 569

No. of features 13 9

No. of classes 2 2

Feature types Numerical Numerical

Target variable Binary (disease absence/presence) Binary (malignant/benign)

Source Cleveland Clinic Foundation University of Wisconsin Hospitals

Class distribution Imbalanced Imbalanced

Missing values Present None

Table 2 Statistics of MedMNIST datasets: BreastMNIST and PneumoniaMNIST 

Characteristic BreastMNIST PneumoniaMNIST

Source Data 780 breast ultrasound images 5856 chest X-ray images

Classes Normal, Malignant Normal, Pneumonia

Image Modality Grayscale Grayscale

Original Size Range 150x150 pixels 384x127 - 2916x2713 pixels

Preprocessing Resized to 28x28 pixels resized to 28x28 pixels

Train, Validate, Test 70%, 10%, 20% 90%, 10%, 0% (same as validation set)
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Data preprocessing

We employ min-max (Eq. (4)) data normalization to ensure a balanced range of feature 
values, promoting model convergence and stability. This step is particularly useful within 
the CKKS framework, as maintaining relatively small intermediate values during com-
putations is essential for numerical stability.

Feature extraction

The tabular datasets CHD and WBC were not subjected to any feature engineering 
process. However, our framework requires pre-processing of the medical imaging 
datasets BreastMNIST and PneumoniaMNIST to extract informative numerical fea-
tures before feeding them to the SVM classifier. We employed a simple Autoencoder 
architecture for this purpose (see Table 3). Autoencoders have emerged as powerful 
tools for feature extraction from diverse data modalities, including images, text, and 
video. This capability stems from their ability to learn latent representations that cap-
ture the underlying structure and essential information within the data [49–51]. By 
effectively compressing the original data into a lower-dimensional latent space while 
attempting to reconstruct the input during the decoding process, Autoencoders iden-
tify and retain the most salient features crucial for various downstream machine 
learning tasks. Our Autoencoder architecture consists of an encoder and decoder net-
work. The encoder progressively reduces the input image’s spatial dimensions through 
convolutional layers (Conv2D) with ReLU activation followed by max-pooling layers 
(MaxPooling2D). The flattened feature maps are then reshaped into a 4x4x8 tensor. 
The decoder upsamples the latent representation using Conv2D layers with ReLU 
activation and upsampling layers (UpSampling2D). Finally, a convolutional layer with 
sigmoid activation reconstructs the original image.

(4)xnorm =
x − xmin

xmax − xmin

Table 3 Autoencoder architecture for feature extraction from BreastMNIST and PneumoniaMNIST 
datasets

Type Output shape Param #

Conv2D (None, 26, 26, 16) 160

MaxPooling2D (None, 13, 13, 16) 0

Conv2D (None, 13, 13, 8) 1160

MaxPooling2D (None, 7, 7, 8) 0

Conv2D (None, 4, 4, 8) 584

Flatten (None, 128) 0

Reshape (None, 4, 4, 8) 0

Conv2D (None, 4, 4, 8) 584

UpSampling2D (None, 8, 8, 8) 0

Conv2D (None, 8, 8, 8) 584

UpSampling2D (None, 16, 16, 8) 0

Conv2D (None, 28, 28, 1) 73



Page 15 of 25Al Badawi and Faizal Bin Yusof  BioData Mining           (2024) 17:33  

Data splitting

We partition the input dataset randomly into two mutually exclusive sets:

• Training set: Used for model training and parameter estimation.
• Testing set: Reserved for unbiased model evaluation and performance assessment.

We followed the partitioning of the MedMNIST datasets into training and testing data-
sets according to Table 2. For CHD and WBC datasets, the proportion of data allocated 
to each set is 80% for training and 20% for testing.

Model training

We train SVM algorithms with 4 different kernel functions: (linear, polynomial, RBF, and 
Sigmoid) for each dataset.

Model evaluation

We employ appropriate metrics such as precision, recall, and F1-score to evaluate the 
model’s predictive capabilities on the unseen testing dataset.

Model parameters extraction

Following successful model training, we extract the calibrated decision boundary param-
eters, which encapsulate the model’s predictive essence. These parameters serve as the 
architectural blueprint for the subsequent homomorphic prediction component.

Homomorphic prediction

The second component of our system is the homomorphic SVM prediction to safe-
guard data confidentiality while enabling accurate model inference. Equipped with the 
encrypted sample x and a pre-trained SVM model, we can evaluate the decision func-
tion, as defined in Eq. (1), using CKKS. This employs the following model parameters:

• Support Vectors (SV): the selected samples that delineate the model’s decision 
boundary.

• Dual Coefficients ( αi · yi ): the numerical weights assigned to each support vector, 
quantifying their influence on classification decisions.

• Kernel Function (K): responsible for mapping the samples to a higher-dimensional 
space, facilitating the discovery of non-linear relationships.

• Kernel Parameters: governing the specific characteristics of the chosen kernel func-
tion, fine-tuning its ability to capture patterns within the data.

Table 4 Chebyshev polynomial approximations parameters for our SVM models. a and b are the 
lower and upper bounds of the polynomial approximation, respectively

Function a b Poly degree

CHD & WBC exp -100 0 119

tanh -60 60 495

BreastMNIST & PneumoniaMN-
IST

exp -10 0 13
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Building upon the aforementioned compatibility challenge between CKKS and non-pol-
ynomial kernels, we address it through a Chebyshev polynomial approximation of the 
kernel function (K). This approach effectively aligns the decision function operations 
with the supported operations of CKKS, enabling its homomorphic evaluation. Notably, 
by restricting Eq. (1) to fundamental arithmetic operations, such as dot product, addi-
tion, and multiplication, we circumvent potential computational hurdles and facilitate 
seamless execution within CKKS. The parameters associated with the Chebyshev poly-
nomial approximations for the SVM model, employing RBF and Sigmoid kernels on the 
CHD, WBC, and MedMNIST datasets, are presented in Table 4.

One final aspect to note is that our system refrains from computing the sign func-
tion on the server side. This decision stems from the inherent challenges associated with 
efficiently approximating non-smooth functions like the sign function within the homo-
morphic domain, as opposed to smooth kernels  [32]. To circumvent this obstacle, we 
relocate the sign function’s computation to the client side, effectively removing it from 
the computationally demanding portion of the protocol. This optimization, however, 
rests on the crucial assumption that the SVM model parameters themselves do not har-
bor sensitive privacy information and need not be safeguarded against potential leakage 
attacks from the client side, even through multiple queries. Under this optimization, we 
achieve a remarkable improvement in efficiency, as homomorphic computations are lib-
erated from the complexities of sign function approximation. That being said, we note 
that if the user is interested in computing the sign function on the server, that can still be 
approximated via Chebyshev polynomials.

CKKS parameters

In this section, we present the cryptographic parameters of the CKKS scheme that are 
used to implement the homomorphic SVM prediction procedure.

The efficacy of the SVM prediction procedures within our framework depends on the 
careful selection of cryptographic parameters within the CKKS scheme. Two parameters 
of primary importance are the ring dimension N and the ciphertext coefficient modulus 
bit-width log2Q . The ring dimension N dictates the capacity for encapsulating multiple 
numbers within a single ciphertext, thereby exerting a direct influence upon the compu-
tational efficiency of homomorphic operations. Moreover, N plays a pivotal role in deter-
mining the security level of the scheme, with larger values generally affording enhanced 

Table 5 Cryptographic parameters for the CKKS scheme at the 128-bit security level, for each kernel 
and dataset. k = 210

Kernel

Dataset Linear Polynomial RBF Sigmoid

(N, log2 Q) (N, log2 Q) (N, log2 Q) (N, log2 Q)

Cleveland Heart Disease (16k, 258) (32k, 756) (32k, 804) (65k, 892)

Wisconsin Breast Cancer (16k, 287) (32k, 644) (32k, 804) (65k, 996)

BreastMNIST − − (64k, 640) −
PneumoniaMNIST − − (64k, 640) −
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protection against adversarial attacks. The ciphertext coefficient modulus Q governs the 
permissible multiplicative depth, noise accumulation, and plaintext precision. While a 
large Q allows the evaluation of deeper circuits, it causes an escalation in computational 
costs and ciphertext expansion. Therefore, choosing the optimal parameters for CKKS is 
a trade-off between security, efficiency, and precision.

Table 5 illustrates the carefully calibrated values of N and log2Q employed for each 
SVM implementation, encompassing a diverse array of kernel functions (linear, poly-
nomial, radial basis function, and Sigmoid) and datasets (CHD, WBC, BreastMNIST, 
and PneumoniaMNIST). All configurations diligently adhere to a robust 128-bit secu-
rity level for CKKS. The selection of Q is predicated upon the precise computational 
demands of the specific SVM, with particular attention devoted to the multiplicative 
depth required for its circuit and the desired computational precision. Note that we ran 
only the RBF kernel for the medical images as it demonstrated the best performance.

The table further emphasizes the intricate trade-off that exists between the ring 
dimension and the ciphertext modulus. Specifically, it reveals that an increase in log2Q 
necessitates a corresponding increment in N to maintain the targeted security level.

Experimental results
In this section, we present the experimental results of our implementation. We first 
describe the experimental infrastructure, including the parameters, and the evaluation 
metrics. Then, we evaluate the accuracy of the SVM models. Finally, we analyze the per-
formance of homomorphic prediction, including the computation time.

Experimental infrastructure

We ran our experiments on a laptop equipped with 12th Gen Intel(R) Core(TM) 
i7-12700H CPU, 64 GB RAM, and Ubuntu (v. 22.04.2 LTS). We used gcc (v. 11.4.0) as the 
C++ compiler, Python (v. 3.10.12) as the scripting language, scikit-learn (v.1.3.0) as the 
machine learning library for SVM training, and OpenFHE (v.1.1.1) as the homomorphic 
encryption library to implement the homomorphic SVM inference. OpenFHE was built 
with multi-threading enabled to ensure optimum performance.

Evaluating the SVM models

To rigorously assess the efficacy of the developed SVM models, we employed a set of 
widely adopted evaluation metrics, commonly used for data-driven classifiers: precision, 
recall, and F1 score. These metrics were calculated specifically on the testing dataset to 
ensure an unbiased assessment of model performance. We provide a brief description of 
these metrics below:

• Precision: This metric measures the proportion of correctly identified positive cases 
among all cases predicted as positive. It reflects the model’s ability to avoid false posi-
tives.

• Recall: This metric measures the proportion of correctly identified positive cases 
among all actual positive cases. It evaluates the model’s ability to correctly identify 
true positives.
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• F1 Score: This metric provides a balanced measure of both precision and recall, rep-
resenting a harmonic mean of the two. It offers a comprehensive assessment of the 
model’s overall performance in identifying positive cases.

Table 6 presents the performance of four SVM models, employing different kernels (lin-
ear, polynomial, RBF, and Sigmoid), on the datasets: CHD, WBC, BreastMNIST, and 
PneumoniaMNIST. Kernels play a crucial role in SVMs, determining the similarity func-
tion between samples and influencing the decision boundary.

Analyzing the tabular datasets WBC and CHD. Firstly, the WBC dataset consist-
ently exhibits higher performance across all metrics and kernels compared to the CHD 
dataset. This suggests either a higher ease of classification within the WBC dataset or a 
greater suitability of SVM models for this particular dataset. Secondly, the Sigmoid ker-
nel emerges as the top performer for both datasets, followed closely by the RBF kernel. 
Linear and polynomial kernels demonstrate lower or relatively similar performance. This 
pattern potentially indicates greater flexibility and adaptability of Sigmoid and RBF ker-
nels to the data distribution, or conversely, potential underfitting/overfitting issues with 
linear and polynomial kernels. Finally, the performance differences between kernels are 
notably more pronounced for the WBC dataset than the CHD dataset. This observation 
could stem from a higher prevalence of nonlinear and complex patterns within the WBC 
dataset, or alternatively, greater noise and outlier presence within the CHD dataset.

For the medical imaging datasets, our SVM models equipped with RBF kernels exhib-
ited promising performance on both BreastMNIST and PneumoniaMNIST, consistently 
surpassing other kernel configurations. The RBF kernel achieved F1-scores of 0.80 and 
0.85 on BreastMNIST and PneumoniaMNIST, respectively. These findings suggest the 
efficacy of the chosen kernel and learning algorithm for medical image classification. 
Notably, the original MedMNIST authors reported similar performance using auto-
sklearn, achieving accuracies of 0.803 and 0.855 on BreastMNIST and PneumoniaMN-
IST, respectively, demonstrating the competitiveness of our approach.

Table 6 SVM models quality in terms of precision, recall and F1

Kernel

 Dataset Metric Linear Poly RBF Sigmoid

CHD Precision 0.73 0.70 0.73 0.75

Recall 0.73 0.70 0.73 0.75

F1 0.73 0.70 0.73 0.75

WBC Precision 0.96 0.90 0.97 0.97

Recall 0.95 0.92 0.95 0.95

F1 0.95 0.91 0.96 0.96

BreastMNIST Precision − − 0.80 −
Recall − − 0.81 −
F1 − − 0.80 −

PneumoniaMNIST Precision − − 0.87 −
Recall − − 0.85 −
F1 − − 0.85 −
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Performance analysis of homomorphic prediction

We now evaluate the runtime performance of the homomorphic prediction phase, moti-
vated by the absence of significant predictive accuracy discrepancies between encrypted 
and unencrypted SVM inference, as demonstrated earlier. This observation highlights 
the high-fidelity computations enabled by the CKKS scheme. However, a potential 
trade-off exists in the form of latency overhead introduced by the homomorphic encryp-
tion layer, necessitating dedicated investigation.

To quantify the prediction latency associated with homomorphic execution, we 
employ various benchmarking techniques to measure the server-side time required for 
evaluating the homomorphic SVM prediction. By analyzing the granularity of these 
runtime measurements, we aim to identify the potential overhead associated with homo-
morphic computations and assess its suitability for real-world deployment scenarios.

Table 7 summarizes the latency characteristics of homomorphic SVM inference meas-
ured on four datasets: CHD, WBC, BreastMNIST, and PneumoniaMNIST. Runtime 
performance, measured in seconds, serves as the decisive metric quantifying the time 
required by the server to perform encrypted predictions across different kernel SVM 
types.

An observable correlation exists between kernel complexity and latency. The linear 
kernel, characterized by its simple structure, consistently achieves the lowest latency 
across CHD and WBC datasets. This is followed by the polynomial kernel, while RBF 
and Sigmoid kernels exhibit the highest latencies. This hierarchy reflects the inherent 
computational complexity of each kernel. While the linear kernel benefits from its sim-
ple form, requiring only a dot product computation, its nonlinear counterparts demand 
more intricate circuits due to kernel evaluation.

Furthermore, both the dataset’s dimensionality and size influence latency. The WBC 
dataset, possessing a higher number of samples and support vectors, consistently 
exhibits higher latency than the CHD dataset across all kernels. This aligns with the 
expectation that larger datasets necessitate more support vectors, leading to increased 
computational overhead.

The analysis of the latency spectrum reveals a substantial disparity between linear and 
nonlinear kernels. Linear kernels consistently outperform others in terms of real-world 
feasibility, demonstrating significantly lower latencies ranging from 0.39 to 0.52 seconds. 
This promising performance suggests the potential of homomorphic prediction with 
linear kernels for practical applications. Conversely, nonlinear kernels, particularly the 
Sigmoid kernel, exhibit significantly higher latencies ranging from 3.83 to 12.80 seconds. 

Table 7 Average latency (in seconds) of homomorphic SVM inference on the CHD, WBC, 
BreastMNIST, and PneumoniaMNIST datasets

Kernel

 Dataset Linear Poly RBF Sigmoid

CHD 0.39 3.83 4.81 11.23

WBC 0.52 4.41 5.73 12.80

BreastMNIST − − 2.09 −
PneumoniaMNIST − − 2.03 −
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This stark difference emphasizes the importance of judicious kernel selection, balanc-
ing precision, latency, and overall performance within the context of specific tasks to 
achieve optimal outcomes.

Finally, the table shows that the average latency for both medical imaging datasets 
is remarkably similar, with BreastMNIST exhibiting a latency of 2.09 seconds and 
PneumoniaMNIST showing a latency of 2.03 seconds. This suggests that the proposed 
homomorphic SVM inference framework exhibits consistent performance across the 
two medical imaging datasets when employing the RBF kernel.

Performance comparison with existing works

Comparing our work with existing studies poses significant challenges due to several 
factors. Firstly, different privacy-enhancing technologies are employed, making direct 
comparisons difficult. Secondly, most implementations are not open-source, limit-
ing access to detailed information about their approaches. Thirdly, various datasets 
are used, which can impact the performance and efficiency of the privacy-preserv-
ing techniques. Lastly, different computing platforms (single-thread or multi-thread 
CPUs and GPUs) are utilized, which can influence the results. Nevertheless, to pro-
vide a comprehensive understanding of the latency associated with privacy-preserv-
ing SVM inference, we present Table  8, which benchmarks relevant state-of-the-art 
implementations. Our goal is to provide the reader with a clearer understanding of 
the relative efficiency of each approach given a certain problem configurations, rather 
than favoring a specific solution which can only be done under unified configurations.

It is notable that among the solutions that utilize SVM with an RBF kernel and FHE 
for privacy preservation, our solution consistently outperforms others across vari-
ous datasets, with a latency range of 2.03 to 5.73 seconds on CPU. For example, [32] 
achieves a latency of 21.42 seconds for a dataset with 13 features on GPU. In contrast, 
[29], which employs random masking and aggregate polynomial privacy-enhancing 
technology, achieves a higher performance with a latency of 1.5 seconds on CPU. 

Table 8 SVM inference latency (in seconds) for state-of-the-art works. PID stands for Pima Indians 
Diabetes, DD stands for Dermatology Database, and PET stands for Privacy-Enhancing Technology

Note that [54] performs feature extraction on CIFAR-10 but does not specify the number of features used for training the 
SVM model

Art Dataset # Features PET SVM kernel Platform Latency

[33] Elliptic 166 CKKS Poly CPU 25.21 s

[32] Statlog Heart [52] 13 CKKS RBF GPU 21.42 s

PID [52] 8 Sigmoid 21.14 s

[53] WBC 30 Paillier Linear CPU 47.00 s

[54] CIFAR-10 - CKKS Poly CPU 11.42 s

[30] DD [55] 34 OU Linear CPU 7.22 s

[29] PID [52] 8 Mask RBF CPU 1.50 s

Ours WBC 9 CKKS RBF CPU 5.73 s

CHD 13 4.81 s

BreastMNIST 128 2.09 s

PneumoniaMNIST 128 2.03 s
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Another important observation is that solutions based on the CKKS FHE scheme 
outperform those using the partial homomorphic encryption scheme, Paillier. This is 
because Paillier only supports homomorphic additions and requires additional work-
arounds to handle multiplications, making it both user-unfriendly and less efficient.

Discussion
In this section, we discuss the main findings and implications of our work. We also high-
light the limitations and future directions of our research.

Main findings and implications

Our work evaluates the feasibility of enabling privacy-preserving bioinformatics using 
SVM and homomorphic encryption. We implement and evaluate our approach on four 
real-world tabular and imaging datasets: CHD, WBC, BreastMNIST, and PneumoniaM-
NIST. The results show that our approach achieves comparable accuracy to the unen-
crypted SVM prediction, while preserving the confidentiality of the input samples. This 
demonstrates the feasibility and effectiveness of our approach for practical applications 
that require secure and accurate SVM prediction.

Our approach also offers several advantages over existing methods for privacy-pre-
serving SVM prediction. First, our approach does not require any interaction or com-
munication between the client and the server during the prediction phase, unlike 
methods based on secure MPC or garbled circuits (GC) [56, 57]. This reduces the net-
work overhead and the latency of the prediction process. Second, our approach does not 
rely on any trusted third-party or cryptographic assumptions, unlike methods based on 
attribute-based encryption (ABE)  [58]. This simplifies the security and the implemen-
tation of our approach compared to these methods. However, our approach does not 
address the case of malicious adversaries who may tamper with the encrypted data or 
the model parameters. Therefore, our approach assumes a semi-honest or honest-but-
curious threat model, where the server follows the protocol but may try to learn infor-
mation from the encrypted data. Third, our approach introduces some approximation 
errors due to the polynomial approximation of the RBF and Sigmoid kernel functions. 
These errors are inevitable in the CKKS scheme, which does not support exact arith-
metic operations on encrypted data. However, our approach minimizes these errors by 
choosing appropriate CKKS parameters and more accurate polynomial approximation 
techniques. As a result, our approach preserves the quality and the integrity of the pre-
diction results to a large extent.

Limitations and future directions

Despite the promising results and the advantages of our approach, we acknowledge 
that our work has some limitations and challenges that need to be addressed in future 
research. First, our approach is currently limited to binary classification problems, and 
it does not support multi-class or multi-label SVM prediction. Extending our approach 
to handle more complex and realistic classification scenarios is an important direction 
for future work. Second, our approach has not been tested on large-scale or high-dimen-
sional datasets, which may pose significant challenges in terms of computation time and 
memory consumption. Evaluating our approach on more diverse and challenging datasets 
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and comparing it with state-of-the-art methods for privacy-preserving SVM prediction 
is a further direction for future work. Third, our approach can benefit from hardware-
accelerated implementations of CKKS, which offer 2 to 3 orders of magnitude speedup 
against CPU implementations. Several works have proposed efficient hardware architec-
tures for CKKS-based encryption and decryption accelerators on GPU, FPGA, and ASIC 
platforms [59–67]. These works demonstrate the potential of exploiting the massive par-
allelism and the high data rates available in hardware to improve the performance and the 
scalability of CKKS-based applications. It would be interesting to check the performance 
of our system in these implementations and compare it with the software-based imple-
mentation with the OpenFHE library. This could provide further insights into the trade-
offs between hardware and software solutions for privacy-preserving SVM prediction.

Conclusions
This work investigates the potential of fully homomorphic encryption (FHE) for secure 
and efficient bioinformatics analysis. We present an efficient framework integrating 
the CKKS FHE scheme with support vector machines (SVMs), enabling the pathologi-
cal assessment of medical data in its encrypted form while preserving confidentiality. 
Our framework, implemented and evaluated on real-world datasets (two tabular - CHD 
and WBC, and two medical imaging - BreastMNIST and PneumoniaMNIST), protects 
user-provided samples by encrypting them and facilitating homomorphic SVM infer-
ence on the encrypted inputs. The proposed framework achieves high precision, com-
parable to unencrypted SVM inference, across various kernels (linear, polynomial, RBF, 
and Sigmoid). Demonstrating efficiency, the framework executes within seconds, rang-
ing from 0.39 seconds to 12.80 seconds, depending on the chosen kernel and dataset 
size. The framework provides a 128-bit security level against known attacks on CKKS. 
This research emphasizes the effectiveness of SVMs for medical data classification, high-
lighting the importance of appropriate kernel selection based on data characteristics and 
application constraints. Furthermore, the feasibility of homomorphic prediction using 
the CKKS scheme is established, offering promising accuracy while necessitating further 
investigation for latency optimization in real-world scenarios.
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