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Abstract 

Purpose: The analysis of absorption, distribution, metabolism, and excretion (ADME) 
molecular properties is of relevance to drug design, as they directly influence the drug’s 
effectiveness at its target location. This study concerns their prediction, using explain-
able Machine Learning (ML) models. The aim of the study is to find which molecular 
features are relevant to the prediction of the different ADME properties and measure 
their impact on the predictive model.

Methods: The relative relevance of individual features for ADME activity is gauged 
by estimating feature importance in ML models’ predictions. Feature importance is cal-
culated using feature permutation and the individual impact of features is measured 
by SHAP additive explanations.

Results: The study reveals the relevance of specific molecular descriptors for each 
ADME property and quantifies their impact on the ADME property prediction.

Conclusion: The reported research illustrates how explainable ML models can provide 
detailed insights about the individual contributions of molecular features to the final 
prediction of an ADME property, as an effort to support experts in the process of drug 
candidate selection through a better understanding of the impact of molecular 
features.

Keywords: ADME properties, Explainable machine learning, Molecular descriptors, 
Drug design

Introduction
The analysis of Absorption, Distribution, Metabolism, and Excretion (ADME) properties 
is of great interest in early drug design as they directly determine the drug’s effectiveness 
at its target location. Over the last decades, significant progress has been made in devel-
oping machine learning (ML)-based predictive models for quantitative structure-activity 
relationship (QSAR) [1, 2], in general with important contributions to ADME property 
prediction [3–5].

The availability of publicly accessible experimental data is paramount for the advances 
in such ML-based QSAR prediction for ADME properties [6–9]. From an ML point of 
view, the prediction of chemical properties can be accomplished with either conven-
tional methods, which use a fixed-size feature representation, usually calculated from 
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molecular descriptors, or, alternatively, by relying on graph-based models, such as graph 
convolutional neural network (CNN) models [10], or message-passing networks [11], 
which implement a graph-based representation of the molecule.

Such complex, often non-linear, ML models are popular as they outperform simpler 
models in terms of predictive power [12, 13]. Nevertheless, they are often character-
ized as black-boxes, as the complexity of the underlying algorithms and functional rep-
resentations does not provide a human-understandable explanation of the reasoning 
behind the model. This is a strong limitation when the interpretability of the model is 
a requirement, for example when experts are interested in exploring the feature space 
for determining feature importance [14]. To alleviate this shortcoming, much research 
on Explainable Artificial Intelligence (XAI) [15, 16] has been conducted in recent years, 
aiming to add the ability to get human-understandable explanations of the model’s rea-
soning; that is, making black-box models more transparent [17, 18]. Amongst the most 
popular explainable ML approaches, we find Local Interpretable Model-agnostic Expla-
nations (LIME) [19] and SHapley Additive exPlanations (SHAP) [20]. They provide post-
hoc explanations of the predictions of the model, either for the model in general (global 
level), or for an observation in particular (individual level). Partial Dependence Plots 
(PDP) [21] examine the marginal effect of a variable on the predictions of the model. 
SHAP analysis is a common approach for discovering feature relevance from ML models 
in different domains [22–24].

In this study, we focus on the investigation of feature impact for the prediction of sev-
eral ADME properties with ML models. The study is carried out on a recently published 
data set by Fang et al. [7]. This study offers curated data sets tailored for predicting six 
internal in vitro ADME endpoints based on the calculation of a set of physicochemical 
descriptors. We follow an explainable ML approach by first quantifying feature impor-
tance, thus identifying the most important features, and then investigating the feature 
impact of those most relevant features on the prediction of the ML model. The applied 
method is based on the use of SHAP explanations and dependence plots analysis from 
the best-performing ML model in each case.

Materials section describes the data set under study, while Methods section elaborates 
on the explainable ML approach and Results and Discussion section respectively present 
and discuss the feature relevance results for ADME properties prediction.

Materials
The ADME properties define the drug’s pharmacokinetic profile on-site. The data 
under study are part of a public ADME properties data set released by Fang et al. [7] 
that includes important information to measure the effectiveness of drugs in cells. 
This publicly available data set incorporates 3,521 non-proprietary small-molecule 
compounds selected from different available compound libraries, mainly from eMol-
ecules1, but also from the ChEMBL, Enamine,WuXi LabNetwork and Mcule data-
base. The public data set comprises data for six ADME in  vitro endpoints, which 
are described using 316 molecular descriptors calculated from the RDKit library. 

1 https:// search. emole cules. com

https://search.emolecules.com
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The in vitro endpoints include human and rat liver microsomal (HLM/RLM) stabil-
ity reported as intrinsic clearance expressed in mL/min/kg, human and rat plasma 
protein binding (hPPB/rPPB) values expressed as percent unbound, solubility at pH 
6.8 (Sol) expressed in ug/mL. The MDR1-MDCK efflux ratio (MDR1-MDCK ER) is 
expressed as the B-A/A-B ratio, i.e. the ratio between the basolateral-to-apical per-
meability and vice-versa. Activity values are provided in logarithmic scale. According 
to the data set curators [7], the public ADME data set shows a structural diversity of 
compounds in terms of the number of scaffolds and singletons and is rich in experi-
mental observations by covering a large range of experimental values for all six 
in vitro ADME endpoints. Table 1 and the boxplots in Fig. 1 show, in turn, the main 
statistics and the distribution of values for each ADME endpoint. Evaluating the com-
pounds of the public ADME dataset from a point of view of general drug likeliness, 
the compounds meet the requirements of a set of known relevant physicochemical 
properties. According to Ghose’s rule for drug likeliness [25], the molecular weight 
should be in range from 180 to 480 Da, the partition coefficient descriptor (logP) 
should have values in the range from -0.4 to 5.6, the molar refractivity in the range 
from 40 to 130 m 3 mol −1 , and, according to Veber’s rule [26], the topological surface 
should have values no greater than 140 Å 2 . Figure  2 shows that the distribution of 

Table 1 Main statistics of ADME activity values in logarithmic scale. The abbreviatons N, 25%, 50%, 
75% stand for number of compounds, 25th , 50th , and 75th percentiles

Sol MDR1 rPPB hPPB RLM HLM

N 2,173 2,642 885 1,808 3,054 3,087

Mean 1.267 0.399 0.715 0.636 2.253 1.309

Std 0.668 0.681 0.750 0.719 0.751 0.625

Min -1 -1.046 -1.403 -1.593 0 0

25% 1.130 -0.157 0.211 0.164 1.691 0.675

50% 1.546 0.156 0.781 0.659 2.320 1.183

75% 1.681 0.903 1.278 1.170 2.831 1.802

Max 2.179 2.725 2 2 3.969 3.339

Fig. 1 Boxplot representation of the distribution of activity values for each ADME endpoint in logarithmic 
scale. The box represents the first and third quartile, the whiskers extend to the minimum and maximum 
within 1.5 times the interquartile range and outliers are shown as circles
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values of the 3,521 compounds of the data set is mainly inside the specified ranges for 
drug likeliness for these physicochemical properties.

The molecular representations used in this study comprise the 316 2D topologi-
cal descriptors calculated from the RDKit library2. The information about the 1024-
bit structural fingerprint descriptor is disregarded, as fingerprints need to be analyzed 
entirely and a division into sub-elements is meaningless. The data set provides training 
and test sets for each ADME endpoint comprising, in turn 80% and 20% of observations.

Methods
The relevance of individual features for the prediction of the ADME activity is based on 
predictive models. Several regression models were trained and the best performing one 
was used for the feature relevance analysis. More in detail, regression trees (RT), Nearest 
Neighbor regressors (NN), Random Forest regressor (RF) [27] and LightGBM [28], an 
efficient variant of Gradient Boosting machines [21], were trained for each ADME data 
set. RF and LightGBM are ensemble models, which use a set of weak classifiers to con-
struct a stronger model. While RF uses a bagging approach to combine weak classifiers, 
LightGBM uses a boosting approach by sequentially adapting weak classifiers to build an 
improved model [29].

The training and test data set provided in [7] were used in our experiments to build 
and evaluate the model. The regression models were trained using 5-fold cross-valida-
tion on the training set. Results are reported from the prediction error on the test set 
measured by the mean squared error (MSE) and, additionaly, the average Pearson cor-
relation coefficient (Pearson’s r value) for comparability with the results of the original 
study by the authors of the data set.

Fig. 2 Boxplot representation of the distribution of molecular weight (MolWeight), topological polar surface 
area (TPSA), partition coefficient (logP), and molar refractivity (MR). The box represents the first and third 
quartile and the whiskers extend to the minimum and maximum within 1.5 times the interquartile range

2 https:// www. rdkit. org/

https://www.rdkit.org/
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For ensemble models (RF and LightGBM), feature importance is calculated from 
random feature permutation [30], based on the reduction in prediction accuracy elic-
ited by the permutation. The most influential features in predicting each ADME prop-
erty, are then shown in a feature relative relevance plot.

Feature relevance is further investigated using SHAP analysis [31], a method 
derived from Shapley values in game theory [32]. SHAP builds a surrogate model 
for the predictions of the original black-box ML model. The surrogate model aims 
to assess the sensitivity of each feature on the prediction of the model by represent-
ing it as Shapley additive values. Therefore, the surrogate model can break down the 
final prediction of the model into feature-specific contributions, the so-called Shapley 
additive values (abbreviated as SHAP values). In consequence, these additive explana-
tion models can evaluate the impact of single features on the overall prediction of the 
model. The explanations can be either local for the prediction of a single observation 
or global for the model in general. In this study, we focus on the analysis at the global 
level as the interest of the study is the general relevance of features in the prediction 
of each ADME endpoint. In the following, several useful graphics of the SHAP analy-
sis are described to illustrate the analytical approach applied in the experiments.

Beeswarm plots describe the feature importance on the prediction of the model. As 
an illustrative example from the results reported in Results section, the beeswarm plot 
in Fig. 4 describes the features’ relevance according to their SHAP value in the mod-
el’s prediction. These plots show the absolute impact a feature can have on the pre-
dicted value, i.e. the impact to increase or decrease the predicted value represented 
with either positive or negative SHAP values. For example, the partition coefficient 
(logP) calculated by the Crippen descriptor can at most change by 0.4 the model’s 
prediction for the HLM activity either with positive or negative SHAP values. Hence, 
the topological polar surface area (TPSA) descriptor has a lower impact on the pre-
dictions of the HLM activity as it can only change the predicted value by 0.2 at most. 
Beeswarm plots also explain the relationship between the descriptor and the pre-
dicted value. For this, the plot uses a blue-red color scheme. In the abovementioned 
illustrative example, higher Crippen partition coefficient values (red-colored) cause 
an increase in SHAP values, while lower values (blue-colored) cause lower SHAP val-
ues. The relationship of the feature with regard to the prediction of the model can be 
analyzed with the marginal impact of the feature by means of dependence plots.

Again, as an illustration, Fig. 5 shows the dependence plot of the partition coeffi-
cient Crippen descriptor on the HLM activity prediction. The plot explains the mod-
el’s expected predicted value is 1.3 for HLM activity (horizontal line). Additionally, the 
plot describes how the prediction varies (blue line) according to the Crippen descrip-
tor feature’s value. In this case, the Crippen descriptor can change the expected pre-
dicted value from 0.9 to 1.6 at most. The relationship between the descriptor and the 
predicted value is positive, as lower descriptor values imply lower activity and higher 
descriptor values increase the activity. Dependency plots describe with precision the 
absolute impact of the variable on the prediction. For example, the impact of the TSP 
descriptor is quite low as the marginal impact of the predicted feature only causes 
changes in it the range between 1.30 and 1.34.
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Results
Table 2 shows the prediction performance for each ADME endpoint and for all mod-
els on the test set. Results were evaluated by the MSE and Pearson’s r value. LightGBM 
consistently performed best for all endpoints, a result which is in line with the findings 
reported in [7] for the public ADME data set presented in their study. The best-perform-
ing model (LightGBM) in our study has a slightly lower performance compared with 
those obtained by the authors of the data set by a difference on average of 0.02 in the 
Pearson’s correlation coefficient. This consistent variation in performance may be attrib-
uted to the difference in the data set by excluding the 1024-bit structural fingerprint, 
which constituted a non-interpretable feature.

Study of feature relevance

An analysis of LightGBM feature permutation reveals information about the relative rel-
evance of features. Figure  3 shows the 15 most relevant features obtained with Light-
GBM for the prediction of each ADME endpoint. The relevance of features is further 
analyzed with SHAP analysis derived from the surrogate models built from the trained 
LightGBM model of each ADME property, using additive explanation models imple-
mented in the SHAP library [20]. SHAP explanations and dependency plots are used to 
understand the impact of each feature on the respective model’s prediction in the subse-
quent sections.

Human liver microsomal stability

For the prediction of human liver microsomal (HLM) stability, the most relevant fea-
tures are the partition coefficient (logP) calculated by the Crippen descriptor [33] 
(CrippenDescr1) followed by the 2D autocorrelation coefficient and the topological 
polar surface area (TPSA) coefficient [34] (Figs. 3 and 4). The prediction of HLM activ-
ity depends mostly on the value of the logP Crippen descriptor and to a lesser extent 
on the TPSA descriptor, the 2D autocorrelation descriptor, the Partial Equalization of 
Orbital Electronegativity (PEOE) VSA descriptor (PEOE_VSA), the Molar Refractivity 
(SMR_VSA) and partition coefficient (SlogP_VSA) calculated by the Van der Waals Sur-
face Area (VSA) descriptor [35] and the number of saturated heterocycles. According to 
the dependency plots in Fig. 5, the expected HLM activity of the SHAP model is 1.3 log10

Table 2 Performance of the prediction of the ADME endpoints by ML model evaluated by the MSE 
and Pearson’s r value (MSE/r-value)

Best results are highlighted in bold

Data set RT RF NN LightGBM

HLM 0.31/0.47 0.25/0.59 0.36/0.30 0.23/0.63
RLM 0.44/0.52 0.35/0.63 0.52/0.32 0.33/0.66
hPPB 0.38/0.58 0.27/0.74 0.49/0.32 0.25/0.76
rPPB 0.38/0.57 0.30/0.67 0.55/0.21 0.28/0.70
MDR1 0.32/0.60 0.26/0.71 0.38/0.48 0.23/0.74
Sol 0.50/0.35 0.40/0.54 0.55/0.16 0.37/0.59
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(mL/min/kg). The logP Crippen descriptor is the most relevant feature as its impact is a 
variation of the HLM activity in the range from 1.0 to 1.6. Higher values of the Crippen 
partition coefficient descriptor increase HLM activity and higher TPSA values lower the 
HLM activity according to the dependency plots.

Rat liver microsomal stability

For RML stability, the partition coefficient (logP) calculated by the Crippen descrip-
tor (CrippenDescr1) is most relevant, while the TPSA descriptor, the molar refractiv-
ity (MR) calculated by the VSA descriptor (SMR_VSA), and the Partial Equalization of 
Orbital Electronegativity (PEOE) VSA descriptor are relevant to a lesser extent (Figs. 6 
and 7). The mean expected RLM activity is 2.25 log10(mL/min/kg). The logP Crip-
pen descriptor is the feature with the highest impact as it may change the activity in a 
range from 1.7 to 2.5, while TPSA, SMR_VSA and the autocorrelation descriptor have 

Fig. 3 Feature relevances for the ADME property prediction obtained from LightGBM models-based feature 
permutation
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a substantially lower individual impact. The dependency plots of the most relevant fea-
tures (Fig. 7) describe the positive relationship of the logP Crippen description and the 
SMR_VSA descriptor on the prediction of RLM activity, while the TPSA descriptor has 
a negative relationship with RLM activity.

Fig. 4 Mean SHAP values by features for HLM prediction

Fig. 5 Dependence plot for HLM activity prediction
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Human plasma protein binding

For the prediction of human plasma protein binding (hPPB), the most relevant fea-
ture is the partition coefficient of the Crippen descriptor. To a lower extent, the logP 

Fig. 6 SHAP values mean contribution of features to RLM prediction

Fig. 7 Dependence plot for RLM activity predictions
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VSA descriptor, the topological HallKier descriptor [36] as an index of molecular 
complexity, the MR VSA descriptor, the autocorrelation descriptor and the num-
ber of aliphatic heterocycles are also relevant (Figs.  8 and 9). According to the 

Fig. 8 SHAP values mean contribution of features to hPPB prediction

Fig. 9 Dependence plot for hPPB activity prediction
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SHAP model, the mean expected activity value is 0.65 measured as log10 of percent 
unbounds. The logP Crippen descriptor has the highest impact on the prediction 
varying the hPPB prediction in a range from 0 to 1.2 (Fig.  9). For the other rele-
vant features, the absolute value of the impact is substantially lower. The Hall-Kier 
descriptor has a positive relationship with hPPB activity, while the logP Crippen 
descriptor and the ML VSA descriptor has a negative relationship with the predic-
tion of the hPPB activity.

Rat plasma protein binding

For rPPB the partition coefficient calculated by the Crippen descriptor is the most rel-
evant feature. The fraction of SP3-Hybridized Carbon Atoms descriptor (frac_CSP3), 
the MR VSA descriptor (SMR_VSA), and the 2D autocorrelation coefficient are also rel-
evant but to a lower extent (Figs. 10 and 11). The mean expected rPPB value is approxi-
mately 0.68, measured as log10 of percent unbounds. According to the dependency plots 
in Fig. 11, the impact of the logP Crippen descriptor on the activity prediction is high by 
varying the target value in the range of 0.4 to 1.2 approximately. The other relevant fea-
tures have a much lower impact. The logP Crippen descriptor and the MR SVA descrip-
tor have a negative relationship with the prediction of the activity. Hence, the fraction of 
CSP descriptor has a positive relationship on the activity prediction.

MDR1‑MDCK efflux ratio

There are several relevant features for the prediction of the MDR1-MDCK efflux ratio 
(MDR1-MDCK ER), namely the MR VSA descriptor, the topological Chi descriptor for 
the quantification of the molecule’s complexity, the molecule quantum number (MQN) 

Fig. 10 SHAP values mean contribution of features to rPPB prediction



Page 12 of 25König and Vellido  BioData Mining           (2024) 17:25 

descriptor with information about the molecule’s structure and properties, the topologi-
cal TPSA descriptor, the partition coefficient VSA descriptor (SlogP_VSA) and Crippen 
descriptor (Figs. 12 and 13).

Fig. 11 Dependence plot for rPPB activity prediction

Fig. 12 SHAP values mean contribution of features to MDR1 prediction
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The mean expected MDR1-MDCK activity for the efflux ratio is 0.4 (measured as log10
(B-A/A-B) ratio). The MR VSA descriptor has a high impact varying the target value 
from 0.25 to 0.6. In this case, the other three most relevant features have a similar impact 

Fig. 13 Dependence plot for MDR1 ER activity prediction

Fig. 14 SHAP values mean contribution of features to solubility prediction
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on the model’s prediction, as the prediction varies in a similar range of 0.3 to 0.5 approx-
imately (Fig. 13). As described in the dependency plots, all features have a positive rela-
tionship with MDR1 activity.

Solubility

For the prediction of solubility, there are several relevant features, namely the 2D auto-
correlation coefficient, the MR VSA descriptor, the partition coefficient calculated by the 
Crippen descriptor or VSA descriptor, the fraction of CSP descriptor, and the molecule 
quantum number (MQN) descriptor (Figs. 14 and 15). The mean expected solubility is 
1.25 log10(ug/mL). The impact of the most relevant features is similar, as described in 
the respective dependency plots (Fig. 15). The autocorrelation descriptor, the MR VSA 
descriptor, and the logP Crippen descriptor have a negative relationship concerning sol-
ubility, while the fraction of CSP descriptor has a positive relationship (Fig. 15).

Summary of the feature relevance study

Table  3 provides an overview of the most relevant features for the prediction of the 
ADME endpoints under study derived from the SHAP analysis of the surrogate mod-
els built on the trained LightGBM model for each ADME property. The partition coef-
ficient (logP Crippen), the autocorrelation descriptor, and the MR VSA descriptor are 
found to be relevant to all ADME predictions. Interestingly, there is a set of common 
features for both HLM/RLM prediction as well as for hPPB/rPPB prediction. The TPSA 
and MQN descriptors are highly relevant for both HLM/RLM prediction, but not for the 
hPPB/rPPB prediction. Hence, the Fraction CSP descriptor and saturated heterocycle 

Fig. 15 Dependence plot for solubility activity prediction
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descriptor is relevant for the hPPB/rPPB prediction, whereas these descriptors are not 
between the relevant ones for the HLM/RLM prediction. The partial charge descriptor 
(PEOE_VSA) is found to be relevant for several ADME properties.

Furthermore, the analysis of relevance has highlighted different composite descriptors 
(Chi, MQN, Autocorrelation, VSA or MQN) comprising a larger number of scores with 
detailed information about the molecule’s property under study. This result suggests the 
inclusion of these descriptors into the feature set comprising all their subscores.

The findings about the SHAP explanations at the global level described in the previous 
sections are compared with statistical correlations between variables. The correlation 
coefficients calculated by Pearson’s correlation (Fig. 16) confirm a moderate positive and 
negative relationship of the logP Crippen descriptor with the HLM/RLM endpoints and 
the rPPB/hPPB endpoints. The MR Crippen descriptor has a moderate positive correla-
tion with the MDR1 activity values. The correlation of this descriptor with the activity 
value of the RLM/HLM endpoints is positive and for the rPPB/hPPB prediction, there is 
a weak negative correlation. TPSA shows only in the case of the MDR1 activity a moder-
ate positive correlation.

Model optimization

To evaluate whether the most relevant features suffice to predict the ADME property 
properly, feature selection was performed to evaluate the predictiveness of the models 

Table 3 Summary of most relevant features for ADME prediction

HLM RLM hPPB rPPB MDR1 Sol

logP Crippen x x x x x x

TPSA x x x

MR Crippen x

Autocorr. x x x x x x

PEOE_VSA x x x x x

logP VSA x x x x x

MR_VSA x x x x x x

Kappa x

MQN x x x x

Chi x x

Hall-Kier x x

Aliph. HC x

Sat. HC x x

Fraction CSP x x x

PMI x

Fig. 16 Pearson’s correlation coefficient of descriptors with ADME activity
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built on reduced feature sets. For each ADME prediction model, a subset of features was 
selected according to feature relevance. Figure 17 shows the prediction accuracy of the 
LightGBM model trained on different-sized reduced feature sets. The models are trained 
on the complete feature set (316 descriptors) and with different-sized reduced feature 
sets including between 10 and 50 features. The comparison of the performance of the 
models trained using different-sized feature sets shows that nearly identical results can 
be obtained with a reduced feature set (Fig. 17). Interestingly, in the case of hPPB, rPPB 
and MDR1-ER prediction, feature selection allowed to actually improve the performance 
of the model, as highlighted in Table 4.

Prediction analysis for molecules

While the former sections focused on the analysis of SHAP explanations at the global 
level, i.e. for the mean prediction of the model to discover the most relevant features, 
in this section, the predictions are analyzed at the individual level for single molecules. 
The SHAP explanations are obtained from the surrogate models built from the Light-
GBM model for each ADME property. The individual Shapley-based explanations for 

Fig. 17 MSE with LightGBM trained on reduced feature sets

Table 4 MSE of LightGBM for ADME endpoints on reduced feature sets

Best results are highlighted in bold

Data set 316 10 20 30 40 50

HLM 0.23 0.268 0.263 0.256 0.252 0.249

RLM 0.33 0.377 0.364 0.358 0.354 0.355

hPPB 0.25 0.295 0.260 0.255 0.251 0.250
rPPb 0.28 0.324 0.300 0.286 0.280 0.269
MDR1 0.23 0.251 0.235 0.239 0.231 0.231
Solubility 0.37 0.410 0.421 0.394 0.394 0.380
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all compounds of the data set are available at the GitHub repository of the project. In 
the following, examples from the HLM, MDR1 ER, and Solubility data sets are analyzed 
to illustrate the explanations of the predictions for individual molecules. Molecules are 
compared by calculating the Tanimoto similarity between the extended-connectivity 
fingerprint ECFP4 representation [37], namely a 2,048-bit long Morgan fingerprint [38] 
assuming a maximum path of length seven.

HLM data set

Human liver microsomal intrinsic clearance influences the bio-availability and the half-
life of a drug, which are important for the dosing regimen of a drug [39]. Depending on 
the compound and the therapeutic level a higher or lower intrinsic clearance is desir-
able. Figure 18 shows three examples of explanations for HLM activity prediction at the 
individual level. These three molecules have an intrinsic clearance of 0.84, 0.79, and 1.64 
respectively measured as log10(mL/min/kg). The similarity between the molecules is 
lower than 0.25 according to the pair-wise Tanimoto coefficient.

Molecules ID 177444153 and ID 49964398 are predicted to have a similar intrinsic 
clearance of 6.9 and 6.16 (mL/min/kg) respectively. Nevertheless, due to their structural 
differences, their molecular features are quite different. The partition coefficient found 
as the most relevant feature specifically has very different values. As a consequence, the 
contributions of the SHAP values differ in the respective predictions. The previous case 
is an example where structurally different molecules yield similar HLM activities, and 
SHAP values explain in detail the contributions of the molecular features in the pre-
diction. The third molecule with ID 53827576 has a high HLM activity of 1.46 log10
(mL/min/kg) equivalent to 28.84 (mL/min/kg), which indicates efficient metabolism to 
remove the drug. The breakdown of the prediction into individual contributions pro-
vides helpful insights about the logic of the predicted HLM activity. Although the impact 
of the Crippen partition coefficient is negative in terms of SHAP values, other less rel-
evant molecular features have positive contributions.

MDR1 ER data set

The MDR1-MDCK efflux ratio evaluates if a compound is a substrate of the P-glycopro-
tein (P-gp) efflux transporter, which relates to the intestinal absorption of drugs and the 
permeability to the central nervous system (CNS) [40]. In general, a low MDR1-MDCK 
efflux ratio indicates minimal efflux by P-gp and makes the compounds candidates to 
cross the blood-brain barrier and reach the central nervous system [41, 42]. Figure 19 
shows three examples of explanations of the MDR1-MDCK ER predictions with val-
ues of -0.145, -0.129, and 1.28 respectively, measured as log10 value of the B-A/A-B 
efflux ratio. The similarity between the molecules is below 0.29 according to the pair-
wise Tanimoto coefficients. Molecules with ID 00480727 and ID 5646720 have low 
predicted MDR1 ER, namely an efflux ratio of 1.39 and 1.34 respectively, indicating a 
potential for good drug absorption. The itemization of the prediction reveals the nega-
tive contributions of the most relevant features, namely the CHi2n descriptor, the MR 
VSA descriptor, and the MQN descriptor. The Molecule with ID 8318595, in turn, has a 
much higher predicted MDR1-MDCK ER of 19 indicating less optimal drug absorption 
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Fig. 18 Break-down of SHAP values for HLM activity prediction. Compound shown at the left and prediction 
at the right
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Fig. 19 Break-down of SHAP values for MDR1 ER activity prediction. Compound shown at the left and 
prediction at the right



Page 20 of 25König and Vellido  BioData Mining           (2024) 17:25 

Fig. 20 Break-down of SHAP values for solubility prediction. Compound shown at the left and prediction at 
the right
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characteristics. For this molecule, the most relevant features have a positive contribution 
in terms of SHAP values in the explanation of the prediction.

Solubility data set

Solubility in water is an important property for oral-administrated drugs, as it has a 
direct impact in the capability of drug absorption in the body [43]. Figure 20 shows the 
explanations for the Solubility predictions for three molecules with solubility coefficients 
of 1.328, 1.77, and -0.36 log10(ug/mL), respectively. The similarity between the molecules 
is below 0.37 according to the pair-wise Tanimoto coefficients.

Molecules with ID 300480727 and ID 8318595 have a high predicted solubility, with 
solubility values of 21.28 ug/mL and 58.55 ug/mL considered as moderate/high type of 
solubility in other studies [43]. The itemization of the prediction into feature-related 
contributions reveals the positive contributions of the most relevant features, namely 
the autocorrelation coefficient, the logP VSA descriptor, the fraction of CSP descriptor, 
and the logP Crippen descriptor. The Molecule with ID 25646720 has a very low solu-
bility of 0.46 ug/mL, representing an insoluble compound according to the minimum 
threshold of 10 ug/mL described by [44]. In this case, the most relevant features have a 
negative contribution in terms of SHAP values. The observed contributions of features 
in the previously explained examples agree with the impact of features outlined in the 
global analysis of features’ impact on the predictions (Fig. 15).

Discussion
The experimental results based on the analysis of eXplainable ML models for the pre-
diction of the different ADME endpoints revealed several insights about the most rele-
vant descriptors for each property. First of all, less complex ML models, namely NN and 
RT, performed worse than more complex ensemble models (RF or LightGBM). While 
RT has an inherently interpretable logic for the prediction, RF and LightGBM are not 
straightforward to interpret, as they are an ensemble of individual models. The analysis 
of feature relevance based on feature permutation yielded information about the most 
relevant features for each ADME endpoint. The partition coefficient descriptor (logP), 
the molar refractivity descriptor (MR), and the topological polar surface area (TPSA) 
descriptor were found to be the most relevant features. These results agree with known 
rules to evaluate drug likeliness, such as those reported in Ghose et al. [25] and Veber 
et  al. [26], which highlight these three physicochemical properties as relevant. Other 
known properties for drug likeliness such as the number of hydrogen bond donors 
(HBD), the number of hydrogen bond acceptors (HBA) described by the Lipinski’s rule 
[45], or the number of rotatable bonds [26] are also relevant in the predictions. The 
number of hydrogen bond donors (HBD) is highlighted as a relevant feature in the SHAP 
analysis for the HLM, RLM, and MDR1 activity prediction. The number of hydrogen 
bond acceptors (HBA) and the number of rotatable bonds are often found to have a sig-
nificant influence on the predictions for individual molecules. For a particular example, 
see the predictions illustrated in Figs. 18 or 19, or refer to the explanations of individ-
ual predictions at the GitHub repository of the project. The study by Honório et al. [46] 
uses several of the aforementioned descriptors to predict different ADME properties. 
This work describes the biological role of several physicochemical properties concerning 
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ADME properties. The partition coefficient (logP) represents a measure of lipophilic-
ity and is therefore relevant for membrane permeability, absorption, distribution, and 
clearance. Both the polar surface area and the hydrogen bonding capability are decisive 
for membrane permeability. The state of ionization influences the solubility in water and 
membrane permeability and is related to several ADME properties. In particular, for the 
plasma protein binding capability, the partial charge descriptor (PEOE) was found to be 
an important descriptor [47]. From a structural point of view, the number of rotatable 
bonds determines the molecular flexibility, which in turn is related to the capability for 
absorption, permeability, and distribution. The information about the biological role of 
these physicochemical properties substantiates the use of related molecular descriptors 
in the respective predictive models.

SHAP analysis delved further into the relevance of these molecular descriptors meas-
uring their absolute impact on the prediction of the ML model as well as the trend to 
increase or decrease each of the single ADME activities. These findings were compared 
with Pearson’s correlation coefficients, which confirmed the either positive or negative 
relationship between the descriptor and ADME activity. The feature relevance study 
based on SHAP analysis provided useful insights about the reasoning of the predic-
tive model by highlighting the contribution of the features and so identifying the most 
important features. Interpretability based on SHAP explanations was analyzed in a simi-
lar study for activity prediction [22] using structural features of the compounds, instead 
of physicochemical descriptor values.

The assessment of the predictiveness of these most relevant features was carried out 
through a study of the progressive inclusion of features, aiming to find the reduced fea-
ture set that equals its performance to that of the baseline model. Our experiments have 
shown that, in general, the ML models can not rely solely on the most relevant features 
but need to include a wider set of molecular descriptors to achieve the same perfor-
mance as the baseline models built on all descriptors. A feature set including approxi-
mately 50 descriptors (15.8%) yielded the same results as the baseline model in most 
cases.

The analysis of predictions at the individual level illustrated well how SHapley addi-
tive explanations can be used as human-understandable explanations of the ML model’s 
logic for the prediction. For three relevant ADME properties, namely HLM, MDR1-ER, 
and solubility, a set of differently-performing molecules was selected to illustrate the 
explanations of their predictions. The explanations are based on the breakdown of fea-
ture contributions concerning the mean expected prediction of the model for the ADME 
endpoint under study. The breakdown of feature contributions represents a useful tool 
for humans to practically understand the impact of certain molecular properties on the 
prediction. The expert can combine the insights of feature contributions for a single 
molecule with the feature’s marginal impact at the global level to optimize the search for 
drug leads, for example in the molecule’s neighbor space. The engineering of molecules 
from properties is an active field of research [48, 49], where issues such as the optimiza-
tion of multiple properties are challenging [50]. The information about the contribution 
of a certain feature can help in the engineering of models for inverse molecular design 
or help to optimize the search for improved drug leads. As the variation in the ADME 
activity is quantifiable by the marginal impact on the SHAP values for each feature the 
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search can be directed towards molecules satisfying these characteristics. Furthermore, 
the information about the most relevant molecular properties can also help to fix com-
plementary criteria of evaluation for possible drug leads.

Conclusion
This study presents a preliminary contribution, based on SHAP analysis, to the 
understanding of the molecular feature’s role in the ML model’s prediction for the 
six specific ADME endpoints in a recently published public available data set. As the 
impact of the molecular descriptors on the ADME activity is quantifiable according to 
the marginal impact in terms of SHAP values, this model provides valuable informa-
tion about the desired properties of drug leads. In future work, we plan to extend the 
proposed approach to propose a computational approach that systematically analyzes 
the marginal impact of a wider set of molecular descriptors and uses this information 
for automatic drug screening.
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